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Why do we want Self-supervised Learning in the age of CLIP et al?

Cost of (re)labellingMassive scale Problems of labels Fundamentals

sup. << weak sup. << raw
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Visual development for AI "Get" physics Embodied AI

Especially videos open exiting new directions 

Bonus: insane scale:
YUKI  ASANO
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Augmentations are crucial in classic image-SSL,  

Frame 1

Frame N

But does this generally make sense?

Might be ok for videos like this:

very much 
not the 
same!

but forcing frames to be invariant is limiting

Images: SimCLR, MoCo, SwaAV et al.

model

model'

key principle: view-invariance 
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Solution is obvious 

Frame 1

Frame N

very much 
not the 
same!

Image-level (one vector per frame)

Ours: Dense (one vector per patch)

... ...

Frame 1 Frame N

=
=

Salehi, Gavves, Snoek, Asano. Time does tell:  self-supervised time-tuning of dense image representations. ICCV 2023
YUKI  ASANO
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We model a video by tracking image patches, 
and aligning their clustered features

: spatial features at time t

Salehi, Gavves, Snoek, Asano. Time does tell:  self-supervised time-tuning of dense image representations. ICCV 2023
YUKI  ASANO
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Using videos to learn self-supervised image encoders

Salehi, Gavves, Snoek, Asano. Time does tell:  self-supervised time-tuning of dense image representations. ICCV 2023
YUKI  ASANO
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This field has a rich history. And now it's time to get back to it 
2015-2019 2020 onwards getting competitive to ImageNet

Some references: 
2002 Wiskott, Sejnowski. Slow Feature Analysis: Unsupervised Learning of Invariances
2015 Agrawal, Carreira, Malik. Learning to See by Moving: predict egomotion from frames
2015 Wang, Gupta. Unsupervised Learning of Visual Representations using Videos 
2015 Goroshin, Bruna, Eigen, LeCun. Unsupervised feature learning from temporal data
2015 Ramanathan, Tang, Mori, Fei-Fei. Learning Temporal Embeddings for Complex Video Analysis
2016 Gao, Jayamaran, Graumann. Object-Centric Representation Learning from Unlabeled Videos
2017 Wang, Kaiming, Gupta.  Transitive Invariance for Self-supervised Visual Representation Learning
2018 Wei, Lim, Zisserman, Freeman. Learning and Using the Arrow of Time
2019 Jayamaran, Ebert, Efros, Levine: Time-Agnostic Prediction: Predicting Predictable Video Frames
2019 Mahendran, Thewlis, Vedaldi. focus on motion: cross-pixel flow

2020 Tschannen, Djolonga, Ritter, Mahendran, Zhai, Houlsby, Gelly, Lucic. Self-Supervised Learning of Video-Induced Visual Invariances. 
2021 Wu, Wang. Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency
2020 Gordon, Ehsani, Fox, Farhadi. Watching the World Go By: Representation Learning from Unlabeled Videos
2023 Parthasarathy, Eslami, Carreira, Henaff. Self-supervised video pretraining yieldshuman-aligned visual representations 
2023 Salehi, Gavves, Snoek, Asano. Time does tell:  self-supervised time-tuning of dense image representations
2023 Venkataramanan, Rizve, Carreira, Avrithis*, Asano*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video.  
2023 Carreira et al. Learning from One Continuous Video Stream 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Ablations demonstrate using time helps learn better features

Modelling time is esential
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Assume static TimeTuning

Model learns from temporal info
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STEGO

Ours

DINO

Unsupervised Semantic Segmentation on videos
[simply running k-means on a couple of videos' spatial features, k=10]

✅ crisp semantic maps

❌ noisy maps

❌ part-centric maps

YUKI  ASANO



Unsupervised Semantic Segmentation on videos
[here: running k-means on the whole video's spatial features, k=5]

More examples 

YUKI  ASANO
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Also good performance on images, despite having been tuned on videos.

YUKI  ASANO



14Motivated by: Asano Rupprecht, Vedaldi. A critical analysis of self-supervision, or what we can learn from a single image. ICLR 2020

TimeTuning: 
DINO as init & use 
temporal info of 
videos. 

How powerful is time 
without image-pretraining? 

Study the extreme:  
try to learn from a  
single video,  
from scratch.

YUKI  ASANO



IS  ALL WE NEED ONE 
LONG VIDEO WITH 

MANY DETAILS?

LEARNING FROM TIME 

AS A  

FREE LEARNING SIGNAL
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Vermeer, The Milkmaid 1660
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Us figuring out 
which video to use

WTours proposed for learning video compression in ACCV 2022: Wiles et al. Compressed Vision for Efficient Video Understanding.
YUKI  ASANO

✔ Long 
✔ High-res, smooth 
✔ Semantically rich 
✔ Scalable (we ❤ SSL) 

    Walking Tours



17WT Venice: https://www.youtube.com/watch?v=fGX0Te6pFvk. CC-BY Poptravel.

The dataset consists of 10x 4K videos of different cities' Walking Tours.

YUKI  ASANO
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Dora: Discover and Track

Much like Dora, we walk 
around and  learn from 
what we see.

encoder Multi-object 
tracker

object masks 
 per frame      

ℒDINO

encoder

• distillation loss
• for multiple objects

High-level idea:  
1) track multiple objects across time 
2) enforce invariance of features across time

1

2

N

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023
YUKI  ASANO
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Spreading attention with Sinkhorn-Knopp

without SK

with SK

Multi-object 
tracker

1 2 3 N...Spatial patch features

ViT heads

Problem: heads attend to same locations

1 2 3 N...Spatial patch features

ViT heads 
= objects

SK optimal transport for high entropy

Visualise attention of  
3 heads with colors R,G,B

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023
YUKI  ASANO
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More examples: 
multi-object tracking  
in a ViT emerges

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023
YUKI  ASANO
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Dora better than DINO
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WT+ Dora: great match

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023
YUKI  ASANO
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But how does it compare against ImageNet pretraining?
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Dora (1WT) ~ on par with DINO (IN-1k)   
Dora (10WT) > DINO (IN-1k) everywhere

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023
YUKI  ASANO
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Summary

[Asano et al. ICLR 2020]

[Ziegler & Asano. CVPR 2022

[Salehi et al.. ICCV 2023]

[Vekataramaran et al. Arxiv 2023]
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1 TimeTuning: 
DINO as init & use 
temporal info of 
videos. 

How powerful is time without 
image-pretraining? 

2 Study the extreme:  
try to learn from a  
single video,  
from scratch.

✅ Videos allow for strong self-supervised learning

VLMs? 
Can we reduce the need for paired data?

3 Use self-supervised features 
to create noisily paired data.

YUKI  ASANO



REDUCING THE NEED 
FOR PAIRED  

TEXT-IMAGE DATA

Dirk Jacobsz, Painting a Portrait of His Wife,1550

https://en.wikipedia.org/wiki/Dirk_Jacobsz
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Why are LLMs so sexy? a) scaling behavior, b) In-context Learning!

Brown et al. Language models are few-shot learners. NeurIPS 2020

The possibility to  
• define a task and the 
• learning-like behaviour via few-shot examples  
• with a frozen model  
allows big scaling 

YUKI  ASANO
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In-context Learning emerges also for Visual Language Models

Tsimpoukelli et al. Multimodal Few-Shot Learning with Frozen Language Models.  NeurIPS 2021 
Alayrac et al. Flamingo: a Visual Language Model for Few-Shot Learning. NeurIPS 2022 YUKI  ASANO
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But just because it emerges 
for 6B+ sized models, does it 
mean we cannot do this with 
more light-weight ones?

?

YUKI  ASANO
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Our goal 
     open-ended multi-modal ICL 
     with small VLMs 
     without using supervised data.

Why? 
• Ultimately, paired data is rare  
• ICL as algorithm: symbols 
replaceable 

• As an existence-proof

YUKI  ASANO
Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.
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How? Our method simply mimics supervised data by using SSL

YUKI  ASANO
Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.
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Where are we?
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We train with fake names, but evaluation works just fine!

YUKI  ASANO
Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.
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Simple-as-that; beats 6B-sized models on open-ended multi-modal classif.

Open-ended mini-ImageNet ICL evaluation

0

22,5

45

67,5

90

5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot

Frozen (7B)
FROMAGe (6.7B)
Ours (1.3B)

Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.
YUKI  ASANO
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Team for the works presented

Salehi, Gavves, Snoek, Asano. Time does tell:  self-supervised time-tuning of dense image representations. ICCV 2023 
Venkataramanan, Rizve, Carreira, Avrithis, Asano. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023 
Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023. 
¹: co-first authors; *: co-last authors

TimeTuning 

WTour Dora  

Mohammadreza Salehi Efstratios Gavves Cees G. M. Snoek Yuki M. Asano

SeCAt 

Yuki M. Asano*Shashanka Venkataramanan Mamshad N Rizve Joao Carreira Yannis Avrithis* 

Yuki M. Asano*Marcel Worring*Mohammad M Derakhshani¹ Ivona Najdenkoska¹ Cees G. M. Snoek*
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Future Foundation Models will be massively pretrained with videos.  
Current multi-modal training will become only the cherry on top.


