Visual representations that transfer

Diane Larlus

Principal Scientist at NAVER LABS Europe

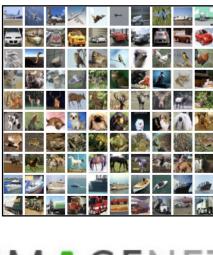
Self-Supervised Learning, Theory and Practice Workshop – NeurIPS 2023 December 16th, 2023

NAVER LABS

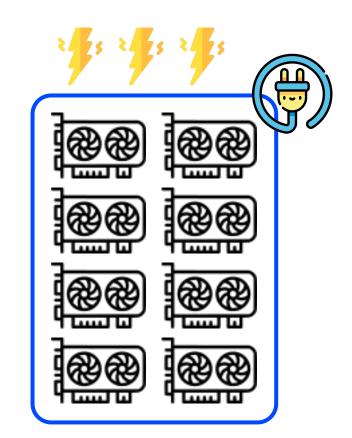
© NAVER LABS Corp

Training a new computer vision model - Starting kit

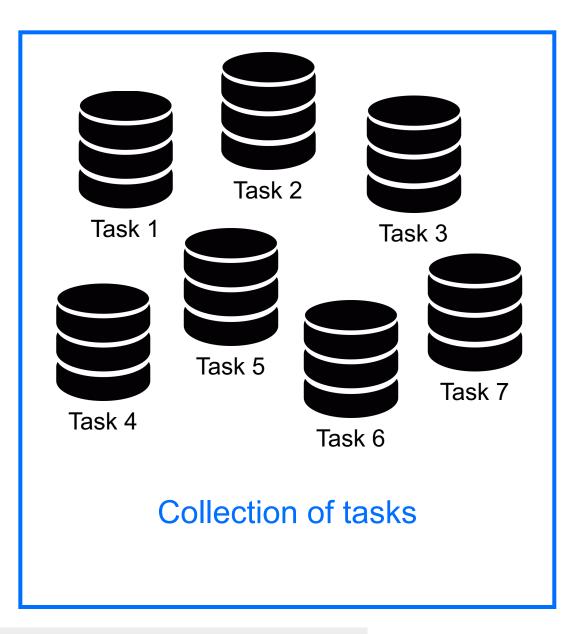
- A large image collection with labels
- A powerful neural architecture
- Lots of compute

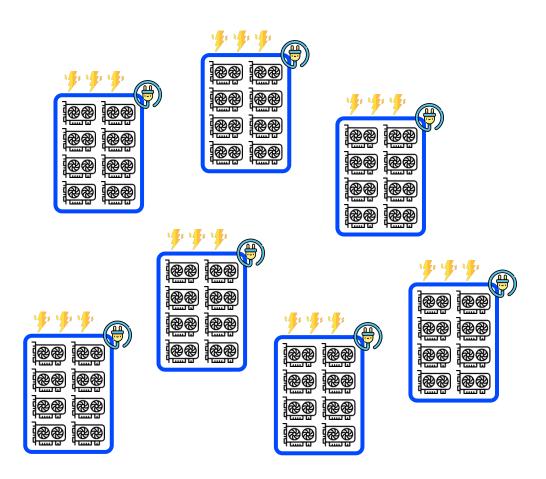


IM GENET

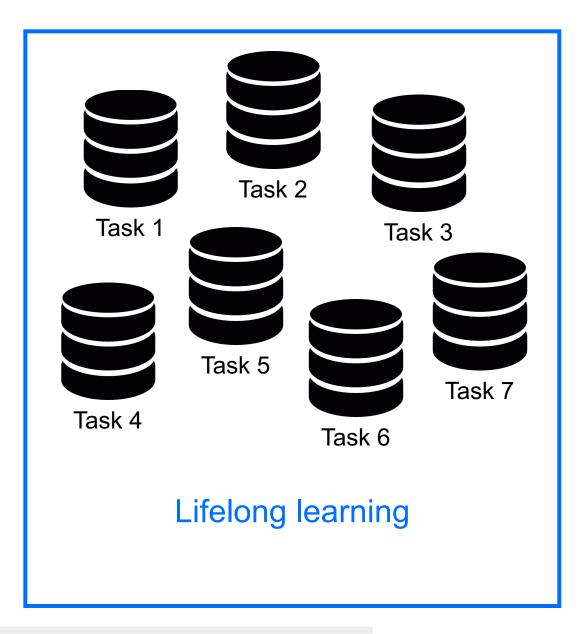


Multiple tasks

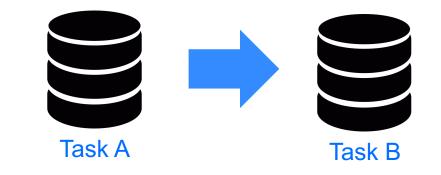




The case of two tasks

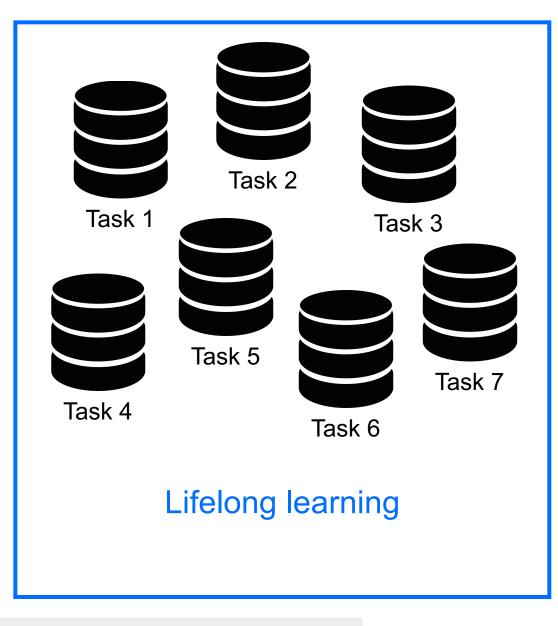


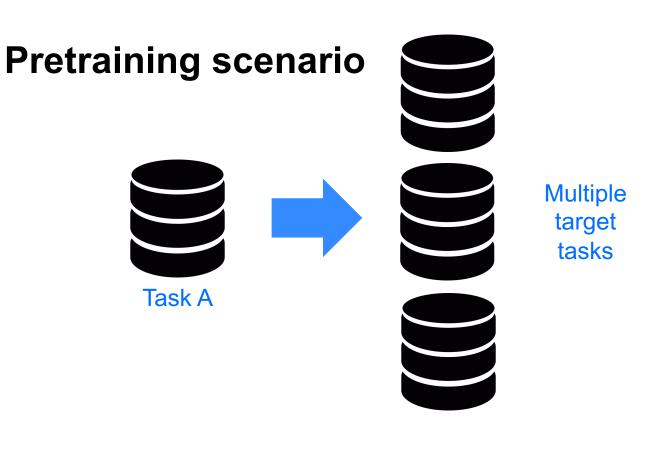
Is Task A useful for Task B?



- How should we train on Task A?
- How should we adapt on Task B?

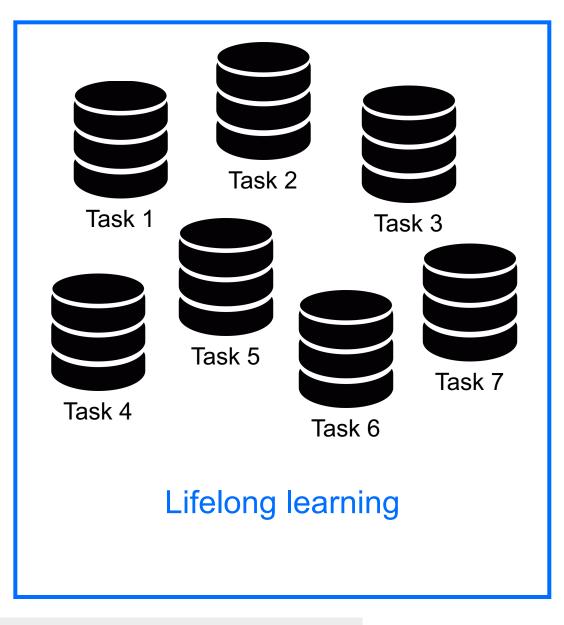
Pretraining versatile representations



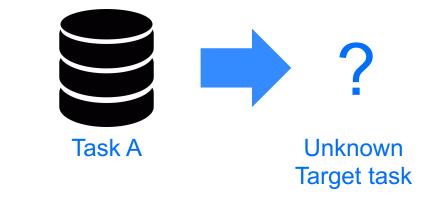


How should we train on Task A?

Pretraining versatile representations

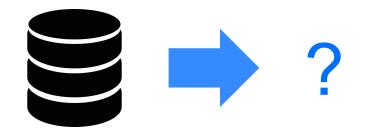


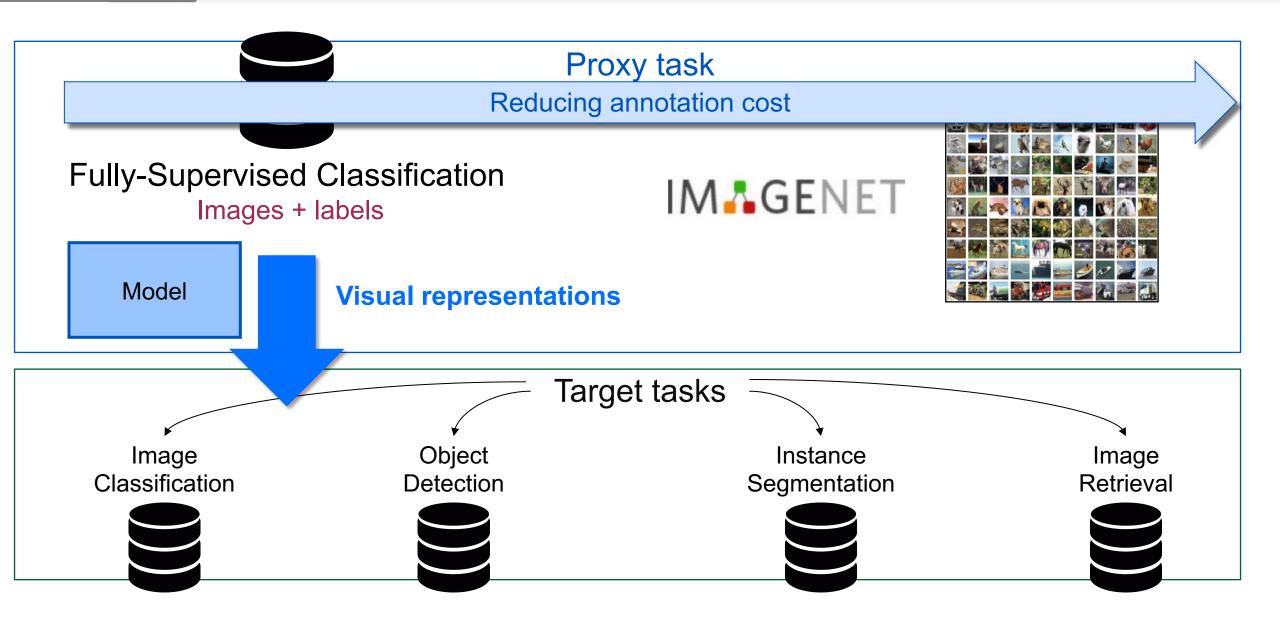
Pretraining scenario



How should we train on Task A?

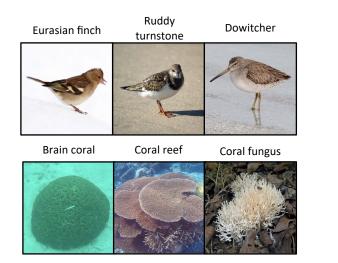
Transferable visual representations





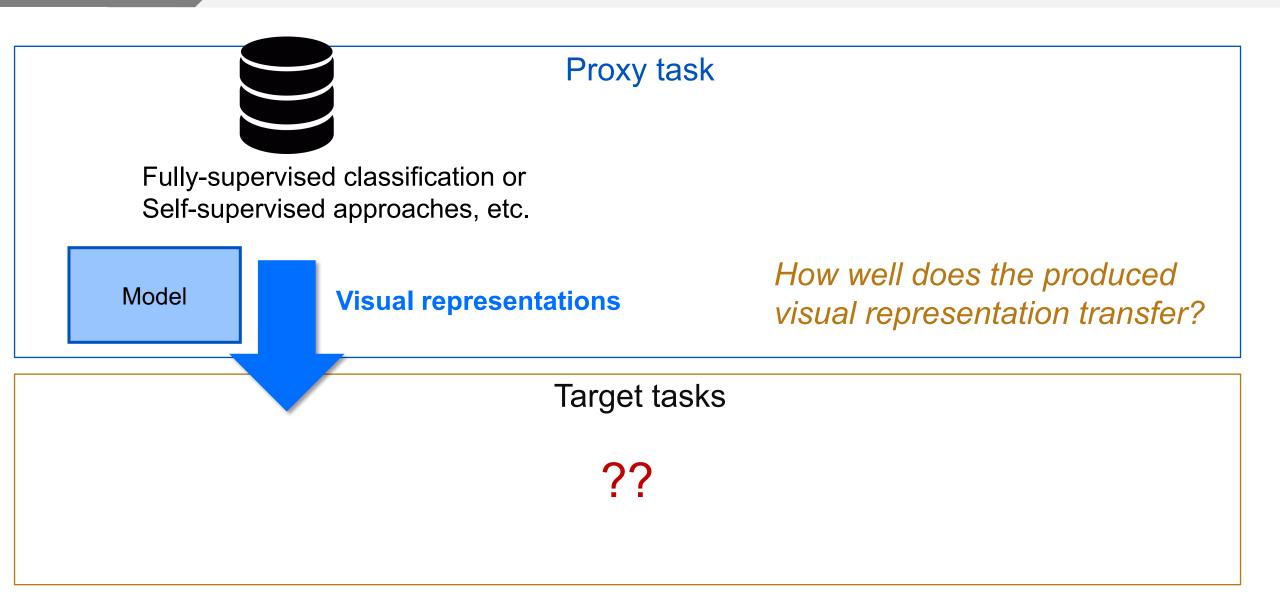
Reducing annotation cost

Fully-Supervised fine-grained annotations expert knowledge

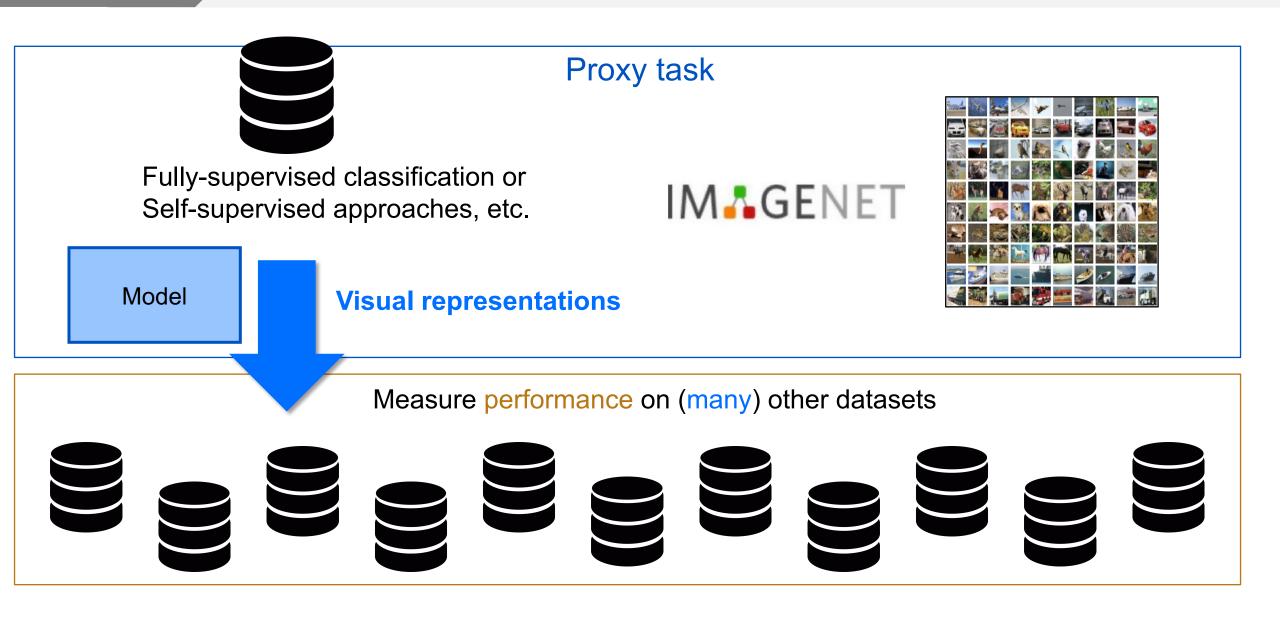


Self-supervised annotation-free images no annotation required

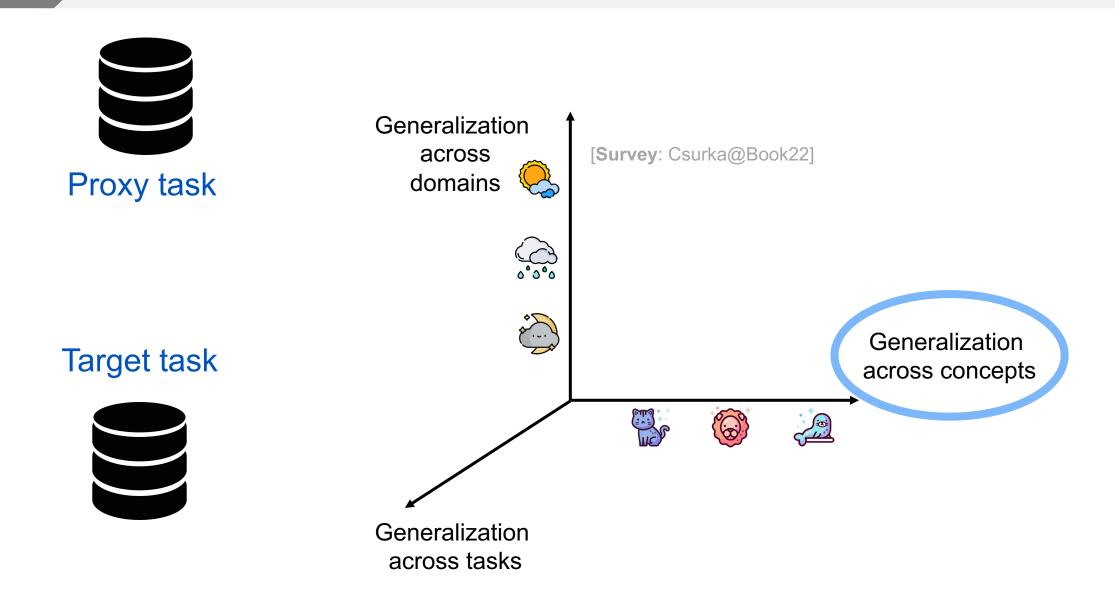
Learning transferable visual representations



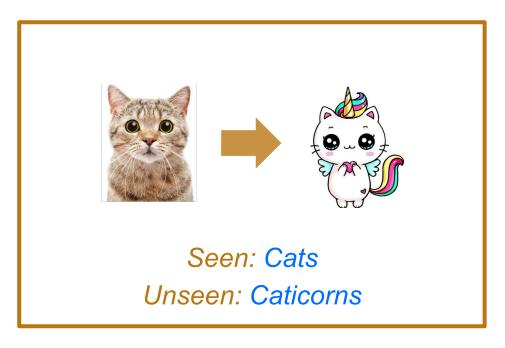
Evaluation of visual representations



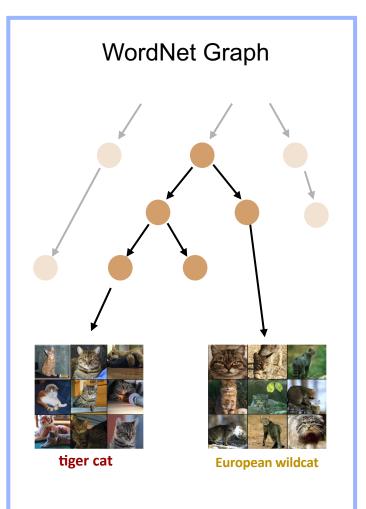
Evaluation of visual representations



When training a model on a set of **seen** concepts, how well does it generalize to **new, unseen** set of concepts ?



Measure the semantic distance between concepts



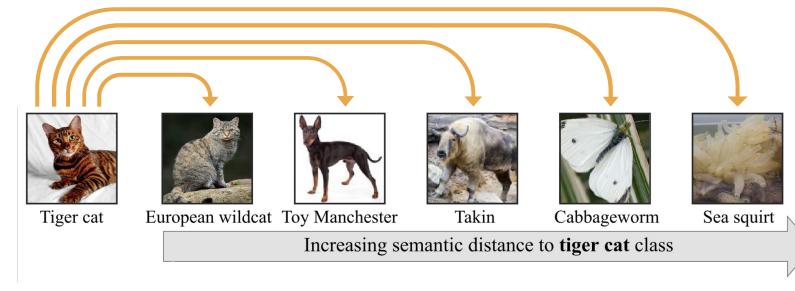
Lin similarity in the WordNet Graph

Tiger cat European wildcat

[Lin: Lin@ICML1998]

Cabbageworm

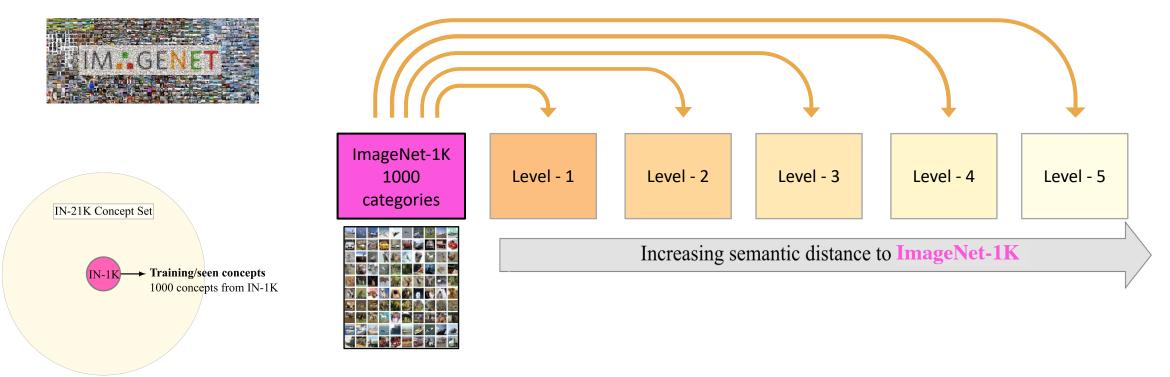
Measure the semantic distance between concepts



[Lin: Lin@ICML1998]

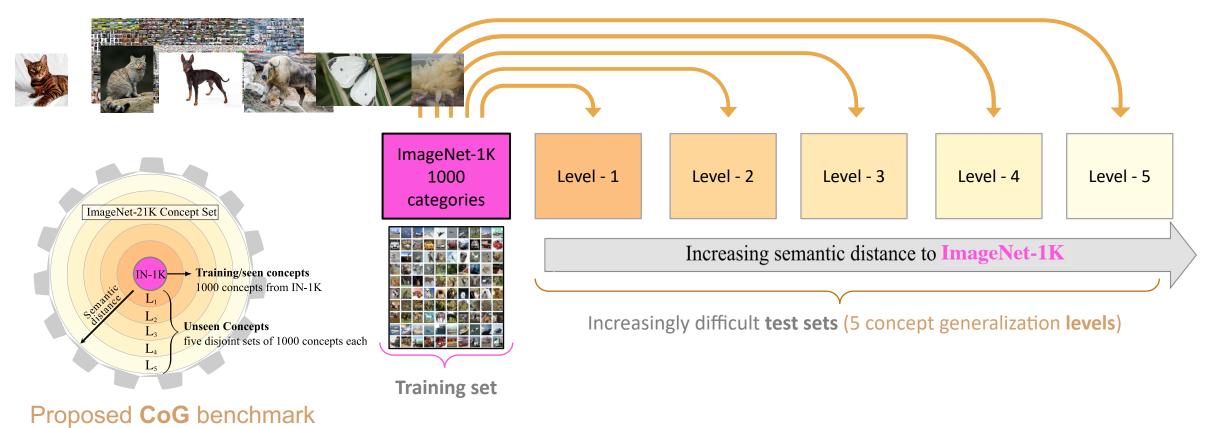
Measure the semantic distance between sets of concepts

[ImageNet: Deng@CVPR2009]



Measure the semantic distance between sets of concepts

[ImageNet: Deng@CVPR2009]



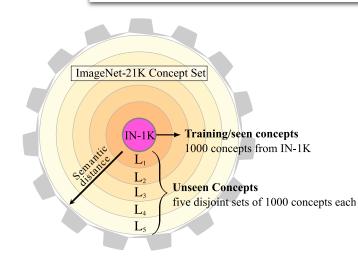
Observations

- It is harder to generalize to semantically distant concepts
- Recent self-supervised approaches generalize better
- Label-based augmentations hurt concept generalization

Reference

Concept generalization in visual representation learning

Mert Bulent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari ICCV 2021



Proposed CoG benchmark

	s with different backbone	
a-T2T-ViT-t-14	Visual transformer (21.5M)	
a-DeiT-S	Visual transformer (22M)	
a-DeiT-S-distilled	Distilled a-DeiT-S (22M)	
a-Inception-v3	CNN with inception modules (27.2M)	
a-NAT-M4	Neural architecture search model (7.6M)	
a-EfficientNet-B1	Neural architecture search model (7.8M)	
a-DeiT-B-distilled	Bigger version of <i>a</i> -DeiT-S-distilled (87.6M)	
a-ResNet152	Bigger version of ResNet50 (60.2M)	
a-VGG19	Simple CNN architecture (143.5M)	
-	Net50 models trained in this framework	
s-SimCLR-v2	Online instance discrimination (ID)	
s-MoCo-v2	ID with momentum encoder and memory bank	
s-SwAV	Online clustering	
s-BYOL	Negative-free ID with momentum encoder	
s-MoCHi	ID with negative pair mining	
s-InfoMin	ID with careful positive pair selection	
s-OBoW	Online bag-of-visual-words prediction	
s-CompReSS	Distilled from SimCLR-v1 (with ResNet50x4)	
Regularization: ResNet50 models with additional regularization		
<i>r</i> -MixUp	Label-associated data augmentation	
r-Manifold-MixUp	Label-associated data augmentation	
<i>r</i> -CutMix	Label-associated data augmentation	
r-ReLabel	Trained on a "multi-label" version of IN-1K	
r-Adv-Robust	Adversarially robust model	
r-MEAL-v2	Distilled ResNet50	

Baseline model from the torchyision package (25.5M)

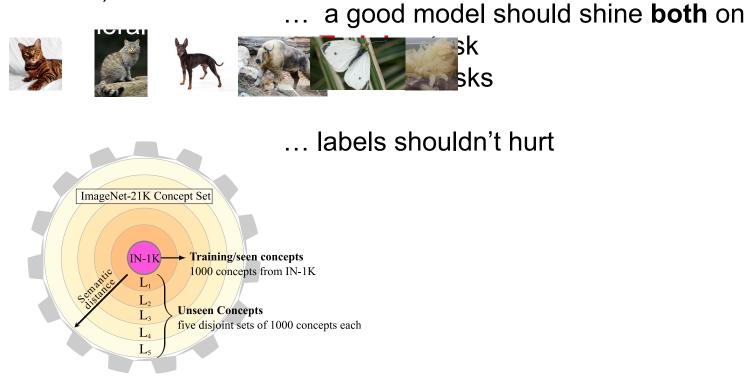
ResNet50

Use of web data: ResNet50 models using additional data	
d-MoPro	Trained on WebVision-V1 ($\sim 2 \times$)
d-Semi-Sup	Pretrained on YFCC-100M ($\sim 100 \times$),
	then fine-tuned on IN-1K
d-Semi-Weakly-Sup	Pretrained on IG-1B ($\sim 1000 \times$),
	then fine-tuned on IN-1K
d-CLIP	Trained on WebImageText ($\sim 400 \times$)

Observations

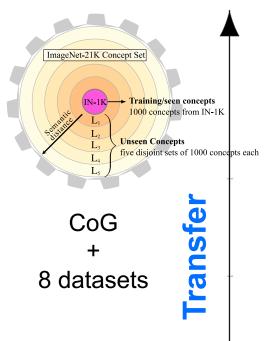
• Recent self-supervised approaches generalize better

Yes, but ..



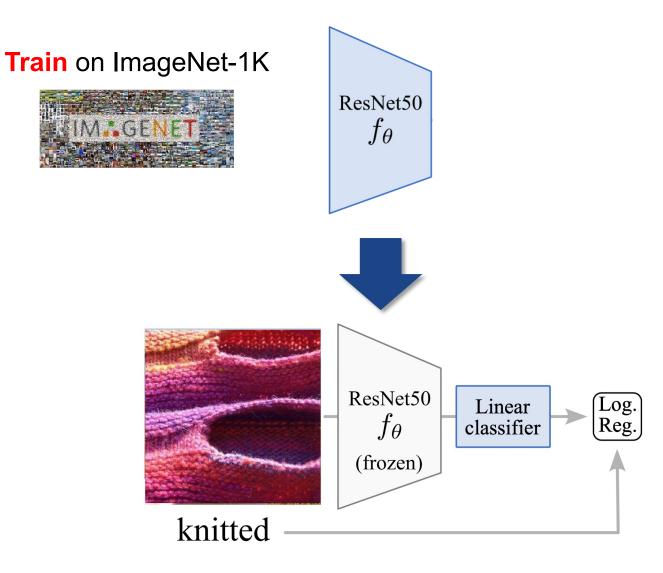
Proposed **CoG** benchmark

mance trade-off between the training task and transfer



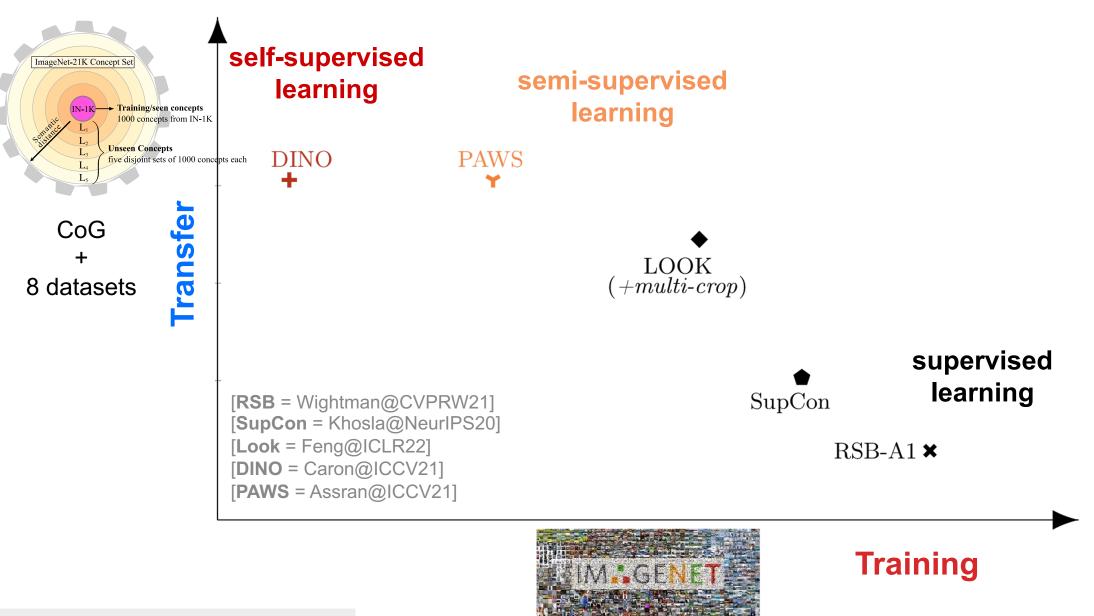
- ... a good model should shine **both** on
- Training task
- Transfer tasks
- ... labels shouldn't hurt

Performance trade-off between the training task and transfer

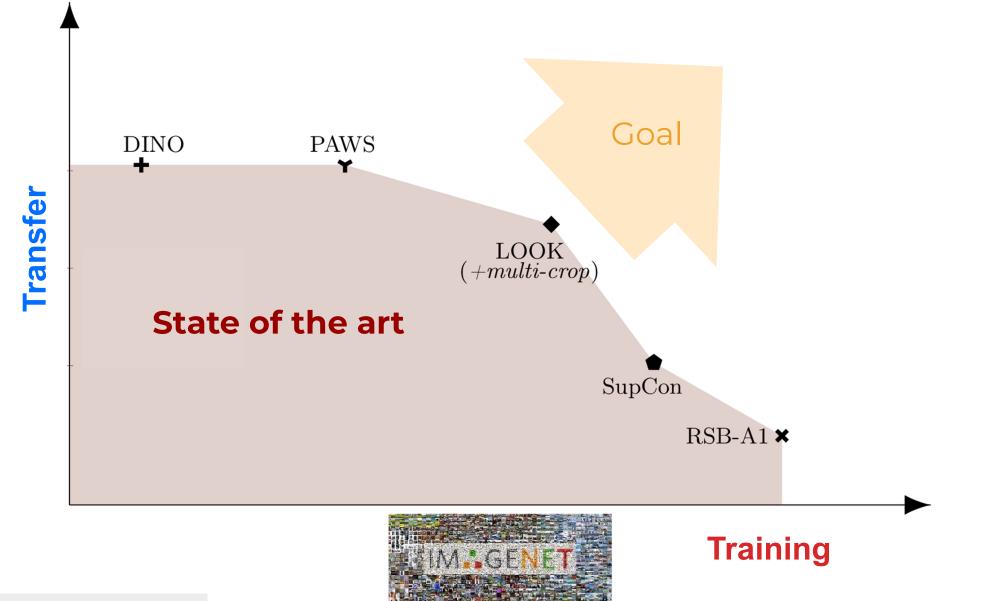


For the **Training** task + every **Transfer** task

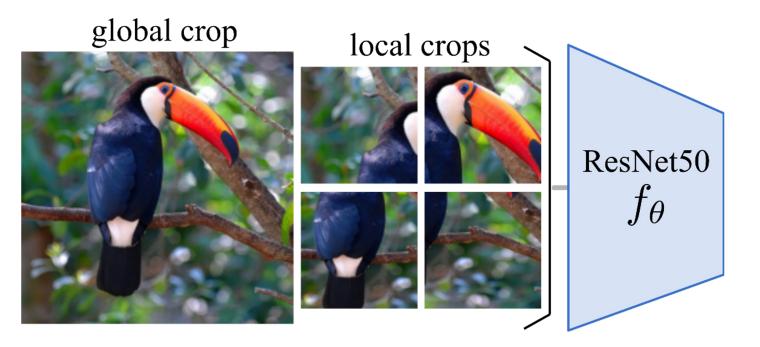
mance trade-off between the training task and transfer



Increasing results both on the training task and transfer



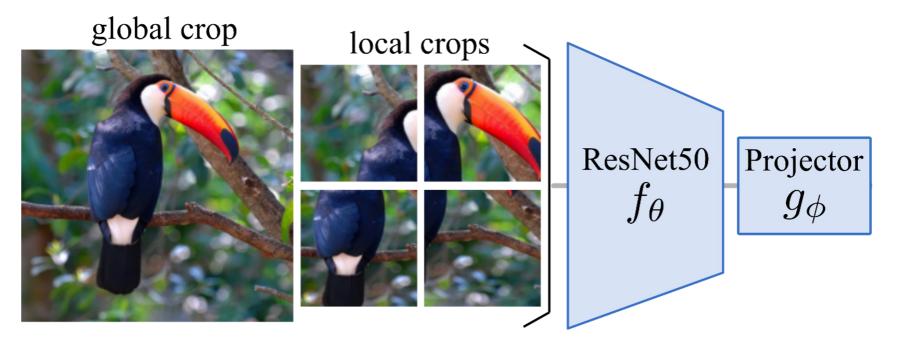
Improving the **generalization** of **supervised** models



1. Multi-crop data augmentation

[SWAV = Caron@NeurIPS20] [DINO = Caron@ICCV21]

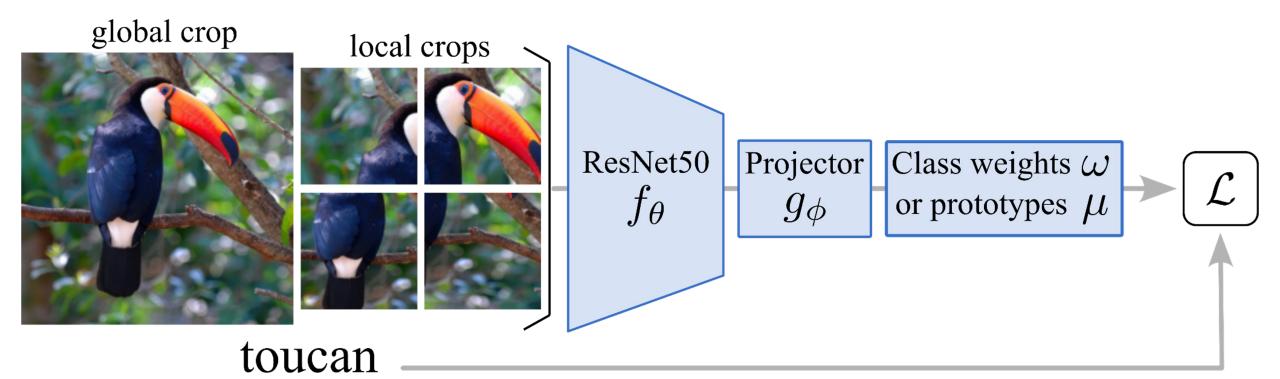
Improving the **generalization** of **supervised** models



- 1. Multi-crop data augmentation
- 2. Expendable projector head

[**SimCLR** = Chen@ICML20] [Wang@CVPR22]

Improving the **generalization** of **supervised** models

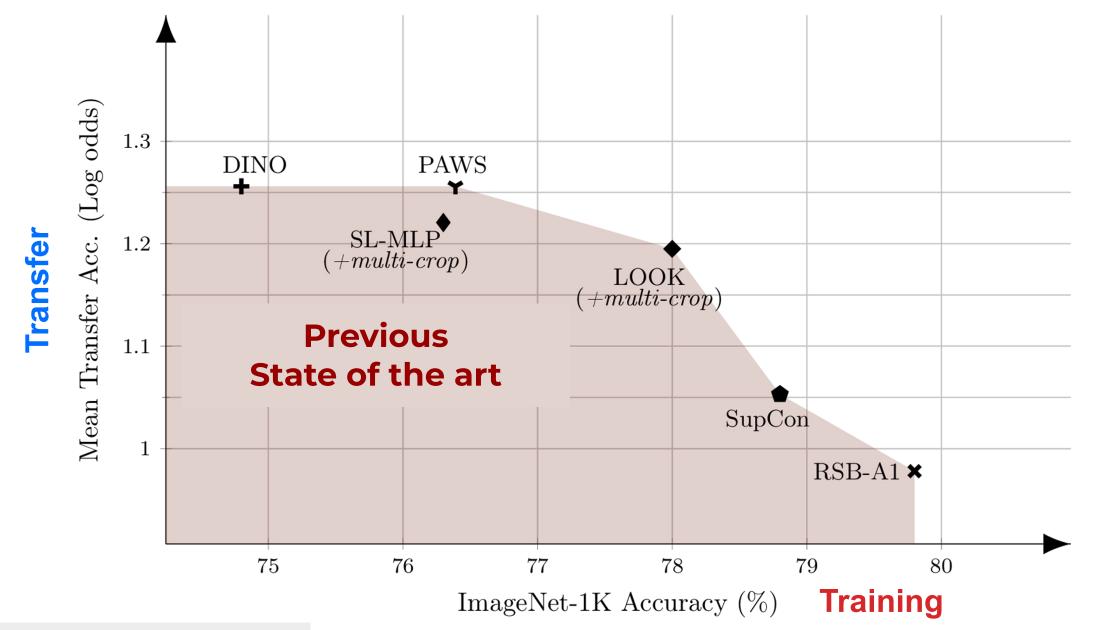


- 1. Multi-crop data augmentation
- 2. Expendable projector head
- 3. (optional) Replace class weights with class prototypes

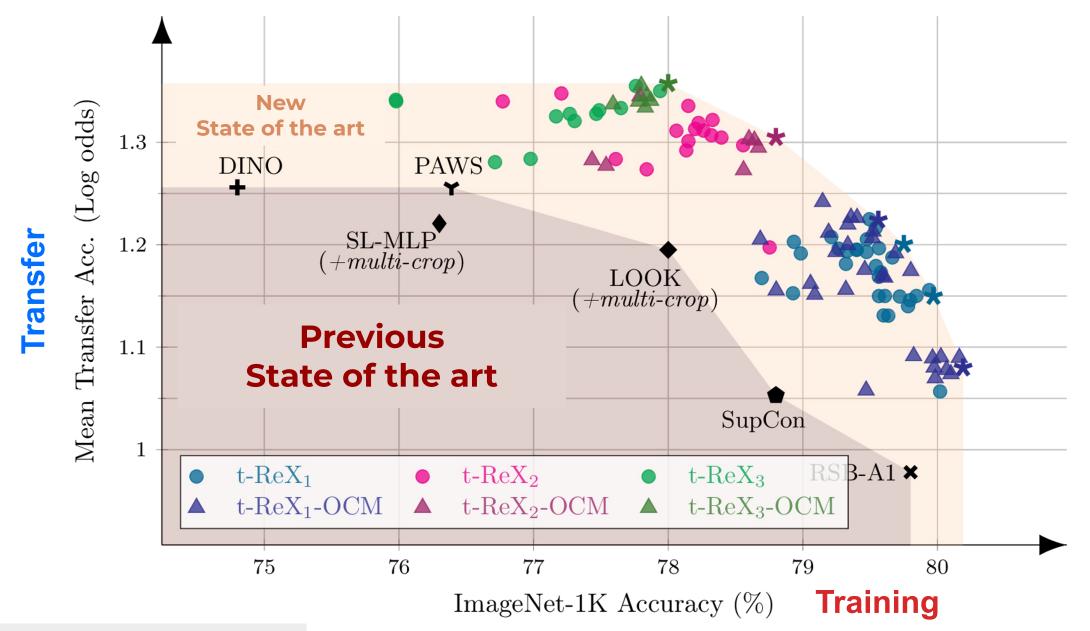
Nearest Class Means (NCM)

[**NCM** = Mensink@ECCV12] [**DeepNCM** = Guerriero@W-ICLR18]

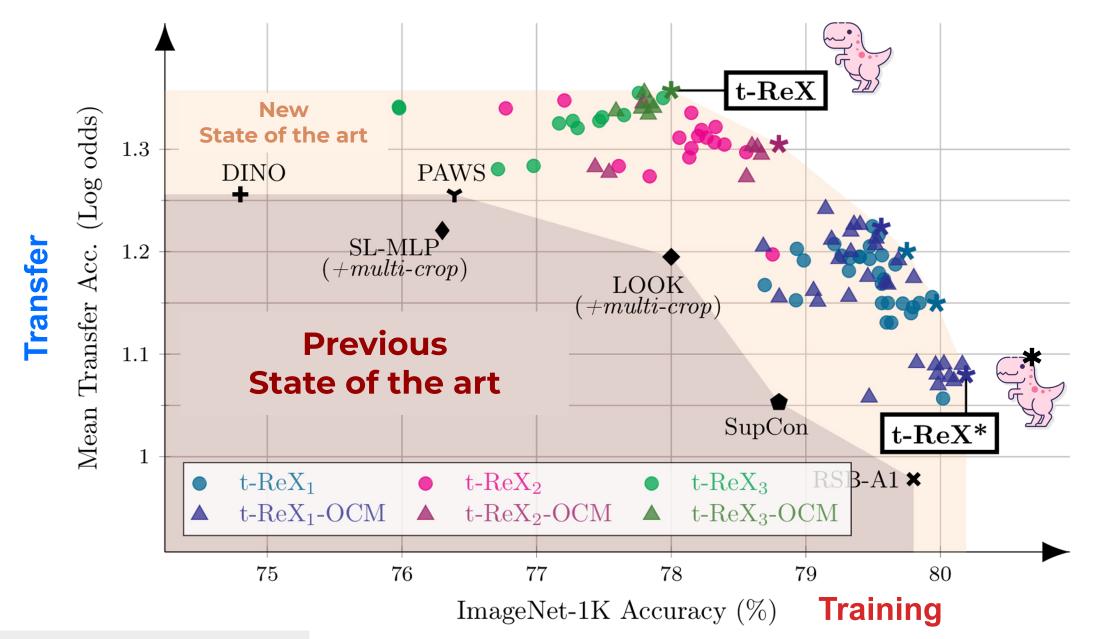
Comparison with the **SOTA**



Comparison with the **SOTA**



T-Rex



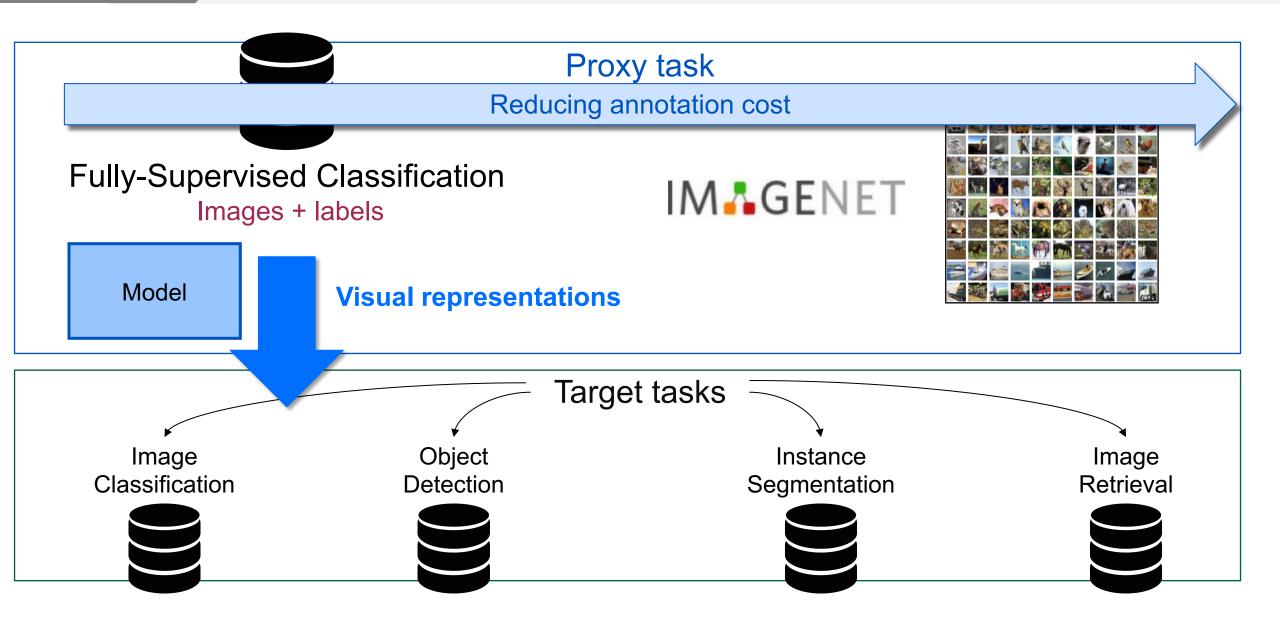
T-ReX

Take home message

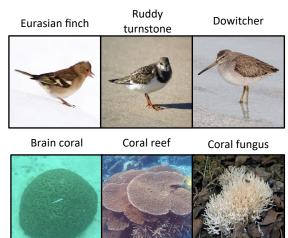
T-Rex is state of the art for Transfer "despite" being supervised

- Multi-crop data augmentation helps
- Expendable projector controls Training / Transfer trade-off

Reference **No Reason for No Supervision: Improved Generalization in Supervised Models** Mert Bulent Sariyildiz, Yannis Kalantidis, Karteek Alahari, Diane Larlus ICLR 2023



Fully-Supervised fine-grained annotations



Caption-supervised side information

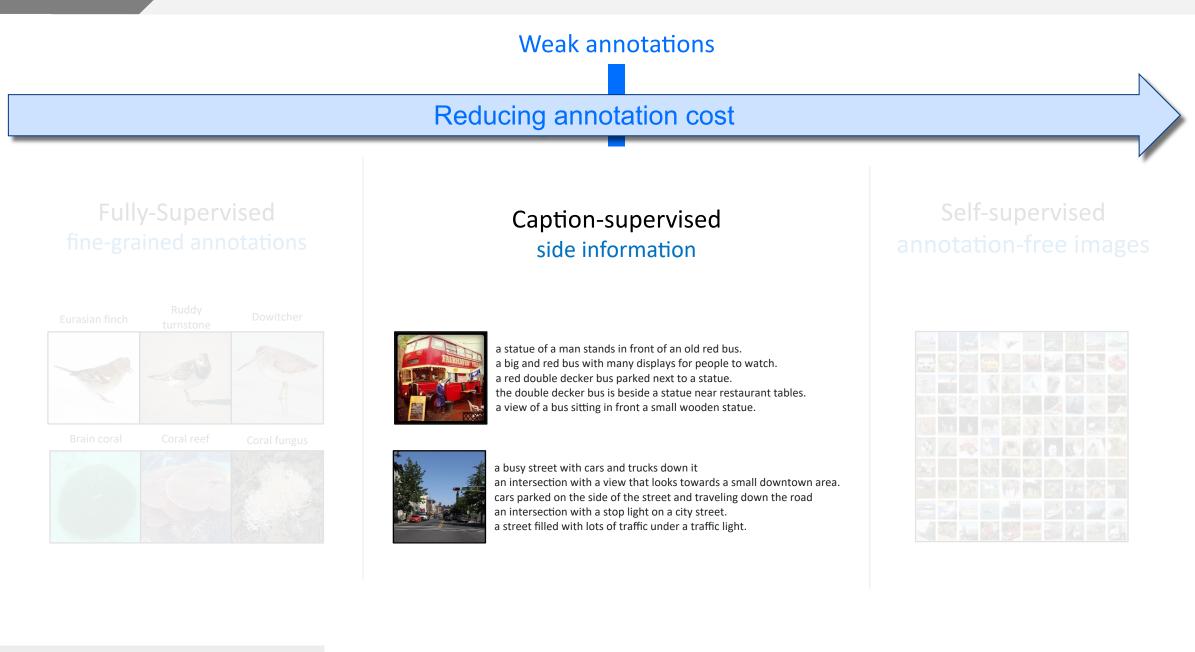
a statue of a man stands in front of an old red bus. a big and red bus with many displays for people to watch. a red double decker bus parked next to a statue. the double decker bus is beside a statue near restaurant tables. a view of a bus sitting in front a small wooden statue.

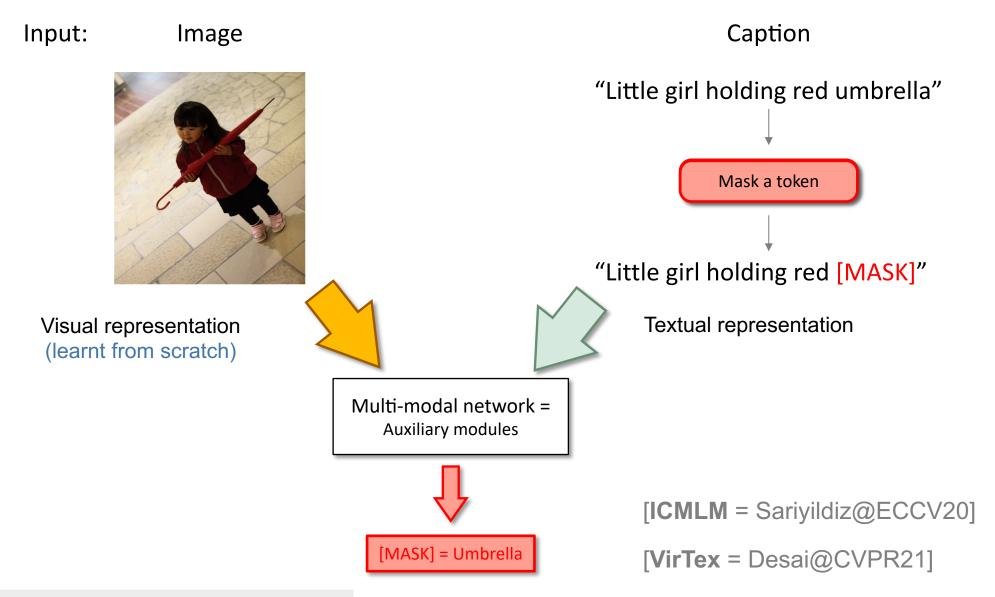
a busy street w an intersection cars parked on an intersection a street filled w

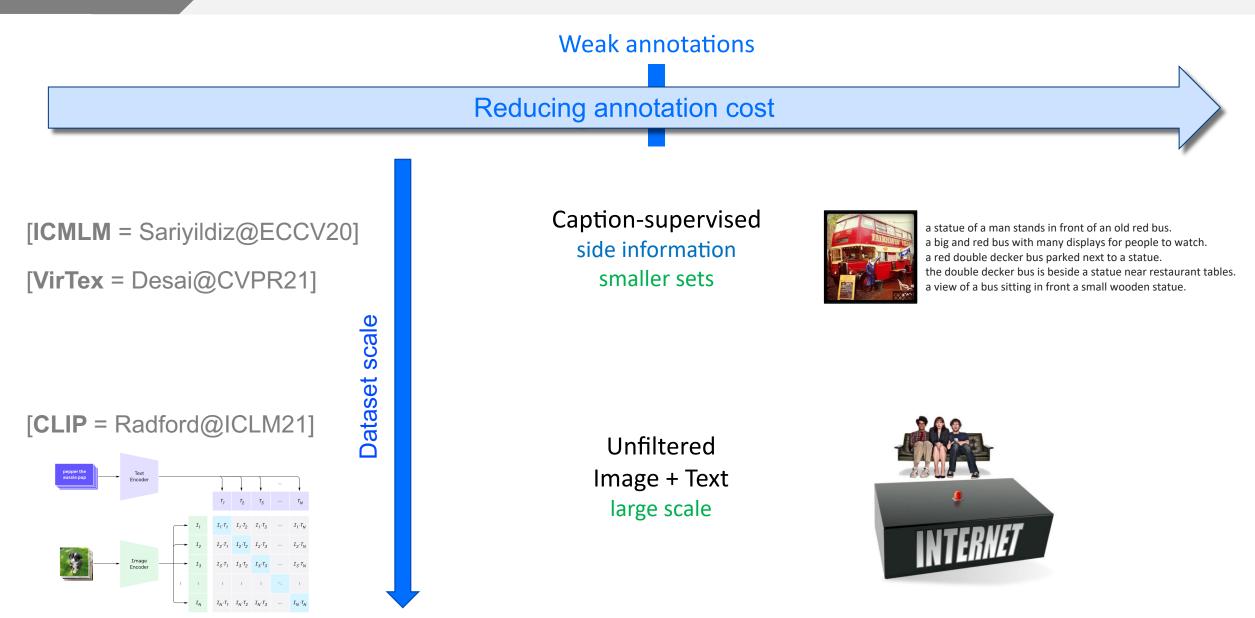
a busy street with cars and trucks down it an intersection with a view that looks towards a small downtown area. cars parked on the side of the street and traveling down the road an intersection with a stop light on a city street. a street filled with lots of traffic under a traffic light.

Self-supervised annotation-free images









Text-to-image generation

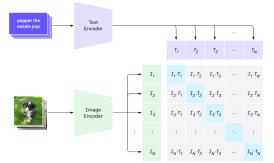
Text-to-image generation

[DALL-E = Ramesh@ICML21]

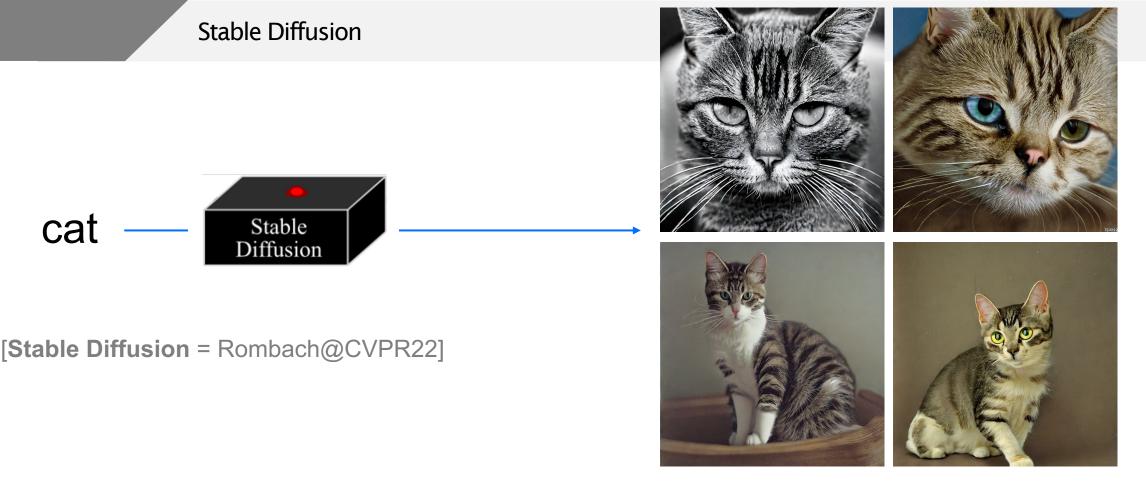
[DALL-E2 = Saharia@NeurIPS21]

[**DALL-E3** = Betker@Website23]

[Stable diffusion = Rombach@CVPR22]

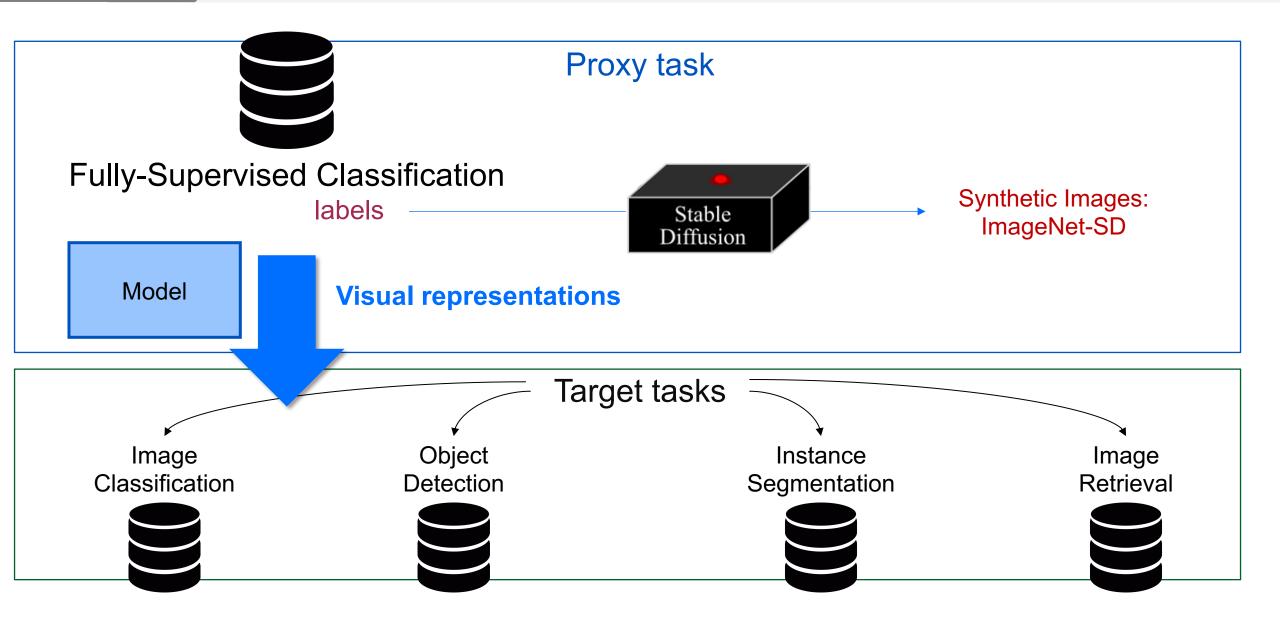


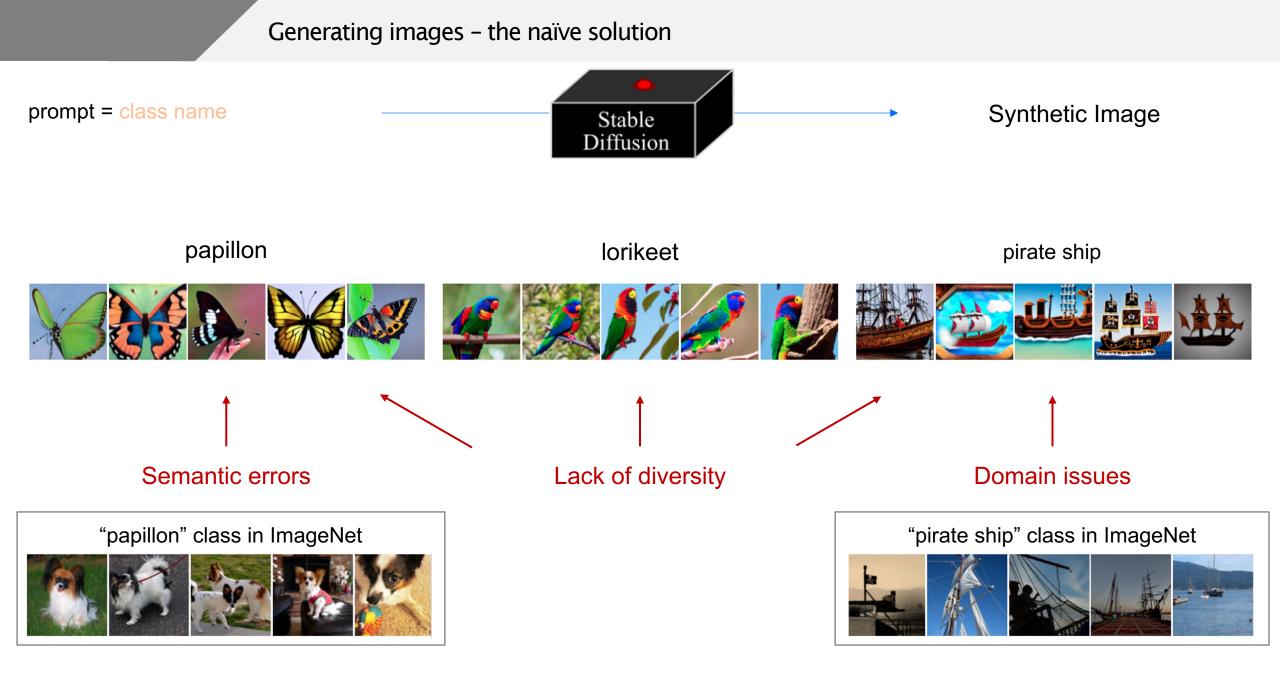
Unfiltered Image + Text large scale



Do we still need actual images to pretrain visual representations?

Learning transferable visual representations with synthetic images





prompt = class name

prompt = class name, hypernym*

prompt = class name, description*

prompt = class name, hypernym inside background**

prompt = class name, description (+ reduce guidance scale)

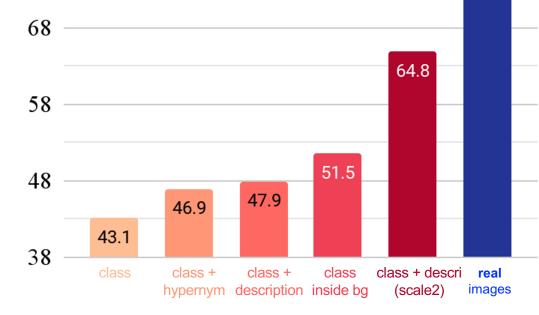
How well does each model perform when classiving real images?

* from Wordnet lexical database

87.4

** from **Places 365** dataset

Performance on ImageNet-100-Val (Top-1 acc - real images)



Training with synthetic images - evaluation

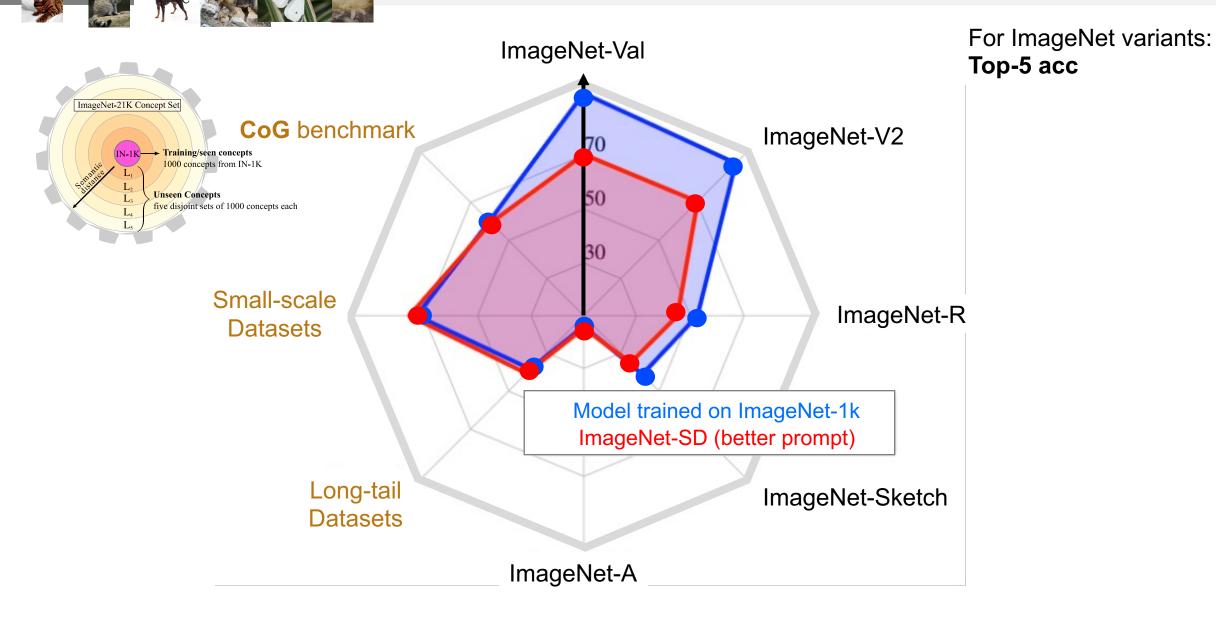
How well does each model perform when classiving real images?



prompt = class name

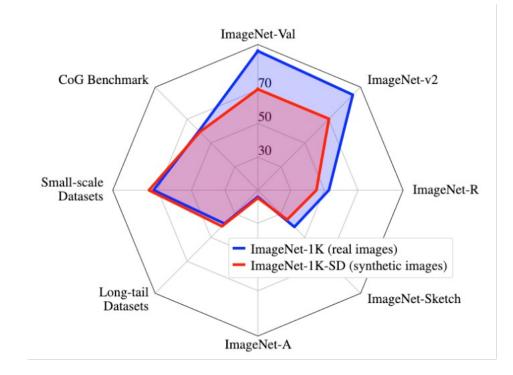
prompt = class name, description (+ reduce guidance scale)

Training with synthetic images – evaluation



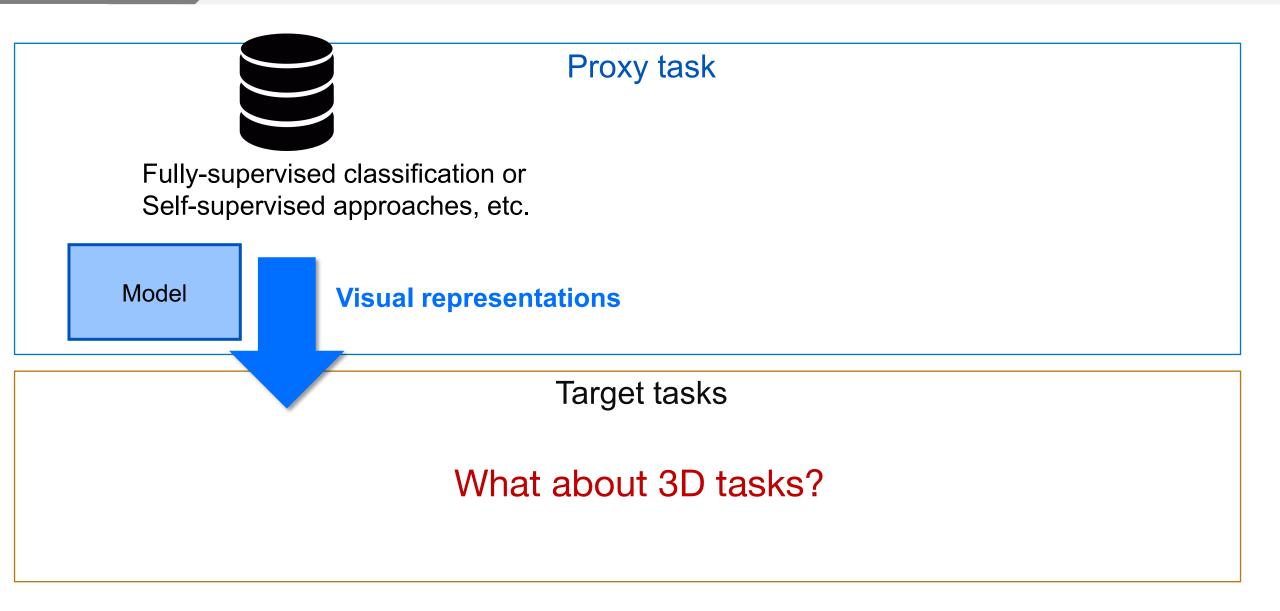
Do we still need actual images to pretrain visual representations?

- Promising results on the ImageNet variants
- Strong transfer results

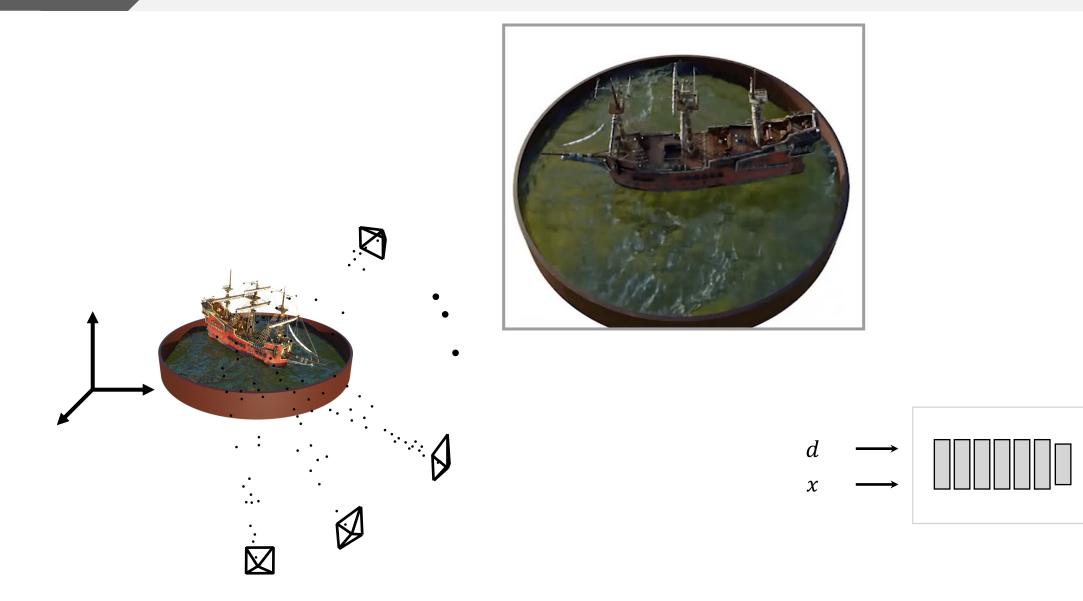


Reference **Fake it till you make it: Learning transferable representations from synthetic ImageNet clones** Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, Yannis Kalantidis CVPR 2023

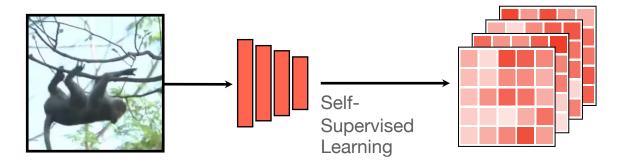
Learning visual representations .. that make sense in 3D



Neural Rendering Methods

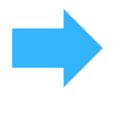


[**NERF** = Mildenhall et al. ECCV20]



[DINO: Caron @ ICCV21]

Fusing Image-Level and 3D Scene Representations

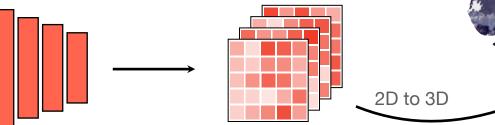


Proposed Neural Feature Fusion Fields

Fusing Image-Level and 3D Scene Representations

Image sequence

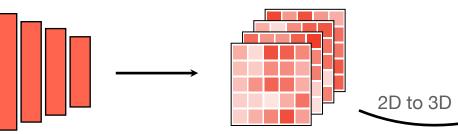
Self-supervised features



Neural scene representation (3D)

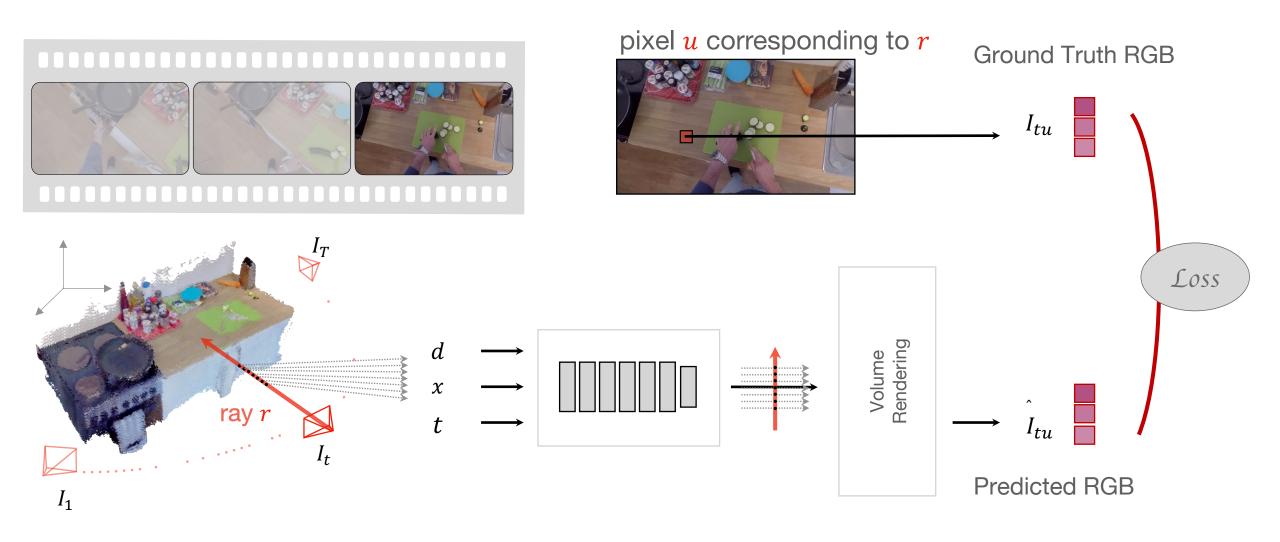
Image sequence

Self-supervised features

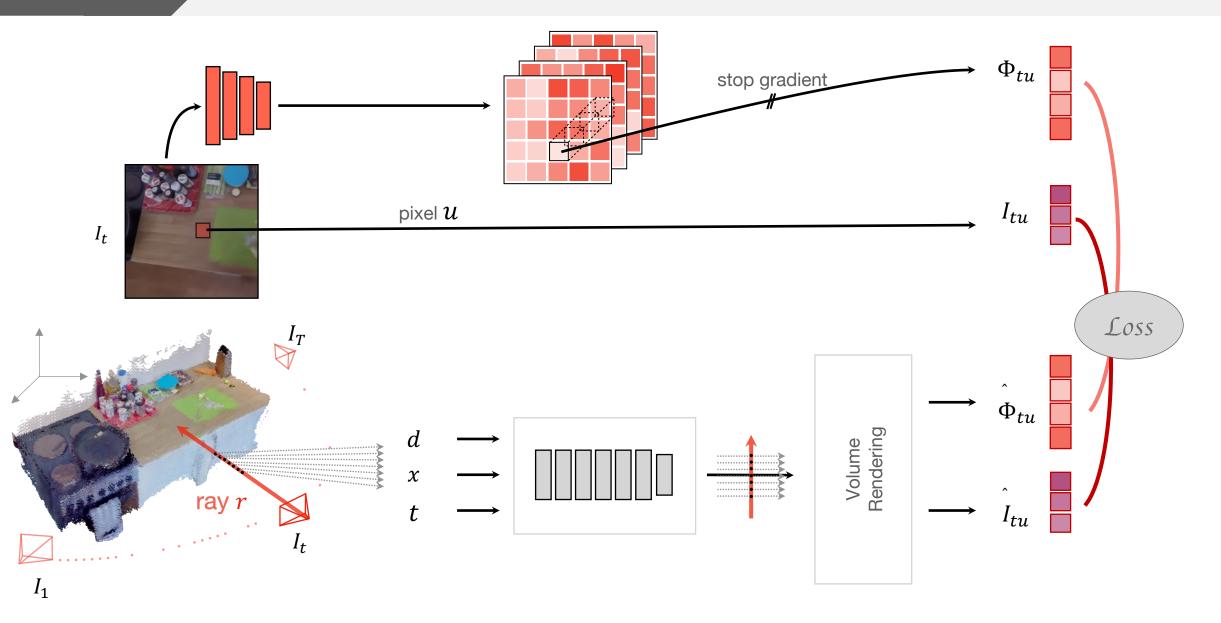


Objects segmented via 3D-fused features

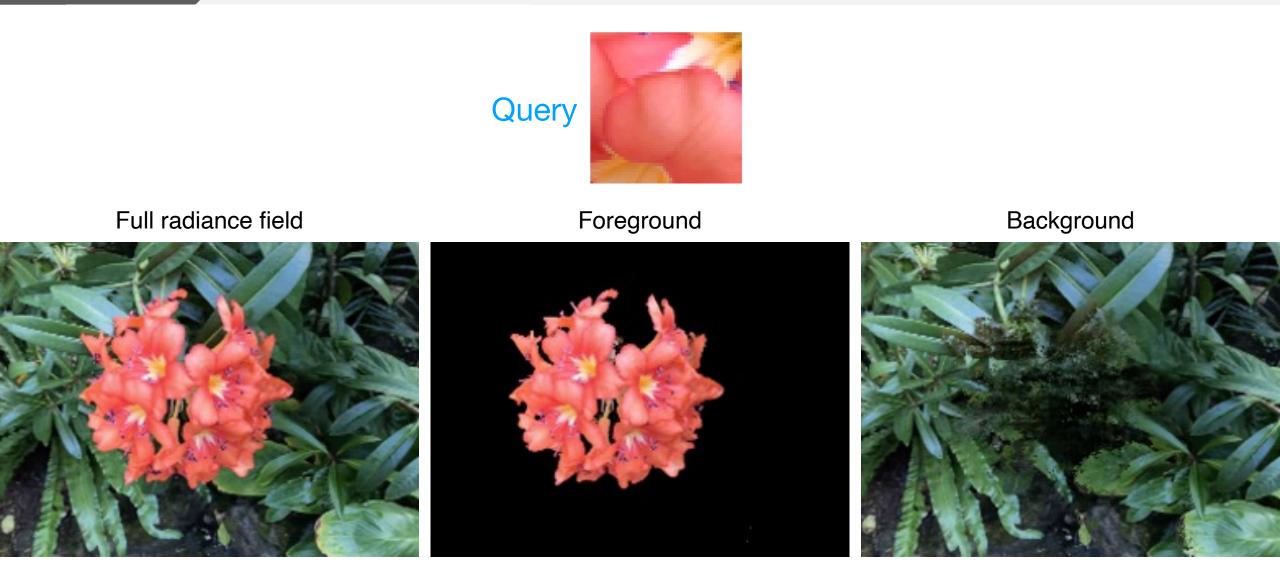
Starting from NeRF ...



Neural Feature Fusion Fields (N3F)



Scene editing in static scenes - NeRF-N3F



Concurrent work: Kobayashi et al. Decomposing NeRF for Editing via Feature Field Distillation. NeurIPS22.

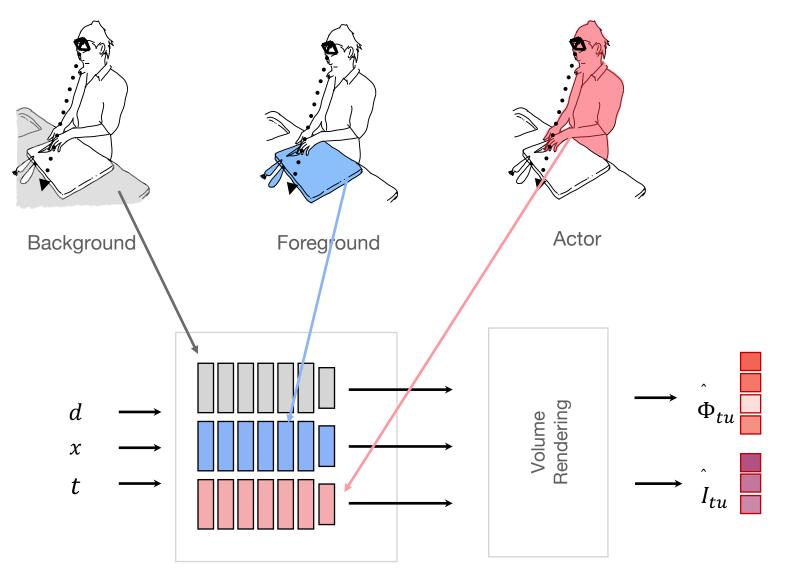
Applying N3F to Dynamic Scenes

time time time time

- Objects moved frequently
- Actor is heavily occluding the scene

[EPIC-KITCHENS = Damen@IJCV21] [NeuralDiff = Tschernezki@3DV21]

Applying N3F to Dynamic Scenes



[**NeuralDiff** = Tschernezki@3DV21]

Object removal in dynamic scenes – NeuralDiff + N3F

With object

Without object (edited)

Query

Distillation of 2D self-supervised features into 3D scenes

Works for static scenes as well as for complex egocentric scenes

Potential applications: object retrieval, scene editing, language guided manipulation [F3RM: Shen@CoRL23]

Neural Feature Fusion Fields (N3F): 3D Distillation of Self-Supervised 2D Image Representations Vadim Tschernezki, Iro Laina, Diane Larlus, Andrea Vedaldi 3DV 2022

Reference

Joint work with ..

Bülent Sariyildiz Karteek Alahari Yannis Kalantidis

Vadim Tschernezki

Iro

Laina

Andrea Vedaldi

Concept generalization in visual representation learning Mert Bülent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari International Conference in Computer Vision (ICCV) 2021

No Reason for No Supervision: Improved Generalization in Supervised Models Mert Bülent Sariyildiz, Yannis Kalantidis, Karteek Alahari, Diane Larlus International Conference in Representation Learning (**ICLR**) 2023

Fake it till you make it: Learning transferable representations from synthetic ImageNet clones Mert Bülent Sariyildiz, Yannis Kalantidis, Diane Larlus, Karteek Alahari Conference in Computer Vision and Pattern Recognition (**CVPR**) 2023

Neural Feature Fusion Fields (N3F): 3D Distillation of Self-Supervised 2D Image Representations Vadim Tschernezki, Iro Laina, Diane Larlus, Andrea Vedaldi International Conference on 3D Vision (3DV) 2022

Credit icons: https://www.flaticon.com/free-icons

