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Abstract

We present a novel objective function for cluster-based self-supervised learning
(SSL) that is designed to circumvent the triad of failure modes, namely represen-
tation collapse, cluster collapse, and the problem of invariance to permutations
of cluster assignments. This objective consists of three key components: (i) A
generative term that penalizes representation collapse, (ii) a term that promotes
invariance to data augmentations, thereby addressing the issue of label permu-
tations and (ii) a uniformity term that penalizes cluster collapse. Moreover, our
proposed objective possesses two notable advantages. Firstly, it can be interpreted
from a Bayesian perspective as a lower bound on the data log-likelihood. Sec-
ondly, it enables the training of a standard backbone architecture without the need
for asymmetric elements like stop gradients, momentum encoders, or specialized
clustering layers. Due to its simplicity and theoretical foundation, our proposed
objective is well-suited for optimization. Experiments on both toy and real world
data demonstrate its effectiveness.

1 Background

Model. Let us introduce the random quantities used in
the model shown in Figure [Tt (i) z € €, where  is
a compact subset of R, represents a data vector drawn
independently from an unknown distribution p(z) (for in-
stance an image), (ii) z’ € € represents a transformed
version of x using a stochastic data augmentation strat-
egy T (¢'|x) (obtained by adding for instance noisy or
cropping the original image), and (iii) y € {1,...,c}
is the symbolic representation of an input data point
defined over c categories (namely the cluster label ob-
tained by an output layer defined over the embedding
representation). The corresponding probabilistic graph-
Figure 1: Probabilistic graphical model 1ical model is given in Figure [I] The generative process
for cluster-based SSL. i is used to in- (solid arrows) is defined using the following conditional
dex different training instances, i.e. 7 = densities, namely: p(@'lz, &) = T(2'|x) and p(y|z) =
1,...,n. Softmax (out(proj(enc(x)))), where enc :  — R” is

an encoder used to compute the latent representation,
proj : R — S"~1is a projector head used to compute the embedding representation, and out com-
putes the cosine similarity between the embedding representation and the column vectors of a matrix
of parameters U € R"*¢ known as the cluster centers/prototypes [2]. The inference process (dashed
arrow) is defined as ¢(y|x) = SK(out(proj(enc(z’)))), viz. a distribution over cluster/prototype
assignments obtained through the Sinkhorn-Knopp algorithm (SK). Please refer to [2] for additional
details.
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Objective. The training objective is based on an evidence lower bound on the negative entropy,
derived from the probabilistic graphical model of Figure I[a), namely:

Ep(wlm){lOgP(mlin? 0)} = —Hp(x1:0) + ]EP(II:TL>T(Z/1:71|II:7L> {log Zp(yl:n|$1:n; 6)} W

Yi:n

> —Hp(w1:0) + ZEp(zi)T(z;\zi) {Eq(yi\z;) log p(y:|z:; ©) + H(I(yi|x/i)} )
i=1

Discriminative term £ 7 (©)

where H,(y|z’) is the entropy computed over ¢(y|z") and © includes all parameters of the encoder,
projector head and the output layer of the discriminative model. Intuitively, the first addend in
Lpr(0)in Eq. forces the symbolic representations of the input data and its augmented version to be
similar, whereas the second addend enforces uniformity on the cluster assignments, so as to avoid that
all representations collapse to a single cluster. It is important to mention that the objective in Eq.[2]is
general enough to cover several proposed criteria in the literature of cluster-based self-supervised
learning (cf. [[15}[14]]), such as DeepCluster [1]], SWAV [2] and DINO [3].

2 Objective Function and The Triad of Failure Modes

We devise a new lower bound for cluster-based SSL which avoids introducing asymmetries in the
optimization procedure and in the discriminative backbone. We theoretically analyze the properties
of the different loss terms involved in the GEDI instantiation with respect to important failure modes.

We are ready to state the following proposition (the proof can be found in Appendix A of the
Supplementary Material):

Proposition 2.1. Eq. (1) can be lower bounded by the following quantity:

=1

Linv(O) Lprior(©)
with q(y) = + Z?:l p(y; = ylxj; ©) and C'E the cross-entropy loss. Additionally, the correspond-
ing maximum value for the last two addends in Eq. is given by the following inequality.ﬂ

Linv(©)+ Lprrior(©) < — Hp(y1:n) 4

The above proposition has interesting implications. First of all, by maximizing the discriminative
term Ly (©) with respect to ©, we enforce two properties, namely: (i) label invariance, as we
ensure that the predictive distributions of the discriminative model for a sample and its augmented
version match each other and (ii) confident predictions, as maximizing the cross-entropy forces
also to decrease the entropy of these distributionsE] Secondly, by choosing a uniform prior, viz.
p(y;) = Uniform({1,...,c}), and by maximizing Lprror(©) with respect to ©, we ensure to
obtain a balanced cluster assignment, typical of approaches based on optimal transport objectives
and corresponding surrogates [, [2, |4]. Finally, the proposed lower bound allows for an impor-
tant key difference over existing cluster-based SSL, as we don’t need to introduce asymmetries
in the discriminative backbones. Indeed, we note that cluster-based SSL, specifically SwAYV, as-
sume p(y|x;©) = Softmax(UT g(x)/7) and q(y|z’) = Sinkhorn(StopGrad(UT g(z')/7)), where
Sinkhorn and StopGrad are two operators performing the Sinkhorn-Knopp algorithm and stopping the
gradients, respectively. In contrast, we require that ¢(y|x) = p(y|z; ©) = Softmax(f(enc(x))/7),
where f : R" — R¢ is a simple discriminative network head.

Additionally, we lower bound the first addend in Eq. by exploiting the inequality —H,(21.,) >
—CE(p, po), and obtain the overall objective, called GEDI (aka GEnerative DIscriminative objec-
tive):

Ep(wr.m) {log p(1:n; ©)} > Lcen(©) +Linv(0) + LrrIOR(O) )
——
GEnerative term —C' E(p, pg) DIscriminative terms

"Here, we assume that the predictive model p(y|z; ©) has enough capacity to achieve the optimal solution.
*Indeed, recall that CE(p, q) = H, + K L(p||q). Therefore, maximizing —C'E(p, q) forces to have both
KL(p|lg) =0and H, = 0.



Importantly, we can reinterpret the discriminative model p(y|z; ©) = £ ISZ&’TI@?)

generative model pg = p(x; ©), similarly to what is done in the context of supervised learning [8[10],
namely:

as an energy-based

fy(enc(z))/T S¢ efu(enc(@) /T log 355, efv(ene@)/r
€ . =1 e E
Py, 2:0) = —gy po = p(#:0) = =15y - NG) ©

Training is performed by simply maximizing the lower bound in Eq[5} We leave detailed discussion
about the training and its computational requirements to Appendix B in the Supplementary Material.
We are now ready to analyze the properties of the GEDI objective.

The Triad of Failure Modes. Here, we formalize three main failure modes for cluster-based
SSL [[16]. Then, we study the GEDI loss landscape and show that these undesired trivial solutions are
not admitted by our objective. This result holds without introducing asymmetries in the optimization
procedure and/or network architecture.

Let’s start by defining the most important failure modes, namely:

Definition 1 (Failure Mode 1 - Representational Collapse). There exists a constant vector k € R"
such that for all € RY, enc(z) = k.

Definition 2 (Failure Mode 2 - Cluster Collapse). There exists a cluster j € {1, ..., c} such that for
allz € R p(y = jlz;0) = 1.

Definition 3 (Failure Mode 3 - Permutation Invariance to Cluster Assignments). For all possible
permutations 7 : {1,...,c} — {1,...,c}, a dataset D = {(x;,t;,t;)}I_,, its permuted version

D™ = {(2i,tr@i), t;)} 7=y and a loss L(O;-), evaluated at one of the two datasets, we have that
L(0;D) = L(©;D™). For GEDI, t; = f(enc(x;)) and t}, = f(enc(z})).

In other words, Definition 1 considers the case where the encoder maps (collapses) every input to
the same output. Definition 2 considers the situation where the predictive model assigns all samples
to the same cluster with high confidence. And Definition 3 considers the case where a hypothetical
adversary swaps the predictions made by the model on different pair of inputs. Ideally, we would like
to have an objective that does not admit these failure modes.

Now, we state the properties of the loss landscape of GEDI with the following theorem (we leave the
proof to Section G in the Supplementary Material):

Theorem 1. Given definitions 1-3, the following statements tells for a particular loss, which modes
are admitted as optimal solutions:

a. Loen(0©) admits failure modes 2 and 3.

b. Linv(0) admits failure modes 1 and 2.

)
¢. Lprior(0) admits failure modes 1 and 3.

Importantly, Theorem (1| tells us that Lo gy (O) can be used to penalize representational collapse,
Linv(©) can be used to break the problem of permutation invariance for the cluster assignments,
while Lprror(©) can be used to penalize cluster collapse. Consequently, by maximizing the
objective in Eq. (3)), we are guaranteed to learn solutions which are non-trivial. A table summarizing

all these properties is given below.

Table 1: Summary of loss landscape

Does | penalize —+? Repr. collapse Clus. collapse Perm. Inv.

Leen(©) Yes No No
Linv(O) No No Yes
Lprior(0©) No Yes No
Eq. Yes Yes Yes




Table 2: Clustering performance based on normalized mutual information (NMI) on test set (toy data,
viz. moons and circles, and real data, viz. SVHN, CIFAR-10, CIFAR-100). Higher values indicate
better clustering performance. Mean and standard deviations are computed from 5 different runs.

Dataset JEM [8] SwAV [2] GEDIno unif GEDInoinv GEDI no gen GEDI
Moons 0.004+0.00 0.76+0.36 0.0040.00 0.114+0.15 0.984+0.00 0.9440.07
Circles 0.004+0.00  0.0040.00 0.0040.00 0.2240.13 0.834+0.12 1.00+0.01
SVHN 0.00 0.21 - - 0.21 0.25
CIFAR10 0.00 0.43 - - 0.43 0.45
CIFAR100 0.00 0.65 - - 0.86 0.87

3 Experiments

We perform experiments to evaluate the discriminative performance of GEDI and its competitors,
namely an energy-based model JEM [§8]] and a self-supervised baseline based on SWAV [2]]. The
whole analysis is divided into two main experimental settings, the first one based on two synthetic
datasets, including moons and circles, the second one based on real-world data, including SVHN,
CIFAR-10 and CIFAR-100. We use existing code both as a basis to build our solution and also to
run the experiments for the different baselines. In particular, we use the code from [7] for training
energy-based models and the repository from [3]] for all self-supervised baselines. Implementation
details as well as additional experiments on generation, OOD detection and linear probe evaluation are
reported in the Supplementary Material (Appendices D-G). In those additional experiments, we show
that we can also tackle generative tasks using the trained neural network and achieve comparable
performance to existing energy-based models. Moreover, thanks to this generative aspect, the trained
network can better detect out-of-distribution data compared to SSL baselines.

Moons and Circles. In Table 2] we observe that JEM fails to solve the clustering task for both
datasets. This is quite natural, as JEM is a purely generative approach, mainly designed to perform
implicit density estimation (i.e. it is trained based solely on the L& gy loss). SWAV can only solve
the clustering task for the moons dataset, highlighting the fact that its objective function admits
failure mode 3. Indeed, we observe in the circles dataset that half of the labels are permuted across
the two manifolds (cf. Figure [3|in the Supplementary Material). In contrast, GEDI can recover the
true clusters in both datasets, as it is guaranteed to avoid trivial solutions and learn more meaningful
cluster assignments. We conduct an ablation study to understand the impact of the different loss
terms in GEDI and empirically validate the theoretical results obtained in Section 4.3. We compare
four different versions of GEDI, namely the full version (called simply GEDI), GEDI trained without
Larn(0©) (called no gen), GEDI trained without Ly (©) (called no inv) and GEDI trained without
Lprior(0) (called no unif). From the results in Table |2, we observe that: (i) GEDI no unif is
subject to cluster collapse on both datasets. This is expected as failure mode 2 is not penalized
during training due to the omission of £Lprror(©); (ii) GEDI no inv is subject to the problem of
permutation invariance to cluster assignments. Consequently, the obtained cluster labels are not
informative and consistent with the underlying manifold structure of the data distribution. Again, this
confirms the result of Theorem as failure mode 3 could be avoided by the use of L;nv (©); (iii)
GEDI no gen achieves superior performance over other SSL baselines. While in theory the objective
function for this approach admits representational collapse, in practice we never observed such issue.
It might be the case that the learning dynamics of gradient-based optimisation are enough to avoid
the convergence to this trivial solution. However, further analysis is required in order to verify this
statement; finally (iv) GEDI is guaranteed to avoid the most important failure modes and therefore
solve the discriminative task.

SVHN, CIFAR-10, CIFAR-100. From Table[2] we observe that GEDI is able to outperform all other
competitors by a large margin. Additionally, we note a difference gap in clustering performance with
increasing number of classes (cf. CIFAR-100). This might be explained by the fact that the number
of possible label permutations increases with the number of classes and that our loss is more robust
to the permutation invariance problem as from Theorem|[I] Finally, GEDI no gen is comparable and
often superior to SWAYV, despite being simpler (i.e. avoiding the use of asymmetries and the running
of iterative clustering). Please refer to Appendices F and G for further details.
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A Proof of Proposition 2.1|

Proof. We recall Eq. (I) (we omit the dependence from © to avoid clutter), namely:

EP(Il:n){logp(xlzn)}

= _Hp(xlin) +Ep(x1;n)7'(z'1m|x1:n) {Ingp(ylzn|xl:n)}

Yi:n



and add the zero quantity log i P(Y1.n) to the right-hand side of previous equation, thus obtaining
the new equation

EP(Il:n){logp(xlzn)}

= _Hp(xlin) + Ep(:m;n)T(z’lmhcl:n) {Ingp(yl:n|xl:n)}

Yi:n
Yi:n

We can lower bound the previous equation by exploiting the fact that > p(z) > > p(2)q(z) for
any given auxiliary discrete distribution g, viz.:

Eq. (7 =
- Hp(xl:n)

+ Bp(ar.0)T (@4, [1.n) {log > arn ri;n)p(ylanxlzn)}

Yi:in
Yi:n

Now, by applying Jensen’s inequality to the last two addends in Eq. (8) and by defining ¢(y1.,|2}.,,) =
p(Y1n|7h.,) and ¢(y1:) = L Z?:l p(y;|x;), we obtain the following lower bound:

Eq. (8) >
- Hp(l'l:n>
+ Ep1.0)T (2,0 21:0) {Zp(ylznll”m) 10gp(y1:n|ﬂf1:n)}
Yi:n
1 n
+D_p(yin)log | — > p(ysle;) ©)
Yiin J=1

Additionally, by factorizing the distributions according to the probabilistic graphical model in Fig.[T]
namely p(y1n|v1n) = [[iZy (yilai), p(yrmletn) =TIz p(yilag) and p(yrn) = T2, p(a),
we achieve the following equality:

Eq. @) =

- Hp(xl:’rb)
+ D By Tl {Zp(ywé) logp(yixqz)}
=1 Yi
n 1 n
+D ) plwilog | — > py; = vilx)) (10)
i=1 y; j=1

And by rewriting the last two addends in Eq. (I0) using the definition of cross-entropy, we obtain our
final result.

Now, we can conclude the proof by looking at the maxima for £;ny and Lprrogr. Indeed, we
observe that both terms compute a negative cross-entropy between two distributions. By leveraging
the fact that CE(p, q¢) = H,, + K L(p||q) for arbitrary distributions p, ¢, we can easily see that the
maximum of Ly is attained when the term is 0 (corresponding to minimal entropy and minimal
KL), whereas the maximum of £prror is attained when the term is equal to —H,(y;) (corresponding
to minimal KL).

B Training Algorithm and Computational Requirements

Learning a GEDI model. We can train the GEDI model by jointly maximizing the objective in
Eq. (B) with respect to the parameters © through gradient-based strategies. The overall gradient



Algorithm 1: GEDI Training.

Input: z1.,,, ., Iters, SGLD and Adam optimizer hyperparameters;
Output: Trained model O;
Foriter = 1,.. ., Iters;
Generate samples from pg using SGLD;
Estimate A0 = Vo Lorn(0O) using Eq. ;
Compute AsO = Vo LNy (0);
Compute A30 = V@ﬁpRIOR(@) ;
AB S A6;
O <+ Adam maximizing using AO;
Return O;

includes the summation of three terms, viz. —VoCE(p, pe), VeLinv(0) and Vo Lprior(©).
While the last two gradient terms can be computed easily by leveraging automatic differentiation, the
first one must be computed by exploiting the following identities (obtained by simply substituting
Eq. @) into the definition of cross-entropy and expanding VoI'(09)):

_v@CE(p7p@) - ZEP(:E7) {v@ logzefy(enc(l'i))/T}

i=1 y=1

— nVelogT'(©)

n c
=Y By {v@ log 3" emenc(m)/r}
i=1 y=1

n]Ep@(x) {V@ log Z efy(enc(aj))/T} o

y=1

Importantly, the first and the second expectations in Eq. (TT)) are estimated using the training and
the generated data, respectively. To generate data from pg, we use a sampler based on Stochastic
Gradient Langevin Dynamics (SGLD), thus following recent best practices to train energy-based
models [17, 13,16, [12]. The whole learning procedure is summarized in Algorithmm

Computational requirements. When comparing our GEDI instantiation with traditional SSL
training, more specifically to SWAV, we observe two main differences in terms of computation.
Firstly, our learning algorithm does not require to run the Sinkhorn-Knopp algorithm, thus saving
computation. Secondly, our GEDI instantiation requires additional forward and backward passes to
draw samples from the energy-based model pg. However, the number of additional passes through
the discriminative model can be limited by the number of SGLD iterations.

C Proof of Theorem [T

Proof. The overall strategy to prove the statements relies on the evaluation of the loss terms over the
three failure modes and on checking whether these attain their corresponding maxima.

Let’s start by proving statement a and recalling that Lo (0, D) = —CE(p, pe). Firstly, we test
for failure mode 1 (i.e. representational collapse). We observe that for all 2 € R¢

Z;Zl efv(F)/T

INC)
thus pe(x) assigns constant mass everywhere. Clearly, po is different from p. Therefore,
—CE(p,pe) < —CE(p,p) and failure mode 1 is not admissible. Secondly, we test for failure mode
2 (i.e. cluster collapse). We can equivalently rewrite the definition of cluster collapse by stating that

there exists j € {1,...,c}, such that forallz € R? and forall y # j, f;(enc(z))— f,(enc(x)) — occ.
Additionally, we observe that

pe(r) =

Sy eful€n/r
- 7 S e & dr

&z = enc(x)

pe(z)



efJ(Eﬂ)/T 1.’-2 # J))/T
[efite)/r HZ#M
o€/
b @ (12

where we have used the failure mode condition to obtain the last equality. Now, note that Eq. (12))
defines a standard energy-based model. Consequently, given enough capacity for the predictive
model, it is trivial to verify that there exists © such that the condition about failure mode is met and
pe is equal to p. Cluster collapse is therefore an admissible solution. Thirdly, we test for permutation
invariance for the cluster assignments. Indeed, we have that

Laen(0,D) = Eyq, {logpe(w:)}
i=1

n ZZ 16 (U)/T
= E,zy 41
; p(xi) 0g f Ey:l eti (y)/‘rdx

n Z; et/
- ;EP(II" {1og fz et W)/Tdx (13)
where t;(y) = f,(enc(z;)). Similarly, we have that
Lcen(0,D)
n ¢ etrpy(®)/7T
DBy | 108 Zy_l NG
from Eq. @I} i=1 IZ W(l) dx
2671 tey(y)/T
ZE{l e
o e g Dot
Aot = BT e idy
= Lcen(0,D)
Hence, failure mode 3 is an admissible solution.
Let’s continue by proving statement b and recalling that
Linv(0,D) ZE T e) {ICE(p(yilzi; ©), pyilzi; ©))} (14)

Firstly, we test for representational collapse. In this case, we have that for all ¢ € {1,...,n}

p(yilzi; ©) = p(yilz}; ©) = Softmax(f(k)/7)

Based on this result, we observe that the cross-entropy terms in Eq. can be made 0 by proper
choice of k. Therefore, representational collapse is an admissible solution. Secondly, we test for
cluster collapse. Here, it is easy to see that the cross-entropy terms in Eq. (I4) are all 0. Therefore, also
cluster collapse is admissible. Thirdly, we test for permutation invariance for the cluster assignments.
On one hand, we have that the cross-entropy terms for £;ny (0, D)) in Eq. can be rewritten in
the following way:

CE(p(yilzi; ©), p(yilxi; ©))
e eti(yi)/T etilyi)/T
= OSSO

15)



and the optimal solution is achieved only when ¢, = ¢; for all ¢ € {1,...,n}. On the other hand, the
cross-entropy terms for Ly (0, D™) are given by the following equality:

CE(p(yilz; ©), p(yilzs; ©))

eti(wi)/™ ebriy(va)/T
— P\ S T e (16)
However, the optimal solution cannot be achieved in general as t; # tx(i) for some ¢ € {1,..., n}EI
Therefore, £y is not permutation invariant to cluster assignments.
Let’s conclude by proving statement ¢ and recalling that
1 n
Lprior(0,D) Z CE (p(yz'), - > oy = yilas @)> (17
=1

Firstly, we test for representational collapse. One can easily observe that if enc(z) = k for all
r € RY, (y|m ©) becomes uniform, namely p(y|z;©) = 1/cforally € {1,...,c}. Consequently,

le 1Py = yilz;;©) = 1/c for all i 6 {1 ,n}. Now, since p(y;) = 1/c for all i €
1,...,n}, the cross-entropy terms in Eq. ( reach their maximum value —H,(y;) for all i €
{1, ,n}. Therefore, representational collapse attains the global maximum of Lprrogr and is an

adm1s51ble solution. Secondly, we test for cluster collapse. By using the definition of cluster collapse,
we observe that

RN 0 vi=y
Iy 121 © . 18
n 2 p(y1 = yilz;0) { 1 y 47 (18)

Therefore, the resulting distribution is non-uniform, differently from p(y;). The cross-entropy terms
in Eq. (I7) are not optimized and cluster collapse is not admissible. Thirdly, we test for permutation
invariance of cluster assignments. We observe that

1 <& 1 & eti(va)/T
=3 ply = il ©) = =3 e
n =1 n = Zy 1 etl(y)/
ﬂ(l)(yb)/T
) Z T, el (19)
which is permutation invariant to cluster assignments. Consequently, also Lprior(0,D) =
Lprior(©,D™). This concludes the proof. O

D Hyperparameters for Synthetic Data

For the backbone enc, we use a MLP with two hidden layers and 100 neurons per layer, an output
layer with 2 neurons and ReLU activation functions. For the projection head proj (f for GEDI
and its variants), we use a MLP with one hidden layer and 4 neurons and an output layer with 2
neurons (batch normalization is used in all layers for Barlow and SwAV as required by their original
formulation). All methods use a batch size of 400. Baseline JEM (following the original paper):

* Number of iterations 20 K

* Learning rate le — 3

e Optimizer Adam 3; = 0.9, 82 = 0.999

* SGLD steps 10

* Buffer size 10000

* Reinitialization frequency 0.05

+ SGLD step-size %
* SGLD noise 0.01
And for self-supervised learning methods, please refer to Table 3]

We also provide an analysis of sensitivity to hyperparameters for GEDI. Please refer to Figure 2]

3Indeed, note that ¢} = tr(s) for all ¢ occurs only when we are in one of the first two failure modes.



Table 3: Hyperparameters used in the synthetic experiments.

Methods Barlow SwAV  GEDI (no gen) GEDI
Iters 20k
Learning rate le—3
Optimizer Adam $; = 0.9, 85 = 0.999
Data augmentation noise o 0.03
SGLD steps T' - 1 1
Buffer size | B| - 10000 10000
Reinitialization frequenc - 0.05 0.05
. 2 2 2
SGLD step size - O'gl O'gl 0‘021
SGLD noise - 0.01 0.01
Weight for Lopn - 1 1
Weight for L;ny - 50 50
Weight for LPRIOR - 10 10
) ' .
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Figure 2: Sensitivity analysis on the discriminative performance of GEDI for different loss weights (in
the range {0, 10, 20, 30,40, 50}). Performance are averaged over 5 different random seeds. Yellow

means perfect NMI.

(a) Truth (b) Barlow (c) SWAV

e

(h) Truth (i) Barlow (j) SWAV

(d) no unif (e) no inv (f) no gen (g) GEDI

L9 Rt St
(k) no unif (1) no inv (m) no gen (n) GEDI

Figure 3: Qualitative visualization of the clustering performance for the different strategies on moons
(a-g) and on circles (h-n) datasets. Colors identify different cluster predictions. Only GEDI and GEDI
(no gen) are able to perform well on both datasets.
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(h) JEM (i) Barlow (j) SWAV (k) no unif (1) no inv (m) no gen (n) GEDI

Figure 4: Qualitative visualization of the generative performance for the different strategies on moons
(a-g) and on circles (h-n) datasets. Colors identify different cluster predictions. All GEDI approaches
(except for no gen perform comparably well to the generative solution JEM).

Table 4: Resnet architecture. Conv2D(A,B,C) applies a 2d convolution to input with B channels and
produces an output with C channels using stride (1, 1), padding (1, 1) and kernel size (A, A).

Name Layer Res. Layer
Conv2D(3,3,F)
LeakyRELU(0.2) AvgPool2D(2)
Conv2D(3,FF) .
Block 1 AvgPool2D(2) Conv2D(1,3,F) no padding

Sum

LeakyRELU(0.2)
Conv2D(3,EF)

Block 2 LeakyRELU(0.2)
Conv2D(3,FF)
AvgPool2D(2)

LeakyRELU(0.2)
Conv2D(3,EF)
LeakyRELU(0.2)
Conv2D(3,EF)

LeakyRELU(0.2)
Conv2D(3,EF)

Block4 LeakyRELU(0.2)
Conv2D(3,FF)
AvgPool2D(all)

Block 3

E Additional Experiments for Toy Data

Please, refer to Figure 3] for the discriminative performance and Figure [ for the generative ones.

F Hyperparameters for SVHN, CIFAR10, CIFAR100

For the backbone enc, we use a ResNet with 8 layers as in [7]], where its architecture is shown in
Table[d] For the projection head proj (f for GEDI and its variants), we use a MLP with one hidden
layer and 2 * F' neurons and an output layer with F' neurons (batch normalization is used in all
layers for Barlow and SwAV as required by their original formulation + final Ls normalization).
F = 128 for SVHN, CIFAR-10 (1 million parameters) and F' = 256 for CIFAR-100 (4.1 million
parameters). For JEM, we use the same settings of [7]. All methods use a batch size of 64. Baseline
JEM (following the original paper):

* Number of epochs 20, 200, 200 for SVHN, CIFAR-10, CIFAR-100, respectively.
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* Learning rate le — 4

* Optimizer Adam

* SGLD steps 20

* Buffer size 10000

* Reinitialization frequency 0.05
* SGLD step-size 1

* SGLD noise 0.01

* Data augmentation (Gaussian noise) 0.03

And for self-supervised learning methods, please refer to Table[5]

Table 5: Hyperparameters (in terms of sampling, optimizer, objective and data augmentation) used in
all experiments.

Class Name param. SVHN CIFAR-10 CIFAR-100
Color jitter prob. 0.1 0.1 0.1
Gray scale prob. 0.1 0.1 0.1
Data augment. Random crop Yes Yes Yes
Additive Gauss. noise (std) 0.03 0.03 0.03
Random horizontal flip No Yes Yes
SGLD iters 20 20 20
Buffer size 10k 10k 10k
SGLD Reinit. frequency 0.05 0.05 0.05
SGLD step-size 1 1 1
SGLD noise 0.01 0.01 0.01
Batch size 64 64 64
Epochs 20 200 200
Optimizer Adam (3 0.9 0.9 0.9
Adam [ 0.999 0.999 0.999
Learning rate le—4 le—4 le—4
LcEN 1 1 1
Linv 50 50 50
Weights for losses Lprror 25 25 50
Lnesy - - -

G Experiments on SVHN, CIFAR-10, CIFAR-100

We consider three well-known computer vision benchmarks, namely SVHN, CIFAR-10 and CIFAR-
100. We use a simple 8-layer Resnet network for the backbone encoder for both SVHN and CIFAR-10
(around 1M parameters) and increase the hidden layer size for CIFAR-100 (around 4.1M parameters)
as from [7]. We use a MLP with a single hidden layer for proj (the number of hidden neurons is
double the number of inputs), we choose h = 256 for CIFAR-100 and h = 128 for all other cases.
Additionally, we use data augmentation strategies commonly used in the SSL literature, including
color jitter, and gray scale conversion to name a few. We train JEM, Barlow, SwWAV, GEDI no gen
and GEDI using Adam optimizer with learning rate le — 4 and batch size 64 for 20, 200 and 200
epochs for each respective dataset (SVHN, CIFAR-10 AND CIFAR-100). Further details about
the hyperparameters are available in the Supplementary Material (Section I). Similarly to the toy
experiments, we evaluate the clustering performance by using the Normalized Mutual Information
(NMI) score. Additionally, we evaluate the generative performance qualitatively using the Frechet
Inception Distance [9]] as well as the OOD detection capabilities following the methodology in [J].
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Table 6: Generative and discriminative performance on test set (SVHN, CIFAR-10, CIFAR-100).
Normalized mutual information (NMI) and Frechet Inception Distance (FID) are used as evaluation
metrics for the discriminative and generative tasks, respectively. Higher values of NMI and lower
values of FID indicate better performance.

Task Method SVHN CIFAR-10 CIFAR-100
JEM 0.00 0.00 0.00
Barlow 0.23 0.17 0.58
Discriminative  SwAV 0.21 0.43 0.65
(NMI) GEDI (no gen) 0.21 0.44 0.86
GEDI 0.25 0.45 0.87
JEM 201 263 226
Barlow 353 392 352
Generative SwAV 584 415 416
(FID) GEDI (no gen) 454 424 447
GEDI 218 197 222

Table 7: OOD detection in terms of AUROC on test set (CIFAR-10, CIFAR-100). Training is
performed on SVHN.

Dataset JEM Barlow SwAV GEDInogen GEDI

CIFAR-10 0.73  0.17 0.26 01 0.80
CIFAR-100 0.72 0.24 0.32 0.15 0.80

From Table[6] we observe that GEDI is able to outperform all other competitors by a large margin,
thanks to the properties of both generative and self-supervised models. We observe that the difference
gap in clustering performance increases with a larger number of classes (cf. CIFAR-100). This might
be explained by the fact that the number of possible label permutations can increase with the number
of classes and that our loss is more robust to the permutation invariance problem as from Theorem [I]
We observe also that GEDI no gen is comparable and often superior to SWAYV, despite being simpler
(i.e. avoiding the use of asymmetries and the running of iterative clustering). In terms of generation
performance, GEDI is the only approach that compares favorably with JEM. We provide a qualitative
set of samples generated by the different discriminative models in Figure 3]

Last but not least, we investigate the OOD detection capabilities of the different methods. Table[9]
provides a quantitative summary of the performance for a subset of experiments (the complete set
is available in Section J). We observe that GEDI is more robust compared to other discriminative
baselines, thanks to its generative nature.

Overall, these experiments provide real-world evidence on the benefits of the proposed unification
and theoretical results.

We conduct a linear probe evaluation of the representations learnt by the different models Table 3]
These experiments provide insights on the capabilities of learning representations producing linearly
separable classes. From Table[8] we observe a large difference in results between Barlow and SwAV.
Our approach provides interpolating results between the two approaches.

We also provide additional qualitative analyisis on the generation performance on SVHN and CIFAR-
100. Please, refer to Figure[6]and Figure

Finally, we evaluate the performance in terms of OOD detection, by following the same methodology

used in [§]]. We use the OOD score criterion proposed in [§]], namely s(x) = —|| alog L “’(T ||2. From
Tablel we observe that GEDI achieves almost optimal performance. While these results are exciting,
it is important to mention that they are not generally valid. Indeed, when training on CIFAR-10
and performing OOD evaluation on the other datasets, we observe that all approaches achieve
similar performance both on CIFAR-100 and SVHN, suggesting that all datasets are considered
in-distribution, see Table E} A similar observation is obtained when training on CIFAR-100 and
evaluating on CIFAR-10 and SVHN, see Table[I0] Importantly, this is a phenomenon which has been
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Figure 5: Qualitative visualization of the generative performance for the different discriminative
strategies on CIFAR-10. Results are obtained by running Stochastic Langevin Dynamics for 500

iterations.

only recently observed by the scientific community on generative models. Tackling this problem is
currently out of the scope of this work. For further discussion about the issue, we point the reader to

the works in .

Table 8: Supervised linear evaluation in terms of accuracy on test set (SVHN, CIFAR-10, CIFAR-100).
The linear classifier is trained for 100 epochs using SGD with momentum, learning rate 1e — 3 and

batch size 100.
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Dataset JEM Barlow SwAV GEDInogen GEDI
SVHN 020 0.74 0.45 0.35 0.55
CIFAR-10 0.23  0.65 0.46 0.54 0.53
CIFAR-100 0.03 0.27 0.13 0.14 0.12
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Figure 6: Qualitative visualization of the generative performance for the different discriminative
strategies on SVHN. Results are obtained by running Stochastic Langevin Dynamics for 500 iterations.

Table 9: OOD detection in terms of AUROC on test set (SVHN, CIFAR-100). Training is performed
on CIFAR-10.

Dataset JEM Barlow SwAV GEDInogen GEDI

SVHN 044 032 0.62 0.11 0.57
CIFAR-100 0.53  0.56 0.51 0.51 0.61

Table 10: OOD detection in terms of AUROC on test set (SVHN, CIFAR-10). Training is performed
on CIFAR-100.

Dataset JEM Barlow SwAV GEDInogen GEDI

SVHN 044 045 0.3 0.55 0.53
CIFAR-10 049 043 0.47 0.46 0.48
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Figure 7: Qualitative visualization of the generative performance for the different discriminative
strategies on CIFAR-100. Results are obtained by running Stochastic Langevin Dynamics for 500
iterations.
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