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Abstract

There has been a growing interest in using deep learning models for processing
long surgical videos, in order to automatically detect specific clinical/operational
activities and extract metrics that can enable workflow efficiency tools and applica-
tions. However, training such models require vast amounts of labeled data which is
costly and not scalable. Recently, self-supervised learning has been explored in
computer vision community to reduce the burden of the annotation cost. Masked
autoencoders (MAE) got the attention in self-supervised paradigm for Vision Trans-
formers (ViTs) by predicting the randomly masked regions given the visible patches
of an image or a video clip, and have shown superior performance on benchmark
datasets. However, the application of MAE in surgical data remains unexplored. In
this paper, we first investigate whether MAE can learn transferrable representations
in surgical video domain. We propose SurgMAE, which is a novel architecture with
an intelligent masking strategy based on sampling tokens corresponding to high
information spatio-temporal regions unlike random and tube masking for MAE.
We provide an empirical study of SurgMAE on two large scale long surgical video
datasets, and find that our method outperforms several baselines in low data regime.
We conduct extensive ablation studies to show the efficacy of our approach and also
demonstrate it’s superior performance on UCF-101 to prove it’s generalizability in
non-surgical datasets as well.

1 Introduction

Robotic-assisted surgery (RAS) has been widely adopted for many surgical procedures since it allows
surgeons to perform operations with more precision and provides benefits such as fast post-operative
recoveries, less blood loss and shorter hospitalization [1]. However, the adaptation of RAS is still not
ubiquitous due to barriers such as cost, training, and Operating room (OR) workflow complexities [2].
Many component technologies have been recently introduced to address such issues. Methods such
as automatic activity recognition in OR [3, 4], scene understanding and context awareness in the
OR [5], and endoscopic video workflow recognition [6] have shown the potential of enabling digital
tools that can analyze and improve workflow processes for the surgeon and OR staff. The focus of
this paper is automatic surgical activity recognition (SAR) which is the task of detecting activities
or phases temporally in long videos. [3, 7] introduced a new dataset called OR-AR consisting of
long videos collected from different ORs and analyzed performance of state of the art video action
detection models on it. However, these approaches are fully supervised and require clinical data that
is manually annotated by medical experts which can impede the scalability of these models. Indeed,
we want to have models that can understand the surgical workflow in a scalable fashion either at
surgery level or OR level. This requires us to have machine learning models that are data-efficient in
nature.

In this paper, we leverage the unlabeled long surgical videos and propose a new self-supervised
learning (SSL) approach based on masked autoencoders. SSL learns generic representations on

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Figure 1: Comparison of different masking strategies. Random and Tube masking sample more
uninformative regions from the input video clip while our proposed sampling strategy samples high
spatio-temporal region and mostly discard background regions.

unlabeled data that are transferable to various downstream tasks. There are two different approaches
used in SSL. In contrastive learning, the model takes different augmentations or views of an image
and then uses contrastive loss to pull them together in the embedding space while pushing away the
embeddings of different images. On the other hand, masked autoencoders (MAE) [8, 9, 10] take
an input (either image or video), patchify it and then pass into patch embedding to generate a set
of tokens. A high percentage of tokens are generally dropped and the remaining tokens are passed
to the Vision Transformers (ViT) [11]. Then, the tokens embeddings concatenated with learnable
masked tokens are passed to the decoders to reconstruct the masked patches. MAEs have recently
gained a lot of momentum in SSL paradigm because of less inductive bias and high masking ratio
and have consistently been outperforming contrastive learning based approaches. To the best of our
knowledge, little or no work has been done in the surgical domain using MAE. We first investigate
whether MAE can learn useful representations during pre-training for surgical video datasets. We
train MAEs using different masking strategies such as random [8], tube [10] and frame [10] masking.
We empirically found that the random masking strategy works best. However, we found that all
the tokens are not informative as there are a lot of redundant information in the video and random
masking strategy can select tokens from uninformative regions. To tackle this challenge, we propose
a new masking strategy that samples tokens from high information spatio-temporal regions. Our
masking strategy selects tokens based on the distance in the embedding space while discarding
tokens from low information regions (background, redundant frames etc.) as shown in figure 1. We
empirically show the efficacy of our new masking strategy on multiple datasets to prove out that it
selects tokens from high informative regions, resulting in learning more useful representations for
downstream tasks.

2 Related Work

Annotating massive amounts of surgical video data temporally and spatially requires manual work
from medical experts and is impractical and expensive. To put our work in the context of this
application and prior works, we briefly review the surgical video understanding, OR workflow
analysis, and self-supervised learning paradigms. Please see the appendix for extended literature
review.
Surgical Video Understanding. Datasets such as Cholec80 [12] and Cataract-101 [13] have
allowed us to make advancement in surgical phase recognition mainly in laparoscopic and oph-
thalmological videos. Recent approaches [3, 14] are mainly supervised and consist of two stages.

Self-supervised Learning (SSL). Recently, contrastive learning [15, 16, 17, 18] approaches and
masked autoencoder [10, 8, 9, 19, 20] are mainly used in SSL to learn better visual representations
from large scale unlabeled datasets.

3 SurgMAE

Our goal is to learn video representations under masked autoencoder paradigm using high spatio-
temporal tokens. Given a video clip V of size T x 3 x H x W where T is the number of frames in the
clip, H and W are height and width of the frame and 3 corresponds to the number of channels in
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the frame, we first pass it to a 3D convolutional layer with a patch size of 2x16x16 to extract N =
T
2 x H

16xW
16 tokens of dimension d. Let Xi be the token embedding of two adjacent frames (j, j + 1)

of the video clip. We use the euclidean norm between the token embedding Xi+1,k and the token
embedding of the previous frame Xi,k over the same 2D position to compute if the token Xi+1,k

belongs to high information region or not. Then, we only sample tokens with high distance value d
based on the masking ratio as shown in equation 1. The intuition is if the spatial location of object
changes in the next frame, then it should be accounted as high information token.

Xi = Conv3d(V(j, j + 1); θ),

di+1,k = l2(Xi+1,k,Xi,k)
(1)

Next, we follow MAE [8] to adapt separable positional embedding, one for space, and other for the
time. For non-surgical data, we follow [10] for adding positional embeddings into the tokens. After
positional embeddings are added, the sampled tokens Xv are passed to the encoder to extract latent
representations Zv . The latent embeddings are then concatenated with learnable masked tokens zm.
Finally, the positional embeddings are added, and passed to the decoder to reconstruct the masked
patches V̂. Following [10, 8], we use mean squared error (MSE) as a loss function between the
prediction and the normalized RGB pixel values:

L =
1

ω

∑
p∈ω

||V(p)− V̂(p)||2 (2)

where p is the token index, ω is the set of masked tokens. Please see appendix for more ablation study
on the effect of different loss functions. We remark that our masking strategy would allow the model
to sample tokens based on the spatio-temporal information from each video clip as compared to
random masking. As shown in the figure 2, the video frames has different spatio-temporal information
and our sampling approach is able to capture the most important cues from them which allow the
model to learn useful representations during pre-training and we have empirically shown the superior
performance of the downstream tasks in the section 4.1. We present the pseudo-code of our sampler
and SurgMAE in the appendix.

Figure 2: (Left) SurgMAE samples high spatio-temporal regions from the input video clip. (Right)
We show the original input video clip (top), masks (middle) and the reconstruction (bottom row) on
OR-AR.

4 Experiments

Datasets. We evaluate SurgMAE on three datasets: OR-AR [7] and OR-ARv2, Cataract-101 [13],
and UCF-101 [21]. OR-AR is a surgical dataset consisting of 820 full videos captured using IR
cameras placed in two ORs in a single hospital. OR-ARv2 is an extended version of OR-AR dataset
that has videos collected from three new hospitals. This dataset includes 1302 OR videos and has
been collected under institutional research board (IRB) approvals. OR-AR [7] and OR-ARv2 consist
of 9 temporal workflow phases and contain 61 type of surgeries such as Lobectomy, Colectomy,
Umbilical Hernia Repair etc. We split the dataset into 80-20 train-test split. Cataract-101 [13] is
a small dataset consisting of 101 surgical videos and 10 surgical phases. UCF-101 [21] is also a
relatively small dataset which consists of 9.5k videos in training and 3.5k in testing. Please see the
appendix for implementation details.

4.1 Main Results

We compare SurgMAE with the recent masked autoencoder and contrastive learning approaches for
video domain. Please see the appendix for more details on the baselines, ablation studies and the
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Table 1: Comparison of SurgMAE with the other state-of the art methods under different
data-regime setting on the OR-AR dataset [7]. We pre-train ViT-B using SurgMAE for 1600
epochs with high masking ratio of 90%.

Methods Masking Backbone Pre-train 5% 10% 20% 100%
MaskFeat [9] Random MViT-S Kinetics-400 62.35 78.88 - -

MAE [8] Random ViT-B Kinetics-400 64.66 81.48 84.93 94.76
MAE [8] Random ViT-B OR-ARv2 66.58 81.87 84.97 96.30
MAE [8] Frame ViT-B OR-ARv2 63.44 78.89 81.45 -

VideoMAE [10] Tube ViT-B OR-ARv2 65.57 81.74 83.89 94.87

SurgMAE high spatio-
temporal sampling ViT-B OR-ARv2 68.91 82.14 86.29 95.60

Swin-B+BiGRU [7] - Swin-B Kinetics-400 - - - 95.13

results on the Cataract-101 and OR-ARv2. Table 1 shows the comparison of various approaches
under different data regimes for OR-AR [7]. We can observe that SurgMAE has a clear advantage
over other masking approaches under low-data regime setting. More specifically, SurgMAE achieves
68.91 mAP when fine-tuned using 5% labeled data which shows that it is a more data-efficient learner
than the recent sota approaches. Among other approaches, we observe that MAE [8] with random
masking performs reasonably well under low-data regime setting and even performs slightly better
than SurgMAE when fine-tune using full labeled dataset (96.30% vs 95.60% mAP). Moreover, both
random masking and SurgMAE performs better than the fully supervised results obtained using
pre-trained Swin transformer-Base [22] (Swin-B) as a backbone which shows the effectiveness of
masked autoencoders when pre-training on in-domain large scale dataset.

UCF-101. To empirically test the generalizability of SurgMAE on non-surgical dataset, we run
experiments on UCF-101. We report the top-1 accuracy in Table 2. It can be clearly seen that
SurgMAE outperforms VideoMAE [10] achieving 92.1% top-1 accuracy compared to 91.2% which
shows the efficacy of visible tokens from high information regions for masked autoencoder as shown
in the figure 2. For UCF-101, we also sample tokens from the static regions on the top of high
spatio-temporal tokens and didn’t mask all the remaining tokens for the prediction task. We use a
high masking ratio of 80% as compared to 75% ratio used in VideoMAE [10] making it less memory
and computational intensive.

Table 2: Comparison of SurgMAE with the other state-of the art methods on UCF-101 [21].

Methods Masking Backbone Pre-train Frames Top-1
Scratch - ViT-B UCF-101 16 51.4

OPN [23] - VGG UCF-101 N/A 59.6
VCOP [24] - R(2+1)D UCF-101 N/A 72.4
CoCLR [17] - S3D-G UCF-101 32 81.4
Vi2CLR [25] - S3D UCF-101 32 82.8
CoCLR [17] - S3D-G Kinetics-400 32 87.9
Vi2CLR [25] - S3D Kinetics-400 32 89.1
MoCov3 [16] - ViT-B UCF-101 16 81.7

VideoMAE [10] Tube ViT-B UCF-101 16 91.2

SurgMAE high spatio-
temporal sampling ViT-B UCF-101 16 92.1

5 Conclusion

In this paper, we investigate masked autoencoder based pre-training techniques for long surgical
videos to learn better video representations. We propose SurgMAE, an adapted version of MAE for
surgical videos, with a simple and effective token sampling strategy which samples tokens from high
information spatio-temporal regions to alleviate the issues with random masking methods commonly
used in current MAE approaches. We empirically show that our approach outperforms other masking
strategies with ViT-B model on two surgical and one non-surgical (UCF-101) datasets to prove it’s
superior representation learning capability.
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Appendices

A Related Work

Annotating large amounts of surgical video data temporally and spatially requires manual work from medical
experts and is impractical and expensive. To put our work in the context of this application and prior works, we
briefly review the surgical video understanding, OR workflow analysis, and self-supervised learning paradigms.

Surgical Video Understanding. [14] proposed to use temporal convolution neural network (TCN) [26]
on top of frame-wise features extracted from ResNet-18 [27]. Surgical activity recognition is not just limited
to endoscopic videos, but it has been studied for operating room (OR) workflow analysis. The first large scale
dataset (OR-AR) was first introduced in [3] which also proposed a supervised model consisting of I3D and
Bi-GRU as backbone and temporal models respectively. The dataset was later extended in [7]. [4] leverages the
multiple views of OR-AR dataset, and proposed a new attention module to smartly fuse those views. There are
other data-driven based approaches [28] for OR workflow analysis which use multi-view RGBD dataset [29]
for clinician detection and human pose estimation. However, there is little or no work done in data-efficient
surgical activity recognition. Recently [30] proposed an unsupervised approach based on clustering which fuses
multi-modal data collected from the OR.

Self-supervised Learning. Self-supervised learning based approaches for learning good video representa-
tions have been studied in the literature. Recently, contrastive learning based approaches [15, 16, 17, 18] has
been proposed to learn better visual representation. These approaches generally require larger batch sizes, extra
memory component and data augmentations.

Masked visual modeling. Masked visual modeling leverages the idea from masked language modeling used
in bidirectional encoder (BERT) [31] and Generative Pre-Training (GPT) [32]. iGPT [33] follows GPT to process
the pixel in sequential manner which shows that the masked pixel prediction can be performed. Recently, Vision
Transformers (ViT) [11] have been designed to convert the patches into tokens to learn visual representations.
Following the success of ViTs, several masked autoencoder based self-supervised approaches [8, 9, 19, 20] have
been proposed. Masked Image Modeling [19] is a big success and an alternate approach to contrastive learning
to learn useful image representations. Similarly, several masked autoencoder based approaches [10, 8, 34]
have been designed for video domain to learn spatio-temporal representations. MAE [8] uses asymmetric
encoder-decoder ViT with random masking during pre-training. VideoMAE [10] proposes tube masking strategy
while AdaMAE [34] proposes a sampling network to sample tokens from high spatio-temporal regions which is
trained end-to-end with ViT encoder using reinforcement learning. MaskFeat [9] instead of predicting masked
patches, predicts the features of the masked tokens. These approaches have shown to use high masking ratio
(75% to 95%) during pretraining as opposed to 60% masking ratio in image domain.

B Architecture

Table 3 refers to asymmetric encoder-decoder architecture. Each token is represented by a 768 embedding
dimension. Next we sample ( 1 - r ) x 1568 tokens as the high spatio-temporal sampling tokens and then pass
them into ViT encoder which consists of 12 multi-head self-attention blocks (MHA). Then, the output of ViT
encoder is concatenated with masked token representations and passed through the projection (MLP) layer which
brings down the dimension from 768 to 512. These representations are then passed through the ViT decoder
which consists of 4 MHA with the dimension of 512. Finally, these are passed to the MLP layer to increase the
dimension from 512 to 1536 which is essentially the total number of pixels in the input video clip. The output is
reshaped to the original shape for the computation of the reconstruction loss.

C Pseudocode for SurgMAE

We present the pseudo-code of our sampler and SurgMAE in the Algorithm 1 and 2 respectively.
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Figure 3: Some of the examples from the datasets with their activity or phase labels.

Algorithm 1 Pseudo-code for SpatioTemporalSampler.

Inputs: Tokenized Video X ∈ RN×d, Masking ratio: r ∈ (0, 1)
Outputs: Mask indices Ip, Mask: M
d = EuclideanNorm(X)
Nv = int(N × (1− r))

Iv = d.sample(Nvis)
Ip = U − Iv

M = GetMask(Iv, Ip)

Algorithm 2 Pseudo-code for our SurgMAE.
Input: Dataset Tr = {V i : |i = 1, 2, 3, · · · , |Tr|}, Masking ratio: r ∈ (0, 1)
for V i ∈ D do

Xi = Tokenizer(V i)
Xi = Xi + PosEmbed
M = SpatioTemporalSampler(Xi, r)
Xv = Xi[∼ M ]
Zv = ViT-Base(Xv)
Zv = Zv + PosEmbed[∼ M ]
zm = zm + PosEmbed[M ]
Z = Zv ⊕ zm

V̂ = Decoder(Z)

V̂ m = V̂ [M ]
V m = V [M ]

L = ∥V̂ m − V m∥2
L.backward()

end for

Table 3: Architecture used in SurgMAE. MHA denotes Multi-head self-attention and MLP denotes
Multilayer perceptron. We used joint space-time attention following [10].

Stage ViT-B Output shape
Input stride 4 x 1 x 1 3 x 16 x 224 x 224

Tokenization stride 2 x 16 x 16, emb dim 768 1568 x 768

Masking High spatio-temporal sampling
masking ratio r

[ ( 1 - r ) x 1568 ] x 768

Encoder [ MHA(768) ] x 12 [ ( 1 - r ) x 1568 ] x 768

Projection MLP(512)
concat masked tokens 1568 x 512

Decoder [ MHA(512) ] x 4 [ ( 1 - r ) x 1568 ] x 512
Projector MLP(1536) 1568 x 1536
Reshape from 1536 to 3 x 2 x 16 x 16 3 x 16 x 224 x 224
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D Implementation Details

We use Vision transformer-Base (ViT-B) with joint-space time attention as the backbone following prior
work [10]. We set the input number of frames to 16 and sampling rate of 4.0, and set the patch size of 2x16x16
which generates 1568 tokens for an input video clip with a size of 224x224. We follow [10, 8] for pre-training
(see Table 4) and fine-tuning (see Table 5) settings. We conduct our experiments on 8 NVIDIA A100 GPUs.

Evaluation. In order to evaluate the pre-trained models for surgical datasets, we fine-tune ViT-B model
on video clips similar to [3], and then extract features for full videos from ViT-B to train Bidirectional Gated
Recurrent Unit (Bi-GRU) to detect surgical activities in surgical video datasets. For UCF-101, we only perform
end-to-end fine-tuning of the backbone. We use mean average precision (mAP) and top-1 accuracy as evaluation
metrics.

Table 4: Pre-training setting on OR-ARv2, UCF-101 and Cataract-101 datasets.
Configuration OR-ARv2 UCF-101 Cataract-101
Optimizer Adamw
Optimizer betas {0.9, 0.95}
Base learning rate 1e-4 1e-3 1e-4
Weight decay 5e-2
Learning rate schedule cosine decay
gradient clipping 0.02 None 0.02
Warmup epochs 40
Epochs 1600 3200 800
Flip augmentation True True False
Augmentation MultiScaleCrop
Num of Frames 16
sampling rate 4.0

Table 5: Fine-tune setting on OR-AR, UCF-101 and Cataract-101 datasets.
Configuration OR-AR UCF-101 Cataract-101
Optimizer Adamw
Optimizer betas {0.9, 0.95}
Base learning rate 6e-4 1e-3 6e-4
Weight decay 5e-2
Learning rate schedule cosine decay
Warmup epochs 5
Epochs 100
Flip augmentation True True False
Mixup None 0.8 None
CutMix None 1.0 None
drop path 0.1 0.2 0.1
drop out 0.0 0.5 0.0
Layer-wise lr decay 0.65 0.70 0.65
Temporal Model learning rate 1e-3 None 1e-3
Temporal Model Epochs 25 None 25

E Baselines

We directly compare SurgMAE to the recent masked autoencoders that includes MaskFeat [9], VideoMAE [10],
MAE [8]. We also compare with SwAV [35] and SimCLR [36] for Cataract-101 experiments. Moreover, we add
MoCov3 [16] as one of the baselines for UCF-101 experiments following VideoMAE [10].

F Ablation Study

We perform in-depth ablation studies of SurgMAE on OR-AR [7] dataset. We pre-trained ViT-B on the OR-ARv2
dataset and then fine-tune it under low-data regime setting (5% labeled data) for evaluation. We report these
studies in Table 6.

Masking ratio. Table 6a shows the performance of SurgMAE on different masking ratios. It shows that
SurgMAE performs well with a high masking ratio which makes the pre-training fast and less memory intensive.
Surprisingly, masking ratio of 95% achieves 63.37% mAP which is in line with the fact that SurgMAE samples

9



Table 6: Ablation studies on OR-AR [7] under low-data (5% labeled data) regime setting. We use
ViT-B as a backbone for all the experiments.

(a) Different Masking Ratio.
SurgMAE works well with high
masking ratio. Models are
trained for 400 epochs

ratio mAP
0.95 63.37
0.90 64.97
0.85 62.26
0.80 61.01

(b) Decoder Depth. SurgMAE
performs the best with 4 blocks
of decoder. Models are trained
for 800 epochs with masking ra-
tio of 90%.

blocks mAP
1 61.35
2 65.84
4 67.86
8 62.75

(c) Mask sampling.
SurgMAE outperforms
random, frame and tube
masking.

case mAP
random 66.58
tube 65.57
frame 63.44
SurgMAE 68.91

(d) Pre-training epochs. Better performance
achieves during fine-tuning when pre-trains for
more epochs.

epochs mAP
400 64.97
600 65.89
800 67.86
1600 68.91

(e) Loss function. SurgMAE performs best with
MSE loss and normalization. Models are trained for
800 epochs with masking ratio of 90%.

case mAP
MSE (w / norm ) 67.86
MSE (wout / norm ) 63.41
L1 (w / norm ) 64.06
L1 (wout / norm ) 62.14

more high information spatio-temporal tokens and requires fewer tokens during pre-training to achieve a
reasonable performance. We observe a drop in fine-tuning performance when pre-training the model using lower
masking ratio. We hypothesize that lower masking ratios sample more redundant patches which results in poor
generalization.

Decoder design. Table 6b shows the performance of SurgMAE on different blocks of the decoder. We
observe that the performance increases when increasing the depth of the decoder from 1 block to 4 blocks.
However, with much deeper decoder, we see a performance degradation which is in accordance with the
observation made in recent masked autoencoder approaches [8, 10].

Masking strategy. Table 6c compares the performance of SurgMAE with the recent masking strategies. We
observe that the random masking outperforms tube masking with high masking ratio. However, frame masking
which masks out future or past frames performs poorly compared to tube or random masking. Same observation
has been made in [8]. SurgMAE which samples high spatio-temporal tokens yields the best performance with
high masking ratio (68.91% with 90% ratio).

Pre-training epochs. Next, we show the impact of pre-training epochs on the fine-tuning performance in
Table 6d. We observe an increase in the performance (64.97% mAP to 67.86% mAP) when number of epochs
goes from 400 to 800. If we further pre-train the model with 1600 epochs, we achieve our best performance, but
it comes with a cost of more pre-training time.

Reconstruction target. Table 6e compares the performance of SurgMAE using different loss functions. We
observe that MSE loss performs better compared to L1 loss. We also observe that per-patch normalized pixels
yields better results compared to using raw pixel value which is on par with observation made in recent masked
autoencoder approaches [8, 10].

G Additional Results on Cataract-101 and OR-ARv2

Table 7 compares the performance of SurgMAE on OR-ARv2 on full labeled dataset. We see the same
observation that SurgMAE yields the best performance (93.11% mAP) compared to other masking strategies
which empirically verify the effectiveness of sampling high information spatio-temporal tokens during pre-
training. Moreover, similar to what we observe in OR-AR results, MAE [8] with random masking performs
better than the tube and frame masking.

We report the mAP of Bi-GRU for various approaches in Table 8. We carefully follow the training practices
to pre-train ViT-B for SimCLR and SwAV to avoid collapse issue. We observe that Cataract-101, being a
relatively small dataset, is more challenging to pre-train vision transformers which is on par with the observation
found in VideoMAE [10]. Nevertheless, SurgMAE still outperforms other masking approaches which makes it
more data-efficient approach for self-supervised pre-training. We also find out that by fine-tuning from a ViT-B
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Table 7: Comparison of SurgMAE with the other state-of the art methods on the OR-ARv2
dataset.

Methods Masking Backbone Pre-train mAP
MAE [8] Random ViT-B Kinetics-400 92.06
MAE [8] Random ViT-B OR-ARv2 92.70
MAE [8] Frame ViT-B OR-ARv2 91.87

VideoMAE [10] Tube ViT-B OR-ARv2 92.36

SurgMAE high spatio-
temporal sampling ViT-B OR-ARv2 93.11

pre-trained on large-scale dataset (kinetics-400 [37]) yields the best performance which is generally a standard
practice for such small datasets.

Table 8: Comparison of SurgMAE with the other state-of the art methods on Cataract-101 [13].
We pre-train ViT-B using SurgMAE for 800 epochs with high masking ratio of 90%. For evaluation,
we report mean average precision of Bi-GRU during fine-tuning stage.

Methods Masking Backbone Pre-train mAP
SwAV [35] - ViT-B Cataracts 83.61

SimCLR [36] - ViT-B Cataracts 83.20
MAE [8] Random ViT-B Cataracts 86.43

VideoMAE [10] Tube ViT-B Cataracts 85.05

SurgMAE high spatio-
temporal sampling ViT-B Cataracts 87.78

MAE [8] Random ViT-B Kinetics-400 92.85

H Mask Visualization

Figure 4: SurgMAE samples high spatio-temporal regions from the input video clip. The first row
shows the frames of the video clip while the remaining rows show the sampling of important regions
using our approach by varying the masking ratio.
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I Reconstruction Visualization

Figure 5: More reconstruction results using SurgMAE on UCF-101.
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