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Abstract

Gradient-based attribution methods aim to explain decisions of deep learning
models, but so far lack identifiability guarantees. Here, we propose a method to
generate attribution maps with identifiability guarantees by developing a regularized
contrastive learning algorithm trained on time series data with continuous target
labels. We show theoretically that our formulation of hybrid contrastive learning
has favorable properties for identifying the Jacobian matrix of the data generating
process, and is unable to overfit to random training distributions. Empirically, we
demonstrate robust approximation of the ground-truth attribution map on synthetic
data, and significant improvements across previous attribution methods based on
feature ablation, Shapley values, and other gradient-based methods. Our work
constitutes a first example of identifiable inference of attribution maps, and opens
avenues for improving future attribution tools and better understanding neural
dynamics and neural networks.

1 Introduction

Distilling knowledge from data is a core tenet of science. After pre-processing raw data, we want
to abstract relationships in the experimentally observed data to observed variables. In the case of
neuroscience this could be the raw neural signal and the behavior of the animal [34, 10]. Often times
linear methods (such as GLMs [15]) are used for interpretability, even though the underlying data did
not necessarily arise from linear processes. Yet, non-linear methods are difficult to interpret [5, 25].

In machine learning, especially in computer vision, many algorithms exist for explaining the decisions
of trained (non-linear) neural networks, often on classification tasks [25, 1, 29, 33, 17, 31, 14]. In
particular, gradient-based attribution methods have shown empirical success, but can be computation-
ally costly and/or lack theoretical grounding [31, 14], which ultimately limits their utility and scope
in scientific applications that benefit from theoretical guarantees.

Contrastive learning recently showed promise in its performance for learning representations while
providing theoretical guarantees about its representations [8, 9, 26, 37]. In this work, we aim to unify
the empirical performance of gradient-based attribution methods for generating explanations of large
scale datasets with complex non-linear relationships between their variables. We propose a contrastive
learning method that provably identifies an attribution map underlying the data. Our framework is
depicted in Fig. 1, and contributes the following: (1) We formulate an estimation algorithm for global
attribution maps based on contrastive learning; (2) We show identifiability guarantees for the (global)
attribution map and verify our theory on synthetic datasets.
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Figure 1: Identifiable attribution maps for time-series data. Using time-series data (such as neural data
recorded during navigation, as depicted), our inference framework estimates the ground-truth Jacobian matrix
Jg (i.e., g is the observed neural data linked to latents z and c, where c is the explicit behavioral latent that
would be linked to grid cells) by identifying the inverse data generation process up to a linear indeterminacy L.
Then, we estimate the Jacobian Jf of the encoder by minimizing a generalized InfoNCE objective. Inverting this
Jacobian J+

f , which approximates Jg, allows us to construct the attribution map.

2 Identifiability of Attribution Maps with Regularized Contrastive Learning

Throughout the paper, we will use a notion of attribution maps grounded in the causal structure of the
data generating process. We assume that observations x ∈ X are generated by an injective generative
process (mixing function) g : Z → X , where X ⊆ RD is the space of observations and Z ⊆ Rd is
the space of latent factors and d denotes the number of factors. We have d < D.
Definition 1 (Data generating process). We assume a non-linear ICA problem with a mixing function
g : Z → X mapping parts of the input factors z := [z1; . . . ; zG] ∈ Rd onto outputs, xi = gi(z) =
gi([zj ]j∈Pi

). Pi is an index set, and j ∈ Pi implies that factor zj ∈ Rdi is used to generate the
output xi. We further assume that maximally one of the parts is not observable. All other parts are
observable through bijective maps γi s.t. zi = γi(ci), where ci then denotes an observable factor.

For application of attribution methods to g, we need additional structure in the data generating
process. Specifically, we are interested in how the factors z are connected to the output variables x by
means of any non-linear mapping. This gives rise to the following definition of the attribution map:
Definition 2 (Ground-truth attribution maps). Let g be the mixing function. For all x := g(z) in the
support of p(z), the ground-truth attribution map A[g] has values

A[g]ij =

1 if
∂gi(z)

∂zj
̸= 0 ∃z ∈ Z

0 otherwise.
(1)

and is specified through the index sets P1, . . . , PG defined in Def. 1.

Under these definitions, we aim to identify the attribution map using a suitable representation
learning algorithm. We require two components: First, the algorithm needs to be able to identify the
latent and observable factors of our data generation process and it is well-studied that contrastive
learning algorithms have this property [9, 26, 37]. In the following, let us call p the positive and
q the negative sample distribution. We call (x,x+) a positive pair, and all (x,x−

i ) negative pairs.
The function f := [f1; . . . ; fG] is the feature encoder that maps samples into an embedding space,
and we apply similarity metrics ϕi to the different parts of this feature encoder, abbreviated as
ψ(x,y) := ϕ(f(x), f(y)). The minimizer of the generalized InfoNCE [35, 26] objective

LN [ψ] = E
x∼p(x), x+∼pi(x+|x),

x−
1 ...x

−
N∼q(x−|x)

−ψ(x,x+
i ) + log

N∑
j=1

eψ(x,x
−
j )

 , (2)

is ψ(x,y) = log p(y|x)/q(y|x)+C(x) and identifies the ground truth latents up to a linear transform
for suitable choice of ϕ, p and q, f(g(z)) = Lz [26]. Importantly, we can separate a meaningful fit
from random data as expressed in:
Theorem 1. Assume ψ∗ is a minimizer of the generalized InfoNCE loss under the ICA problem in
Def. 1 for G = 1 parts in the limit N → ∞. Assume the observable factors c with z = γ(c) are
independent of z. Then, ψ∗ = const. is the trivial solution with limN→∞ LN [ψ∗] = logN .
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Proof Sketch. The minimizer of the contrastive learning objective is ψ(x,y) = log p(y|x)/q(y|x) +
C(x). Assume that the latents z are independent from the used labels c, then we have ψ(x,y) =
C(x) = ψ∗(x) independent of x. Inserting into the objective functions gives L[ψ∗] = logN . The
full proof is given in Appendix A.3.

To identify the ground-truth attribution map, we apply this learning scheme to each partition of the
latent variables. In addition, we need to regularize the Jacobian matrix [7] of the feature encoder to
become minimal. With these constraints, we obtain the objective function for Regularized Contrastive
Learning (RegCL) for all parts of the representation:

LN [ψ;λ] = E
x∼p(x),

x+∼pi(x+|x) ∀i∈[G]

x−
1 ...x

−
N∼q(x−|x)

 G∑
i=1

(
− ψi(x,x

+
i ) + log

N∑
j=1

eψi(x,x
−
j )
)
+ λ∥Jf (x)∥2F

 . (3)

where Jf (x) is the Jacobian of the feature encoder f optimized as part of ψ, ∥ · ∥F denotes the
Frobenius norm and λ is a hyperparameter tuned based on the learning dynamics. λ is tuned to the
highest value possible that still allows the InfoNCE component of the loss to stay at its minimum.
Intuitively, this loss function solves G non-linear ICA problems using the single feature encoder f —
for observable zi = γi(ci) we leverage supervised contrastive learning with continuous labels [26],
for the non-observable zG we apply time-contrastive learning using the time-series structure [8, 26].
Theorem 2. Consider a non-linear ICA problem with mixing function g mapping latent factors z to
a signal space such that x = g(z) according to Def. 1. Let Aij = 1{∃z : |∂gi(z)/∂zj | ≠ 0} be the
entries of the global attribution map A of the mixing function. Assume that in the limit N → ∞, the
differentiable feature encoder f minimizes the regularized contrastive loss (Eq. 3) on p(z). Then, we
identify the global attribution map through the pseudo-inverses J+

f (x),

A = J+
f (x)⊙ L(x), (4)

up to component-wise scaling L(x) of the entries.

Proof Sketch. The individual parts of the loss function result in ψ(x,x′) = log pi(z
′
i|zi)/q(z′i) from

which a linear indeterminacy follows, fi(g(z)) = Liz. We can express the result as f(g(z)) = Lz
where L is a block-diagonal matrix with zeros in its lower block triangular part. Hence, L−1 will have
the same property. It then follows that Jf (x)Jg(z) = L and since Jf has minimum norm everywhere,
J+
f (x) is the Moore-Penrose pseudo-inverse of Jg(z)L

−1. Multiplication with L−1 does not alter
the location of zero entries in Jg(z), and hence thresholding J+

f (x) across samples x in the dataset is
an estimator of the ground-truth attribution map. The full proof is given in Appendix A.4.

3 Experimental verification

Experiment setup To verify our theory, we generate a synthetic dataset following Def. 1, cf.
Appendix B.2 for details. We sample 10 different datasets with 100,000 samples, each with a different
mixing function g. The mixing functions consist of randomly initialized 3-layer MLPs [8] and we
ensure injectivity by monitoring the condition number of each matrix layer, following previous work
[8, 37]. Similar to Schneider et al. [26], the feature encoder f is an MLP with three layers followed
by GELU activations [6], and one layer followed by a scaled tanh to decode the latents. We train on
batches with 5,000 samples each. The first 2,500 training steps minimize the InfoNCE or supervised
loss with λ = 0, we then ramp up λ to its maximum value over the following 2,500 steps, and
continue to train until 20,000 total steps. We compute the R2 for predicting the observable factors c
from the feature space after a linear regression, and ensure that this metric is close to 100% for both
our baseline and contrastive learning models to remove performance as a potential confounder.

As a comparison to previous work, we vary the training method (hybrid contrastive, supervised
contrastive, standard supervised) and consider baseline methods for estimating the attribution maps
(neuron gradients [31, 20], integrated gradients [30, 33], Shapely values [28, 14], and feature ablation
[16]), which are commonly used algorithms in scientific applications [25, 16]. To compute these
attribution maps, we leveraged the open source library captum [12]. We also compare regularized
and non-regularized training. Hyperparameters are identical between training setups, the regularizer
λ, and number of training steps are informed by the training dynamics.
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supervised supervised contrastive hybrid contrastive
none regularized none regularized none regularized

attribution method (RegCL)

Neuron Gradient 79.281.077.4 93.094.591.5 80.682.478.8 86.789.084.6 79.281.077.5 88.090.185.8

Feature Ablation 83.184.881.3 88.590.087.0 84.085.682.1 84.786.582.8 82.984.581.3 85.286.983.4

Integrated Gradients 81.082.779.2 84.986.683.1 81.983.780.2 82.384.380.5 83.985.682.1 86.988.884.9

Shapely, shuffled 82.083.780.3 89.290.887.6 83.384.981.4 84.686.682.6 81.683.280.1 85.187.183.0

Shapely, zeros 81.082.879.3 84.986.883.1 82.083.780.2 82.484.380.4 81.683.479.9 83.285.081.2

J+
f (ours) 76.978.774.9 92.994.591.5 77.579.475.5 86.188.383.8 87.989.586.3 98.298.9

97.4

Table 1: Comparison of attribution methods (rows), and combinations of training/regularization schemes
(columns). Our proposed method uses regularized hybrid contrastive learning. Numbers average across different
configurations of number of factors (4 to 9), for 10 different datasets. Sub- and superscript values denote the
95% confidence interval obtained through bootstrapping (n=1,000).

Regularized, hybrid contrastive learning identifies the ground truth attribution map. Table 1
shows the AUC for recovering A using combinations of training schemes (supervised, supervised
contrastive, hybrid contrastive), Jacobian regularization, and methods for estimating attribution
methods. We investigate the effect of the different factors with an ordinary least squares (OLS)
ANOVA (F=17.0, p<1e-5) followed by a Tukey HSD posthoc test, see Appendix B.4 for statistical
methods and full results. Both the combination of regularized training followed by estimating
the pseudo-inverse (p<0.01), and combining regularized training with hybrid contrastive learning
(p<0.001) significantly outperform all considered baselines.
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J+
f (ours)

Neuron Gradient
Feature Ablation
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Shapely Shuffle
w/o regularization

Figure 2: RegCL (ours, black) and super-
vised baselines AUC vs.# of latent factors.

CL, no reg. RegCL

Neuron Gradient 69.372.466.0 91.995.388.3

Feature Ablation 77.180.473.8 86.789.983.1

Integrated Gradient 77.579.675.4 86.889.983.4

Shapely shuffled 74.477.571.2 87.591.084.0

Shapely, zeros 75.878.772.6 85.388.682.0

J+
f (ours) 84.286.781.2 99.299.8

98.4

Table 2: Contrastive learning (CL) can es-
timate attribution maps w.r.t. latent factors:
Results for identifying the attribution map,
avg. across 10 seeds and 4–9 latents.

Contrastive learning is critical for large numbers of la-
tent factors. The importance of using hybrid contrastive
learning (which can identify the latent factors) becomes
most apparent with an increasing number of latent factors,
as we would expect in a realistic dataset. Fig 2 shows the
variation in performance as we keep the number of observ-
able factors fixed at 2 and vary the number of total latents
from 4 to 9 variables. Beyond this value, the drop in R2

becomes too large, prohibiting us to compute a meaningful
attribution map. Performance scales with the number of
available training samples, and we observed that increas-
ing dataset size besides 100,000 samples allows to work
with even higher numbers of latents.

Hybrid contrastive learning allows attribution com-
putation with latent factors. In contrast to supervised
algorithms, hybrid contrastive learning allows us to es-
timate the attribution map with respect to latent factors,
i.e., we treat z1 as the observable, and z2 as the latent
factor. With hybrid contrastive learning, we can continue
to estimate the attribution map at AUC=99.2% (Table 2).

4 Conclusions

We proposed a novel approach for estimating attribution
maps in time-series data based on regularized, hybrid con-
trastive learning. Scientific inference in non-linear prob-
lems requires identifiable attribution maps estimated for
the data generating process. We theoretically and empir-
ically showed that contrastive learning can be leveraged to
estimate this map by inverting the data generating process. Our empirical results demonstrate the
importance of estimating all latent variables along with the observable factors for effective estimation
of the attribution map. In future extensions of this work, we will apply our approach to real scientific
data, e.g., for applications in neuroscience. Even beyond, we think that our findings might spark
future work in improving the estimation of global explanations in vision, speech, and language.
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A Proofs

We will now derive identifiability guarantees for the global attribution map under the ICA model
described in the main paper. Given a data generating process and a ground truth global attribution
map of the data generating process, we aim for a guarantee of the form

Ĵg = Jg ⊙ L (5)

for a suitable estimator Ĵg up to a matrix L that scales the ground truth derivatives in Jg point-wise
and will hence not affect the “real zeros” in the Jacobians relevant for Def. 2.

We use contrastive learning to obtain a feature encoder f which identifies the ground-truth latents up
to a linear indeterminacy. We structure this feature encoder to reconstruct different parts of the latent
representation in different dimensions of the reconstructed latent space.

Then, we estimate the attribution map by computing the pseudo-inverse of the feature encoder’s
Jacobian, which is directly related to the Jacobian of the mixing function. To obtain the correct
pseudo-inverse, we need to obtain a minimum-Jacobian solution of the feature encoding network. We
hence introduce a new regularized contrastive learning objective.

The underlying constrained optimization problem is

min
f

∥Jf (x)∥2F s.t. ϕi(fi(x), fi(y)) = log
pi(y|x)
q(y|x)

+ Ci(x) ∀i ∈ [G], (6)

with the positive sample distribution pi and the negative sample distribution q. We call (x,y+) the
positive pair, and all (x,y−

i ) negative pairs. In the following we define ψi(x,y) := ϕi(fi(x), fi(y))
where f := [f1; . . . ; fG] is the feature encoder and ϕi are similarity metrics. We re-state the RegCL
objective function which is a relaxation of Eq. 6:

LN [ψ;λ] = E
x∼p(x),

y+∼pi(y|x) ∀i∈[G]

y−
1 ...y

−
N∼q(y|x)

 G∑
i=1

(
− ψi(x,y

+
i ) + log

N∑
j=1

eψi(x,y
−
j )
)
+ λ∥Jf (x)∥2F

 . (7)

In principle, this objective is able to identify an arbitrary amount of separate factor groups (G), given
sufficient capacity of the model. The choice of ψi for the individual parts of the feature representation
depends on the exact distribution underlying data generation, and is discussed below.

A.1 Preliminaries

Before proving our results on identifiable attribution maps, it is useful to restate a few known results
from the literature, concerning properties of the InfoNCE loss. Hyvarinen et al. [9] showed that
contrastive learning with auxiliary variables is identifiable up to permutations or linear transformations
for condtionally expontential distributions. Zimmermann et al. [37] related this to identifiability
for models trained with the InfoNCE loss, and showed that assumptions about the data-generating
process can be incorporated in to the choice of loss function. Schneider et al. [26] then formulated a
supervised contrastive learning objective based on selecting the positive and negative distributions in
the generalized InfoNCE objective.

We will first re-state the minimizer of the InfoNCE loss 2 used in our algorithm:
Proposition 1 (restated from Schneider et al. [26]). Let p(·|·) be the conditional distribution of the
positive samples, q(·|·) the conditional distribution of the negative samples and p(·) the marginal
distribution of the reference samples. The generalized InfoNCE objective (Def. 2) is convex in ψ with
the unique minimizer

ψ∗(x,y) = log
p(y|x)
q(y|x)

+ C(x), with LN [ψ∗] = logN −DKL(p(·|·)∥q(·|·)) (8)

for N → ∞ on the support of p(x), where C : Rd → R is an arbitrary mapping.

Proof. See [26], but note that we added the batch size N .
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We also re-state
Proposition 2 (restated Proposition 6 in Schneider et al. [26]). Assume the learning setup in Def. 1
[26], and that the ground-truth latents u1, . . . ,uT for each time point follow a uniform marginal
distribution and the change between subsequent time steps is given by the conditional distribution of
the form

p(ut+∆t|ut) =
1

Z(ut)
exp δ(ut+∆t,ut) (9)

where δ is either a (scaled) dot product (and ut ∈ Sn−1 ⊂ Rd lies on the (n − 1)-sphere Sn−1)
or an arbitrary semi-metric (and ut ∈ U ⊂ Rd lies in a convex body U). Assume that the data
generating process g with st = g(ut) is injective. Assume we train a symmetric CEBRA [26] model
with encoder f = f ′ and the similarity measure including a fixed temperature τ > 0 is set to or
sufficiently flexible such that ϕ = δ for all arguments. Then h = h′ = g ◦ f is affine.

Proof. For δ being the dot product, the result follows from the proof of Theorem 2 in Zimmermann
et al. [37]. For δ being a semi-metric, the result follows from the proof of Theorem 5 in Zimmermann
et al. [37].

A.2 Positive distributions for self-supervised and supervised contrastive learning

Self-supervised contrastive learning Up to one of the parts in the latent representation z can be
estimated using self-supervised learning by leveraging time information in the signal. The underlying
assumption is that latents vary over time according to a distribution we can model with ψ. For
instance, Brownian motion p(z(t+1)|z(t)) = N (z(t+1) − z(t)|0, σ2I) can be estimated by selecting
ϕ(x,y) = −∥x− y∥2. On the hypersphere with a vMF conditional across timesteps, the dot product
is a suitable choice for ϕ(x,y) = x⊤y. Due to Proposition 2, this training scheme is able to identify
the ground truth latents up to a linear inderterminancy.

Supervised contrastive learning For supervised contrastive learning, we uniformly sample a
timestep (and hence, a sample x) from the dataset. This timestep is associated to the label c, and we
then sample c′ from the conditional distribution p(c′|c). We select the nearest neighbour to c′ with
the corresponding sample x′.

The conditional distribution p(c′|c) can be contructed as an empirical distribution: For instance,
if we assume non-stationarity, c(t−1) − c(t) can be computed across the dataset. Let us call this
distribution p̂(c′ − c). Then, sampling from p(c′|c) can take the form of sampling c′ = c+∆ with
∆ ∼ p̂(c′ − c).

If this approximation is correct under the underlying latent distribution, have we have
p(c′|c) detJ−1

γ (c′) = p(z′|z). This means that the solutions of the supervised and self-supervised
contrastive learning solutions coincide.

Superposition of self-supervised and supervised contrastive learning Depending on the assump-
tions about the ground truth data distribution, different estimation schemes can be combined to obtain
a latent representation. In the end, the feature encoder f should identify the original latents z up to a
linear transformation,

f(g(z)) = Lz. (10)
Our goal is to obtain block-structure in L, with zeros in the lower block triangular part of the matrix.

This is possible by simultaneously solving multiple contrastive learning objectives, which requires
fi(g(z)) = Liz. (11)

for each part i of the latent representation. Assume without loss of generality that we apply self-
supervised contrastive learning to the G-th part, and supervised contrastive learning to all remaining
parts. For supervised contrastive learning we then obtain

fi(g(z)) = Liz = L′
izi. (12)

If all latents z satisfy the conditions for time-contrastive learning, we can then also apply time-
contrastive learning to the full representation, which gives us the following constraints:

fi(g(z)) = Liz = L′
izi ∀i ∈ [G− 1] (13)

f(g(z)) = Lz (14)

9



from which we can follow the matrix structure

f(g(z)) = diag(L1, . . . ,LG) (15)

In cases where this is not possible, note that it is always possible to treat all contrastive learning
problems separately, and learn separate regions of the feature space in f . This gives the same result,
but re-uses less of the representation (e.g., the self-supervised part of the representation would be
learned separately from the supervised part).

Consider a time-series dataset where p(zt|zt−1), i.e., all latents, follow Brownian motion. We can
the produce the solution

ψi(x,x
′) :=ϕi(fi(x), fi(x

′)) = log
p(c′i|ci)
q(c′i|ci)

i ∈ {1, . . . , G− 1} (16)

ψG(x,x
′) :=

G∑
i=1

ϕi(fi(x), fi(x
′)) = log

p(z′|z)
q(z′|z)

= log
p(z′G|zG)
q(z′G|zG)

+

G−1∑
i=1

log
p(c′i|ci)|J−1

γi (z
′
i)|

q(c′i|ci)|J
−1
γi (z

′
i)|
(17)

in case our training distributions for supervised contrastive learning, p(ci|ci) are a sufficiently good
approximation of the variation in the ground truth latents, we can select ψG(x,y) := ϕ(f(x), f(y))
to be trained on the whole feature space using self-supervised learning, while all other objectives
on ψi would solve supervised contrastive losses. If this training setup is not possible, it would be
required to parametrize ψG(x,y) := ϕ(f(x), f(y)) as a separate part of the feature space.

While it is beyond the scope of the current work to thoroughly investigate the trade-offs between the
two methods, our verification experiments assume the former case: The time contrastive objective is
applied to the whole objective function, and the behavior contrastive objective to the previous latent
variable groups.

A.3 Proof of Theorem 1

An interesting property of contrastive learning algorithms is the natural definition of a “goodness of
fit” metric for the model. This goodness of fit can be derived from the value of the InfoNCE metric
which is bounded from below and above as follows [26]:

logN −DKL(p||q) ≤ LN [ψ] ≤ logN. (18)

In scientific applications, we can leverage the distance to the trivial solution logN as a quality
measure for the model fit. Theorem 1 states that if during supervised contrastive learning with labels
c there is no meaningful relation between c and x, we will observe a trivial solution with loss value
at logN .

For the following proof, let us recall from Def. 1 that we can split the latents z that fully define the
data through the mixing function, x = g(z). We can split z into different parts, z = [z1, . . . , zG] and
assume that ci is the observable factor corresponding to the i-th part. For notational brevity, we omit
the i in the following formulation of the proof without loss of generality.

Proof of Theorem 1

Proof. Assume that the distribution p is informed by labels. In the most general case, we can depict
the sampling scheme for supervised contrastive learning with continuous labels c and c′ and latents z
and z′ with the following graphical model:

z z′

c c′

10



The reference sample x is linked to the observable factor/label c, and the conditional p(c′|c) links
both samples. In particular, z′ and hence x′ are selected based on c′ in the dataset.

The distributions for positive and negative samples then factorize into

p(z′|z) =
∫ ∫

dc′dcp(z′|c′)p(c′|c)p(c|z) (19)

q(z′|z) =
∫ ∫

dc′dcp(z′|c′)q(c′|c)p(c|z) (20)

and note that only p(c′|c) and q(c′|c) are selected by the user of the algorithm, the remaining
distributions are empirical properties of the dataset.

We can compute the density ratio
p(z′|z)
q(z′|z)

=

∫ ∫
dc′dcp(z′|c′)p(c′|c)p(c|z)∫ ∫
dc′dcp(z′|c′)q(c′|c)p(c|z)

(21)

In the case where latents and observables are independent variables, we have p(z′|c′) = p(z′) and
p(c|z) = p(c). The equation then reduces to

=

∫ ∫
dc′dcp(z′)p(c′|c)p(c)∫ ∫
dc′dcp(z′)q(c′|c)p(c)

(22)

=
p(z′)

∫ ∫
dc′dcp(c′|c)p(c)

p(z′)
∫ ∫

dc′dcq(c′|c)p(c)
= 1. (23)

Consequently, the minimizer is ψ(x,y) = C(x) and we obtain the maximum value of the loss with
L[ψ] = logN in the limit of N → ∞. Note, for any symmetrically parametrized similarity metric
(like the cosine or Euclidean loss), it follows that ψ(x,y) = ψ is constant, i.e., the function collapses
onto a single point.

A.4 Proof of Theorem 2

Proof. If f is a minimizer of the InfoNCE loss under the assumed generative model, it follows that
we part-wise identify the underlying latents,

f(g(z)) = Bz (24)
with some block diagonal matrix B. By taking the derivative w.r.t. z it follows that

Jf (x)Jg(z) = B. (25)
We need to show that at each point z in the factor space, we can recover Jg up to some indeterminacy.
We will re-arrange the equation to obtain

Jf (x)Jg(z)B
−1 = I, (26)

Jf (x)J̃g(z) = I. (27)

It is clear that for each point in the support of p, Jf (x) is a left inverse of J̃g(z).

Jf (x) = J̃+
g (z) +V,vi ∈ ker J̃g(z) (28)

Among these solutions, it is well-known that the minimum norm solution J∗ to
min
J(z)

∥J(z)∥2F s.t. J(z)Jg(z) = I (29)

is the Moore-Penrose inverse, J∗(z) = J̃+
g (z). By invoking assumption (2), we arrive at this solution

and have
Jf (x) = J̃+

g (z) (30)

J+
f (x) = J̃g(z) (31)

J+
f (x) = Jg(z)B

−1 (32)

Because B is block-diagonal with zeros in the off-diagonal blocks, this also applies to B−1. It
follows that

J+
f (x) = J+

f (g(z)) ∝ Jg(z) (33)
concluding the proof.
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B Implementation notes

B.1 Obtaining the attribution map

Since J+
f identifies Jg as derived in Theorem 2, we can obtain the final attribution map according to

Def. 2 using
Â = 1{max

x
|J+

f (x)| > ϵ} (34)

where ϵ > 0 is a threshold that weights false-positive and false-negative predictions. In practice, we
found that the operation

Â = 1{
∑
x

|J+
f (x)|} > ϵ (35)

yields even better performance, and we will use this estimation method for all experiments. In general,
working on improved estimation methods taking into account sources of estimation noise could be an
interesting avenue for future work.

B.2 Synthetic data design

An essential aspect of our synthetic design lies in the definition of the mixing function g which,
consequently, defines the ground truth attribution map. We split the factors z into two parts, z1 and
z2. Figure B.2 illustrates the two experimental configurations employed in this work. In both settings
z1 is connected both to x1 and x2 whereas z2 is only be connected to x2. The main difference is that
in the first setting z2 = γ2(c2) whereas in the second setting z1 = γ1(c1).

z1

z2

c2

x1

x2 z1

z2

c1

x1

x2

(a) Graphical model for the data generating pro-
cess where z2 is observed through c2. The attri-
bution map needs to be computed with respect
to z2, which is inferred with supervised (con-
trastive) learning. This is the experiment setting
for Table 1.

(b) Graphical model for the data generating pro-
cess where z1 is observed through c1. Since z2
is not observed, the attribution map can only be
estimated through the time-contrastive compo-
nent in RegCL. This is the experiment setting
for Table 2.

B.3 Detailed experimental setup

In our experiments, we consider variations of three factors. Our theory predicts that the combination
of estimating the inverse of the feature encoder Jacobian with regularized training allows to identify
the ground truth attribution map. We test the following factors and underline our proposed method:

Factor Possible values

Training mode Supervised, Supervised contrastive, Hybrid contrastive
Regularization Off, On (λ = 0.1)
Attribution map estimation Neuron gradient, integrated gradients, Shapely values, inverted Jacobian

Combinations of these factors can have positive effects on the output performance. We therefore run
all combinations of these factors with 10 seeds (i.e., different latents and mixing functions) across
different numbers of latent dimensions.
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B.4 Statistical analysis

We fit an ANOVA on an ordinary least squares model using combinations of all latent factors, see
Table 3. As a post-hoc test, we use a Tukey HSD test on the statistically significant factors. See
Table 4 we show that hybrid contrastive learning computing followed by computing the pseudo-inverse
significantly outperforms all other methods, and in Table 5 we show that combining the pseudo-
inverse on regularized trained models also significantly outperform all other methods. Statistical
analysis is implemented using statsmodels2.

sum sq df F PR(>F)

C(attribution method name) 807.50 5 6.14 0.00
C(dim Z1) 3286.82 5 24.98 0.00
C(method name) 1505.46 2 28.60 0.00
C(extension) 15722.40 1 597.37 0.00
C(attribution method name):C(dim Z1) 456.86 25 0.69 0.85
C(attribution method name):C(method name) 8747.26 10 33.24 0.00
C(dim Z1):C(method name) 270.05 10 1.03 0.41
C(attribution method name):C(extension) 6661.36 5 50.62 0.00
C(dim Z1):C(extension) 2647.68 5 20.12 0.00
C(method name):C(extension) 2813.94 2 53.46 0.00
C(attribution method name):C(dim Z1):C(method name) 463.75 50 0.35 1.00
C(attribution method name):C(dim Z1):C(extension) 672.62 25 1.02 0.43
C(attribution method name):C(method name):C(extension) 177.68 10 0.68 0.71
C(dim Z1):C(method name):C(extension) 237.40 10 0.90 0.51
C(attribution method name):C(dim Z1):C(method name):C(extension) 932.86 50 0.71 0.93
Residual 50059.50 1902 NaN NaN

Table 3: Results for fitting an ANOVA on all combination of factors.

group1 group2 meandiff p-adj lower upper reject

J+
f :hybrid contrastive Jf :behavior contrastive 9.41 0.00 5.83 12.98 True

J+
f :hybrid contrastive Jf :hybrid contrastive 9.51 0.00 5.93 13.08 True

J+
f :hybrid contrastive Jf :supervised 6.97 0.00 3.40 10.55 True

J+
f :hybrid contrastive J+

f :behavior contrastive 11.29 0.00 7.71 14.87 True
J+
f :hybrid contrastive integrated-gradients:hybrid contrastive -7.67 0.00 -11.75 -3.59 True

J+
f :hybrid contrastive feature-ablation:supervised -7.23 0.00 -10.81 -3.66 True

J+
f :hybrid contrastive feature-ablation:hybrid contrastive -9.00 0.00 -12.58 -5.42 True

J+
f :hybrid contrastive feature-ablation:behavior contrastive -8.74 0.00 -12.32 -5.16 True

J+
f :hybrid contrastive J+

f :supervised -8.14 0.00 -11.72 -4.57 True
J+
f :hybrid contrastive shapely-zeros:hybrid contrastive -10.68 0.00 -14.26 -7.10 True

J+
f :hybrid contrastive shapely-shuffle:hybrid contrastive -9.71 0.00 -13.29 -6.13 True

J+
f :hybrid contrastive shapely-shuffle:supervised -7.48 0.00 -11.06 -3.90 True

J+
f :hybrid contrastive shapely-zeros:behavior contrastive -10.90 0.00 -14.47 -7.32 True

J+
f :hybrid contrastive shapely-zeros:supervised -10.09 0.00 -13.66 -6.51 True

J+
f :hybrid contrastive integrated-gradients:behavior contrastive -10.96 0.00 -14.54 -7.38 True

J+
f :hybrid contrastive integrated-gradients:supervised -10.14 0.00 -13.72 -6.57 True

J+
f :hybrid contrastive shapely-shuffle:behavior contrastive -9.13 0.00 -12.71 -5.55 True

Jf :supervised J+
f :behavior contrastive -4.31 0.00 -7.89 -0.74 True

Jf :supervised shapely-zeros:hybrid contrastive -3.70 0.03 -7.28 -0.13 True
Jf :supervised shapely-zeros:behavior contrastive -3.92 0.02 -7.50 -0.35 True
Jf :supervised integrated-gradients:behavior contrastive -3.99 0.01 -7.56 -0.41 True
feature-ablation:supervised J+

f :behavior contrastive 4.05 0.01 0.48 7.63 True
feature-ablation:supervised integrated-gradients:behavior contrastive -3.73 0.03 -7.30 -0.15 True
feature-ablation:supervised shapely-zeros:behavior contrastive -3.66 0.04 -7.24 -0.09 True
shapely-shuffle:supervised J+

f :behavior contrastive 3.81 0.02 0.23 7.39 True
Table 4: Post-hoc test for the combination of attribution method and training method.

2https://github.com/statsmodels/statsmodels/
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group1 group2 meandiff p-adj lower upper reject

J+
f :REG Jf :REG 3.16 0.00 0.58 5.75 True

J+
f :REG shapely-zeros:REG -8.91 0.00 -11.50 -6.32 True

J+
f :REG J+

f :none -11.61 0.00 -14.20 -9.03 True
J+
f :REG feature-ablation:REG -6.25 0.00 -8.84 -3.67 True

J+
f :REG feature-ablation:none -9.06 0.00 -11.64 -6.47 True

J+
f :REG integrated-gradients:REG -8.02 0.00 -10.70 -5.35 True

J+
f :REG integrated-gradients:none -10.38 0.00 -13.06 -7.70 True

J+
f :REG shapely-shuffle:REG -6.11 0.00 -8.69 -3.52 True

J+
f :REG shapely-shuffle:none -10.10 0.00 -12.69 -7.51 True

J+
f :REG Jf :none 12.75 0.00 10.17 15.34 True

J+
f :REG shapely-zeros:none -10.86 0.00 -13.44 -8.27 True

Jf :REG shapely-zeros:REG -5.75 0.00 -8.33 -3.16 True
Jf :REG shapely-shuffle:REG -2.94 0.01 -5.53 -0.35 True
Jf :REG integrated-gradients:none -7.21 0.00 -9.89 -4.53 True
Jf :REG integrated-gradients:REG -4.86 0.00 -7.53 -2.18 True
Jf :REG feature-ablation:none -5.89 0.00 -8.48 -3.30 True
Jf :REG feature-ablation:REG -3.09 0.01 -5.68 -0.50 True
Jf :REG J+

f :none -8.45 0.00 -11.04 -5.86 True
Jf :REG Jf :none -9.59 0.00 -12.18 -7.00 True
Jf :REG shapely-shuffle:none -6.93 0.00 -9.52 -4.35 True
Jf :REG shapely-zeros:none -7.69 0.00 -10.28 -5.10 True
shapely-shuffle:REG Jf :none 6.65 0.00 4.06 9.24 True
shapely-shuffle:REG shapely-zeros:none -4.75 0.00 -7.34 -2.16 True
shapely-shuffle:REG shapely-zeros:REG -2.81 0.02 -5.39 -0.22 True
shapely-shuffle:REG J+

f :none 5.51 0.00 2.92 8.10 True
shapely-shuffle:REG integrated-gradients:none 4.27 0.00 1.59 6.95 True
shapely-shuffle:REG feature-ablation:none 2.95 0.01 0.36 5.54 True
shapely-shuffle:REG shapely-shuffle:none -3.99 0.00 -6.58 -1.41 True
feature-ablation:REG feature-ablation:none -2.80 0.02 -5.39 -0.21 True
feature-ablation:REG shapely-shuffle:none -3.84 0.00 -6.43 -1.26 True
feature-ablation:REG Jf :none 6.50 0.00 3.91 9.09 True
feature-ablation:REG shapely-zeros:REG -2.66 0.04 -5.24 -0.07 True
feature-ablation:REG integrated-gradients:none -4.12 0.00 -6.80 -1.44 True
feature-ablation:REG J+

f :none 5.36 0.00 2.77 7.95 True
feature-ablation:REG shapely-zeros:none -4.60 0.00 -7.19 -2.01 True
integrated-gradients:REG J+

f :none 3.59 0.00 0.92 6.27 True
integrated-gradients:REG shapely-zeros:none -2.83 0.03 -5.51 -0.16 True
integrated-gradients:REG Jf :none 4.73 0.00 2.06 7.41 True
shapely-zeros:REG Jf :none 3.84 0.00 1.26 6.43 True
shapely-zeros:REG J+

f :none 2.70 0.03 0.11 5.29 True
feature-ablation:none Jf :none 3.70 0.00 1.11 6.29 True
shapely-shuffle:none Jf :none 2.66 0.04 0.07 5.24 True

Table 5: Posthoc test for the combination of attribution method and regularization scheme.

C Related Work

There are two main approaches to model understanding. The first approach is to use interpretable
models from the start, e.g., linear regression. The second approach is to explain complex models
using post-hoc interpretability methods. Unfortunately, the first approach is often not feasible due to
complex non-linearities in the data, and therefore we focus on the second approach, making use of
methods that will be discussed below, such as saliency maps.

Depending on the type of explanation we want to obtain, there are different post-hoc interpretability
methods available in the literature [25]. First, we can differentiate between local and global expla-
nations. Global explanations provide an interpretable description of the behavior of the model as a
whole. Local explanations provide a description of the model behavior in a specific neighborhood/for
an individual prediction.
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In the case of local explanations, we can categorize the methods (non-extensively) in the following
way:

Feature attribution methods are explanations where we assign a weight to each feature in the
input space that indicates its importance or effect. We can distinguish between:

• Perturbation based compute a relevance score by removing, masking or altering the input,
running a forward pass on the new input and measuring the difference with the original
input. Methods include LIME or SHAP [24, 14].

• Gradient based methods locally evaluate the gradient ∂f/∂xi or variations of it (e.g.,
absolute value of the gradient). Methods include Integrated Gradients, SmoothGrad, or
Grad-CAM [33, 32, 27].

• Propagation based methods decompose the prediction of the network going backward (from
output to input) following some propagation rules. Common methods are Deep Taylor
decomposition and Layer Relevance Propagation (LRP) [18, 2].

Prototype-based methods are methods based on creating a prototype in the input domain that is
interpretable and representative of the abstract learned concept, such as activation maximization [35].
This is used to answer questions such as: What type of input is easier to mis-classify?

For global explanations we can differentiate between:

• Meta-explanations methods aggregate and analyze a collection of multiple individual expla-
nations to identify general patterns in the model behavior. A recent example is SpRAy [13],
which computes meta-explanations by clustering individual heatmaps.

• Representation-based methods analyze intermediate representations of a neural network.
An example of this approach is network dissection [4], which consists of evaluating the
semantics of hidden units to determine the model’s reliance on concepts that are semantically
similar to humans. Another example is TCAV [11], which measures the sensitivity of a
model’s prediction in terms of user-defined concepts.

• Model distillation methods create a simpler and more interpretable model that is constructed
such that it mimics the original model’s predictions. An example is using decision trees [3].

Causal discovery and Identifiability The goal of causal discovery is to learn the causal structure
of the data, often represented as a Directed Acyclic Graph (DAG) [21, 22]. Importantly, there is a
deep connection between causal discovery and identifiability as both aim to infer the ground truth
data generating process. As a result, a growing number of studies are showcasing this connection
[19, 23].

D Additional Discussion and Limitations

We demonstrated a theoretically grounded algorithm for estimating attribution maps with identifiabil-
ity guarantees. While we were able to demonstrate its performance on synthetic datasets matching
the theoretical conditions up to real-world data.

Our theoretical results currently hold for fully converged contrastive learning models and true
minimizers of the InfoNCE loss [35] in the limit of infinite data. While Wang & Isola [36] show
favorable properties of contrastive learning in limited data settings, which can be confirmed by
our finite data experiments, it is less straightforward to theoretically connect the quality of the
attribution score to the goodness of fit of the model. For the purpose of this work, we show that the
R2 of recovering the observable factors is a good indicator, and recommend comparing this to the
theoretically best result (of a supervised baseline).

In future work, the presented results should be extended and studied under various violations of the
data-distributions, and scaled to real-world datasets.
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