UNIVERSITY OF AMSTERDAM

YUKI ASANO NEURIPS 2023

Modern Self-supervised Image Representation Learning itom Videos

Van Gogh self-portraits 1888, 1889

Why do we want Self-supervised Learning in the age of CLIP et al?

Problems of labels

Especially videos open exiting new directions

Visual development for AI

Bonus: insane scale:

"Get" physics

Embodied AI

LEARNING IMAGE ENCODERS FROM TIME

Augmentations are crucial in classic image-SSL, but forcing frames to be invariant is limiting

But does this generally make sense?

Frame 1

Frame N

very much not the same!

Solution is obvious

Salehi, Gavves, Snoek, Asano. Time does tell: self-supervised time-tuning of dense image representations. ICCV 2023

We model a video by tracking image patches, and aligning their clustered features

UNIVERSITY OF AMSTERDAM YUKI ASANO

U z_T

t=T

Salehi, Gavves, Snoek, Asano. Time does tell: self-supervised time-tuning of dense image representations. ICCV 2023

Using videos to learn self-supervised image encoders

This field has a rich history. And now it's time to get back to it

2015-2019

Some references:

- 2002 Wiskott, Sejnowski. Slow Feature Analysis: Unsupervised Learning of Invariances
- 2015 Agrawal, Carreira, Malik. Learning to See by Moving: predict egomotion from frames
- 2015 Wang, Gupta. Unsupervised Learning of Visual Representations using Videos
- 2015 Goroshin, Bruna, Eigen, LeCun. Unsupervised feature learning from temporal data
- 2015 Ramanathan, Tang, Mori, Fei–Fei. Learning Temporal Embeddings for Complex Video Analysis 2016 Gao, Jayamaran, Graumann. Object-Centric Representation Learning from Unlabeled Videos
- 2017 Wang, Kaiming, Gupta. Transitive Invariance for Self-supervised Visual Representation Learning 2018 Wei, Lim, Zisserman, Freeman. Learning and Using the Arrow of Time
- 2019 Jayamaran, Ebert, Efros, Levine: Time-Agnostic Prediction: Predicting Predictable Video Frames 2019 Mahendran, Thewlis, Vedaldi. focus on motion: cross-pixel flow

2020 onwards getting competitive to ImageNet

2020 Tschannen, Djolonga, Ritter, Mahendran, Zhai, Houlsby, Gelly, Lucic. Self–Supervised Learning of Video–Induced Visual Invariances. 2021 Wu, Wang. Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency 2020 Gordon, Ehsani, Fox, Farhadi. Watching the World Go By: Representation Learning from Unlabeled Videos 2023 Parthasarathy, Eslami, Carreira, Henaff. Self-supervised video pretraining yieldshuman-aligned visual representations 2023 Salehi, Gavves, Snoek, Asano. Time does tell: self-supervised time-tuning of dense image representations 2023 Venkataramanan, Rizve, Carreira, Avrithis*, Asano*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. 2023 Carreira et al. Learning from One Continuous Video Stream

Ablations demonstrate using time helps learn better features

Modelling time is esential

Unsupervised Semantic Segmentation on videos [simply running k-means on a couple of videos' spatial features, k=10]

Ours

DINO

STEGO

Unsupervised Semantic Segmentation on videos [here: running k-means on the whole video's spatial features, k=5]

More examples

Also good performance on images, despite having been tuned on videos.

TimeTuning: DINO as init & use temporal info of videos.

How powerful is time without image-pretraining?

Study the extreme: try to learn from a single video, from scratch.

Motivated by: Asano Rupprecht, Vedaldi. A critical analysis of self-supervision, or what we can learn from a single image. ICLR 2020

Vermeer, The Milkmaid 1660

IS ALL WE NEED ONE LONG VIDEO WITH MANY DETAILS?

Us figuring out which video to use

BUTTHATS DATA, AND WE 🗘 SSI

WTours proposed for learning video compression in ACCV 2022: Wiles et al. Compressed Vision for Efficient Video Understanding.

✓ Long ✓ High-res, smooth ✓ Semantically rich ✓ Scalable (we ♥ SSL)

Walking Tours

The dataset consists of 10x 4K videos of different cities' Walking Tours.

WT Venice: https://www.youtube.com/watch?v=fGX0Te6pFvk. CC-BY Poptravel.

Dora: Discover and Track

Much like Dora, we walk around and learn from what we see.

_	
_	
_	
	_

Spreading attention with Sinkhorn-Knopp

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023

More examples: multi-object tracking in a ViT emerges

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023

Dora better than DINO WT+ Dora: great match

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023

But how does it compare against ImageNet pretraining?

Dora (10 WT)

Dora (10WT) > DINO (IN-1k) everywhere

Venkataramanan, Rizve, Carreira, Asano*, Avrithis*. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023

1 TimeTuning:

DINO as init & use temporal info of videos.

How powerful is time without image-pretraining?

2 Study the extreme: try to learn from a single video, from scratch.

Videos allow for strong self-supervised learning

VLMs? Can we reduce the need for paired data?

3 Use self-supervised features to create noisily paired data.

Dirk Jacobsz, Painting a Portrait of His Wife, 1550

REDUCING THE NEED FOR PAIRED TEXT-IMAGE DATA

Why are LLMs so sexy? a) scaling behavior, b) In-context Learning!

Brown et al. Language models are few-shot learners. NeurIPS 2020

• with a *frozen model* allows big scaling

In-context Learning emerges also for Visual Language Models

Tsimpoukelli et al. *Multimodal Few-Shot Learning with Frozen Language Models*. NeurIPS 2021 Alayrac et al. *Flamingo: a Visual Language Model for Few-Shot Learning*. NeurIPS 2022

But just because it emerges for 6B+ sized models, does it mean we cannot do this with more light-weight ones?

Our goal

open-ended multi-modal ICL with small VLMs without using supervised data.

Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.

Why?

- Ultimately, paired data is rare
- ICL as algorithm: symbols replaceable
- As an existence-proof

How? Our method simply *mimics* supervised data by using SSL

Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.

Where are we?

GET SMALL VLMS TO DO ICL

SELF-SUPERVISION WITHOUT PAIRED DATA

UNIVERSITY OF AMSTERDAM

AH SO USE THE POWER Of Supervision Right?

We train with fake names, but evaluation works just fine!

This is a scoreboard.

This is a school bus.

This is a <?>

ClipCap: distinguished from all other by its long slender torso.
FROMAGe: school bus that is parked in the school yard.
SeCAt (Ours): school bus.

Simple-as-that; beats 6B-sized models on open-ended multi-modal classif.

Open-ended mini-ImageNet ICL evaluation

Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.

Team for the works presented

TimeTuning

Mohammadreza Salehi

WTour Dora

Shashanka Venkataramanan

SeCAt

Mohammad M Derakhshani¹

Ivona Najdenkoska¹ Cees G. M. Snoek^{*}

UNIVERSITY OF AMSTERDAM ×××× YUKI ASANO

¹: co-first authors; *: co-last authors

Efstratios Gavves

Cees G. M. Snoek

Yuki M. Asano

Joao Carreira

Yuki M. Asano*

Yannis Avrithis*

Marcel Worring*

Salehi, Gavves, Snoek, Asano. *Time does tell: self-supervised time-tuning of dense image representations*. ICCV 2023 Venkataramanan, Rizve, Carreira, Avrithis, Asano. Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video. ArXiv 2023 Derakhshani, Najdenkoska, Snoek, Worring, Asano. Self-Supervised Open-Ended Classification with Small Visual Language Models. ArXiv 2023.

34

Future Foundation Models will be massively pretrained with videos. Current multi-modal training will become only the cherry on top.

