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Breakthroughs with LLMs: math reasoning

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.

Exemplar
Intermediate steps 



Breakthroughs with LLMs: code generation

AlphaCode 2 Technical Report.

AlphaCode 2 based on Gemini was ranked ~ top 15% in Codeforces coding contests 



LLM-generated code in the first round can be problematic 

• LLM itself might fail to solve simple coding 
problems specified with input-output examples

• Weakness in code execution understanding



Does GPT-4 + Code Interpreter fix the issue? No.

1st trial 2nd trial



Does GPT-4 + Code Interpreter fix the issue? No. (cont’d)

3rd trial changed the assertion… The generation process ended with the 
changed assertions



AlphaCode’s approach: code selection using execution results

Oracle sample selection

AlphaCode 1B

Limitation: sub-optimal sample efficiency
■ Require a lot of model samples
■ Does not utilize wrong predictions that 

can be partially correct

Li, …, Chen et al., Competition-level Code Generation with AlphaCode, Science 2022. 



● This is why debugging is an important skill for human programmers!

● Good programmers are able to identify bugs by themselves, usually via investigating the execution results and 
reasoning about the code semantic meaning.

● Self-debug: teach large language models to debug their own predicted code via rubber duck debugging.

Human-written code in the first round also might not be perfect

Chen, Lin, Schärli, Zhou, Teaching Large Language Models to Self-Debug. 



Self-debugging overview



Demo with Bard: code generation



Demo with Bard: debugging with code execution



● Challenge: no unit tests
■ The model needs to infer the code 

correctness by itself

● Approach: self-debugging by explaining 
the potential inconsistency between the 
code and the question

Self-debugging without unit tests: text-to-SQL generation



Step 1: explain the question and the generated code



Step 2: self-debugging with the generated explanations



All unit tests are available 
for debugging.

LLM does not need to 
infer the code 
correctness, can focus on 
fixing the wrong code.

Application 2: code translation



Simple: a short universal feedback 
for all wrong code

Unit test feedback: include the 
execution results

Code explanation: line-by-line 
explanation of the implementation

Trace: line-by-line simulation of the 
execution trace

Self-debugging with different feedback formats



Self-debugging with different feedback formats



● MBPP: 1 unit test in the prompt, 2 hidden unit tests for evaluation
● Passing the given unit test does not necessarily mean that the predicted code is correct
● The model still needs to infer the code correctness when the predicted code passes the 

given unit test

Application 3: text-to-Python generation



Results

● StarCoder: 15.5B open-source coding LLM
● Self-debugging consistently boosts the performance across different LLMs



More informative feedback improves self-debugging performance

● Note: simple feedback also utilizes code 
execution to indicate the code correctness

● Adding execution results (UT) consistently 
improves the performance over the 
generic simple feedback

● LLM-generated code explanation can 
provide additional gain



Self-debugging from greedy decoding can match the baseline performance which utilizes 
>10x samples

Self-debugging improves sample efficiency



What error types can be fixed by self-debugging?

● 9% improvement on the 
hardest SQL tasks 

● Self-debugging fixes subtle 
mistakes in code; e.g., missing 
WHERE conditions in complex 
SQL queries

● Note: self-debugging does not 
improve the fundamental 
coding capability of LLMs



Importance of code execution for self-debugging

● Self-debugging improvement is less 
significant w/o code execution, but can 
still bring up to 5% performance gain 
using Codex and GPT-4

● Trace feedback simulates the execution 
outcome and provides helpful 
information for self-debugging

Self-debugging without code execution



Discussion: valid external feedback is crucial for self-correction

Huang, Chen, Mishra, Zheng, Yu, Song, Zhou, Large Language Models Cannot Self-Correct Reasoning Yet.

● Oracle: utilize the ground truth 
answer for correction

● Without oracle feedback for 
correction, LLMs can wrongly 
judge the correctness of its 
predictions for reasoning 
problems, leading to worse 
performance after self-correction

● Code execution provides natural 
external feedback: humans often 
debug better within an IDE 



Takeaway

● We can teach LLMs to self-debug via few-shot prompting, even if the LLM 
itself was not specifically tuned for debugging

● Significant improvement across several coding tasks, including those that 
do not have unit tests

● Self-debugging is not just an approach: it is another indicator of the LLM 
coding capability



So far: advanced prompting techniques trigger new LLM capabilities 

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, NeurIPS 2022.

Exemplar
Intermediate steps 



Zero-shot CoT on MultiArith with text-davinci-002

How to automate the 
prompt design?

Current LLMs are sensitive to prompt design

Kojima et al., Large Language Models are Zero-Shot Reasoners, NeurIPS 2022.



Key ideas:
● Describe the optimization problem in natural language
● Leverage the past optimization trajectory, represented as sorted (solution, score) pairs

Our approach: LLM as the optimizer to improve its own prompt

Yang, Wang, Lu, Liu, Le, Zhou, Chen, Large Language Models as Optimizers.



● Scorer LLM: the LLM to evaluate the accuracy of an instruction

● Optimizer LLM: the LLM to propose a new instruction given old ones and task exemplars

○ The meta-prompt keeps top 20 instructions with their accuracies

LLM for prompt optimization: setup



Example meta-prompt for GSM8K:
I have some texts along with their corresponding scores. The texts are arranged in ascending order
based on their scores, where higher scores indicate better quality.

text:
Let’s figure it out!
score:
61
text:
Let’s solve the problem.
score:
63
(. . . more instructions and scores . . . )

The following exemplars show how to apply your text: you replace <INS> in each input with your
text, then read the input and give an output. We say your output is wrong if your output is different
from the given output, and we say your output is correct if they are the same.

input:
Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books
by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than
Alannah. If Beatrix has 30 books, how many books do the three have together?
A: <INS>
output:
140
(. . . more exemplars . . . )

Write your new text that is different from the old ones and has a score as high as possible. Write the
text in square brackets.

exemplars

(top) past solutions and scores

LLM for prompt optimization: meta-prompt



● All instructions are applied to PaLM 2-L with zero-shot prompting.

● Starting point: “Let’s solve the problem.” with acc = 60.8%.

● Our best prompt outperforms the baseline by ~8%, matching the few-shot accuracy (80.7%) in PaLM-2 
technical report.

Results on GSM8K



The LLM-optimized instructions outperform human-written ones



The accuracy increases with more optimization steps, then plateaus. 

scorer: PaLM 2-L 

optimizer: PaLM 2-L-IT

scorer: text-bison

optimizer: PaLM 2-L-IT

Optimization graphs



● LLM can optimize its own prompt with a simple meta-prompt
○ past instructions and scores
○ exemplars to demonstrate the task
○ some meta-instructions

● Another perspective: prompt optimization demonstrates a weakness of current LLMs, 
i.e., semantically similar instructions may have drastically different accuracies

Takeaway



● Self-improvement is an important capability of LLMs

○ Self-debugging: LLMs can debug their own predicted code
○ Optimization: LLMs can optimize the prompt for themselves

● When does self-improvement work: assist the LLM with valid external feedback
■ Self-debugging: leveraging code execution
■ Prompt optimization: with the quality score of each prompt

Summary
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