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Abstract

In the semi-supervised learning (SSL) setting both labeled and unlabeled datasets1

are available to the learning algorithm. While it is well-established from prior theo-2

retical and empirical works that the inclusion of unlabeled data can help to improve3

over the error of supervised learning algorithms, existing theoretical examinations4

of SSL suggest a limitation: these algorithms might not efficiently leverage labeled5

data beyond a certain threshold. In this study, we derive a tight lower bound for6

2-Gaussian mixture model distributions which exhibits an explicit dependence on7

the sizes of both the labeled and the unlabeled dataset. Surprisingly, our lower8

bound indicates that no SSL algorithm can surpass the sample complexities of9

minimax optimal supervised (SL) or unsupervised learning (UL) algorithms, which10

exclusively use either the labeled or the unlabelled dataset, respectively. Despite a11

change in the statistical error rate being unattainable, SSL can still outperform both12

SL and UL (up to permutation) in terms of absolute error. To this end, we provide13

evidence that there exist algorithms that can provably achieve lower error than14

both SL and UL algorithms. We validate our theoretical findings through linear15

classification experiments on synthetic and real-world data.16

1 Introduction17

Semi-Supervised Learning (SSL) has recently gained significant attention, often surpassing traditional18

supervised learning (SL) methods in practical applications [5, 8, 21]. Within this framework, the19

learning algorithm leverages both labeled and unlabeled datasets sampled from the same distribution.20

Numerous empirical studies suggest that SSL can effectively harness the joint information from both21

datasets, outperforming both SL and unsupervised learning (UL) approaches [20, 39, 16, 24]. This22

observation prompts the question: how fundamental is the improvement of SSL over SL and UL?23

From a theoretical standpoint, this inquiry translates to determining if SSL algorithms genuinely24

showcase enhancements in statistical error rates compared to SL and UL, or if the improvements are25

simply of a constant factor. Our research focuses on this theoretical aspect in the context of linear26

classification. Specifically, we contrast lower and upper bounds of the SSL error with established27

rates for SL and UL for 2-Gaussian mixture models (GMMs) with two symmetrical components.28

This investigation revolves around the question:29

Can semi-supervised classification algorithms simultaneously improve30

over the minimax rates of both SL and UL for 2-GMMs?31

Previous upper bounds for SSL have focused on a regime where SSL improves the labeled sample32

complexity compared to SL, while matching the unlabeled sample complexity of UL algorithms33

[29, 30, 17]. In this regime, the unlabeled data (i.e. information about the marginal P (X)) contains34

information about the labeling function P (Y |X). Conversely, prior lower bounds have been restricted35

to worst-case scenarios where SSL is equivalent to SL, where even oracle knowledge about the36
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marginal P (X) fails to improve the error rates of SSL algorithms. In this regime, the marginal P (X)37

does not carry any information about the labeling function P (Y |X).38

Intuitively, the utility of unlabeled data in SSL improving over SL hinges on the marginal distribution39

P (X) carrying “any amount of” information about the conditional P (Y |X). However, the above40

mentioned upper and lower bounds are insufficient for providing general insights into the statistical41

error rates of SSL since they focus on specific, disjoint, and extreme regimes. Therefore, in order to42

answer the aforementioned motivating question, we derive the minimax rates for SSL over 2-GMMs.43

As discussed in Section 3, the error rates are explicitly influenced by a specific measure – termed the44

Signal-to-Noise Ratio (SNR) – which quantifies the amount of information the marginal distribution45

P (X) offers about the labeling function P (Y |X). This allows us to analyze the whole spectrum46

of problem difficulties for 2-GMMs, rather than just the extremes.47

Our main contribution is the finding that SSL cannot simultaneously improve over the statistical rates48

of both SL and UL. However, it is possible to improve upon the errors of SL and UL1 by a constant49

factor. Appendix B provides guarantees for an algorithm that achieves lower error than both SL and50

UL algorithms. Finally, linear classification experiments on both synthetic and real-world datasets51

confirm our theoretical findings. Furthermore, our empirical analysis reveals that other commonly52

used SSL algorithms like self-training [38, 7] may also be able to improve over both SL and UL,53

underscoring the need for further theoretical analyses of these algorithms.54

2 Problem setting and motivation55

Before providing our main results, in this section, we discuss our problem setting, evaluation metrics,56

and the types of learning algorithms considered in this paper.57

2.1 Linear classification for 2-GMM data58

Data distribution. We consider linear binary classification problems where the data is drawn from a59

Gaussian Mixture Model consisting of two identical spherical gaussians with identity covariance and60

uniform mixing weights. The means of the two components θ∗,−θ∗ are symmetric with respect to61

the origin but can have arbitrary non-zero norm. We denote this family of distributions as P2-GMM :=62

{P θ∗

XY : θ∗ ∈ Rd} where the joint probability is written as P θ∗

XY (X,Y ) = Pθ∗(X|Y )P (Y ) with63

P (Y ) = Unif{−1, 1} and Pθ∗(X|Y ) = N (Y θ∗, Id). (1)
This family of distributions has often been considered in the context of analysing both SSL [29, 17]64

and SL/UL [2, 23, 37] algorithms. For s ∈ (0,∞), P(s)
2-GMM ⊂ P2-GMM denotes the set of distributions65

P θ∗

XY with ∥θ∗∥ = s. We consider algorithms A that take as input a labeled dataset Dl ∼
(
P θ∗

XY

)nl
66

of size nl, an unlabeled dataset Du ∼
(
P θ∗

X

)nu of size nu, or both, and output an estimator θ̂ =67

A (Dl,Du) ∈ Rd. The estimator is used to predict the label of a test point x as ŷ = sign
(
⟨θ̂, x⟩

)
.68

Evaluation metrics In this work, we consider two natural error metrics for this class of problems:69

prediction error and parameter estimation error2. For an estimator θ̂ = A (Dl,Du), we define70

Prediction error: Rpred

(
A (Dl,Du) , P

θ∗

XY

)
:= P θ∗

XY

(
sign

(
⟨θ̂, X⟩

)
̸= Y

)
, (2)

With a slight abuse of notation, we write Rpred
(
θ∗, P θ∗

XY

)
to denote the prediction error of the Bayes71

optimal linear classifier θ∗. Since the distributions in P2-GMM are not linearly separable, and hence72

suffer non-vanishing Bayes prediction error, we also consider the excess prediction error:73

Excess prediction error: E
(
A (Dl,Du) , P

θ∗

XY

)
:= Rpred

(
A (Dl,Du) , P

θ∗

XY

)
−Rpred

(
θ∗, P θ∗

XY

)
.

For the set of all classification algorithms A, we study the minimax expected error over a family74

of distributions P . This worst-case error over P indicates the limits of what is achievable with the75

algorithm class A. For instance, the minimax expected excess error of A over P takes the form:76

Minimax excess error: ϵ (nl, nu,P) := inf
A∈A

sup
PXY ∈P

E [E (A(Dl,Du), PXY )] . (3)

2.2 Supervised, unsupervised, and semi-supervised learning77

Based on the kind of available data, we distinguish between three kinds of learning settings and78

the associated algorithms. Although our discussion is confined to the context of learning under79

distributions in P2-GMM, the underlying intuitions are applicable to a broader set of problems.80
1By referring to error of UL, we refer to prediction error up to sign, we formalise this as UL+
2See Appendix C for more details regarding the estimation error bounds.
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1) SSL SSL algorithms, ASSL, utilise both labeled Dl and unlabeled samples Du to produce an81

estimator θ̂SSL = ASSL (Dl,Du). The promise of SSL is that by combining labeled and unlabeled82

data SSL can reduce both the labeled and unlabeled sample complexities compared to algorithms that83

only use one either dataset. In Appendix A.1 we give an overview of past error bounds for SSL.84

2) SL SL algorithms, represented by ASL, rely exclusively on the labeled dataset Dl to yield an85

estimator θ̂SL = ASL (Dl, ∅). The minimax rate of SL for distributions from P(s)
2-GMM is known to be86

given by ϵSL

(
nl, 0,P(s)

2-GMM

)
≍ e−s2/2 d

snl
for excess risk [23] and ϵSL

(
nl, 0,P(s)

2-GMM

)
≍
√

d
nl

for87

estimation error 3. Both are achieved by the mean estimator θ̂SL = 1
nl

∑nl

i=1 YiXi.88

3) UL UL algorithms, symbolised by AUL, employ only unlabeled data to identify underlying89

structures in the distribution. For distributions in P2-GMM, AUL can identify the Gaussian components90

in the distribution, but without labeled data, it is unable to determine the class labels of the individual91

components. Formally, UL algorithms output a set of estimators
{
θ̂UL,−θ̂UL

}
= AUL (∅,Du)92

one of which is guaranteed to be close to the true θ∗. The minimax rate (up to permutation) of93

UL algorithms over P(s)
2-GMM is given by ϵUL

(
0, nu,P(s)

2-GMM

)
≍ e−s2/2 d

s3nu
for excess risk and94

ϵUL

(
0, nu,P(s)

2-GMM

)
≍
√

d
s2nu

for estimation error [23, 37]. These rates are achieved by the95

unsupervised estimator θ̂UL =

√
(λ̂− 1)+v̂, where (λ̂, v̂) is the leading eigenpair of the sample96

covariance matrix Σ̂ = 1
nu

∑nu

j=0XjX
T
j and we use the notation (x)+ := max(0, x).97

To choose from the set
{
θ̂UL,−θ̂UL

}
, one can use a two-stage approach: i) run a UL algorithm AUL98

to estimate θ∗ up to sign; then ii) use labeled data to select the best sign, e.g. via majority voting.99

We refer to this class of two-stage algorithms as UL+ , and denote it by AUL+. These algorithms100

operate essentially in the same setting as SSL. Both Dl and Du are available; however, labeled data101

is exclusively used to ascertain the sign (or permutation of labels) of the estimator obtained using102

unlabeled data. Several early analyses of semi-supervised learning focus, in fact, on algorithms that103

fit the description of UL+ [29, 30].104

UL+ algorithms are “wasteful” SSL algorithms. As described above, UL+ algorithms follow a105

precise structure where labeled data is used solely to select from the set of estimators output by a106

UL algorithm. This approach, however, may not always achieve optimal error. Consider a scenario107

where nu is finite, but nl → ∞. The error of a UL+ algorithm will, at best, mirror the error of a108

UL algorithm with the correct sign (e.g. Θ(d/nu) for the excess risk). However, a more effective109

use of the labeled dataset would be to employ a consistent SL or SSL algorithm, like self-training110

[38, 9, 17], to obtain vanishing excess risk. Thus, despite using both labeled and unlabeled data,111

UL+ algorithms bear a close resemblance to UL algorithms that only use unlabeled data.112

2.3 Improvement rates for SSL113

To understand whether an SSL algorithm is using the labeled and unlabeled data effectively, we114

compare the error rate of SSL algorithms to the minimax rates for SL and UL+ algorithms.115

Definition 1 (SSL improvement rates). For a family of distributions P , we define the improvement116

rates of SSL over SL and UL+ as hl and hu, respectively, where117

hl(nl, nu,P) :=
infASSL supPXY ∈P E [E (ASSL (Dl,Du) , PXY )]

infASL supPXY ∈P E [E (ASL (Dl, ∅) , PXY )]
, (4)

hu(nl, nu,P) :=
infASSL supPXY ∈P E [E (ASSL (Dl,Du) , PXY )]

infAUL+ supPXY ∈P E [E (AUL+ (Dl,Du) , PXY )]
, (5)

where the expectations are over Dl ∼ Pnl

XY and Du ∼ Pnu

X .118

To simplify notation, we denote the improvement rates of SL and UL+ over P(s)
2-GMM as hl(nl, nu, s)119

and hu(nl, nu, s), respectively. For SSL to demonstrate an enhanced error rate over SL and UL+, the120

conditions limnl,nu→∞ hl(nl, nu,P) = 0 and limnl,nu→∞ hu(nl, nu,P) = 0 must be satisfied.121

3The notation f(x) ≍ g(x) is equivalent to f = Θ(g).
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SNR Regime Rate of growth of nu vs nl hl(nl, nu, s) hu(nl, nu, s)

s = o
(√

1/nu

)
Any cSL 0

fixed s > 0
nu = o (nl) cSL 0
nu = ω(nl) 0 cUL

limnl,nu→∞
nu

nl
= c

(
1

1+cs2

)
cSL

(
s2c

1+s2c

)
cUL

Table 1: SSL improvement rates over SL and UL+ for different regimes of s and nu, where hl, hu
are evaluated for limnl,nu→∞. cSL and cUL denote constants.

3 Minimax rates for SSL122

In this section we provide tight minimax lower bounds for SSL algorithms and 2-GMM distributions123

in P(s)
2-GMM. Our results indicate that it is, in fact, not possible for SSL algorithms to simultaneously124

achieve faster minimax rates than both SL and UL+.125

3.1 Excess risk minimax rate126

We present a tight lower bound on the excess risk of a linear estimator obtained using both labeled127

and unlabeled data. The formal conditions required by the theorem as well as the proofs of the lower128

and upper bounds can be found in Appendix E.129

Theorem 1 (SSL Minimax Rate for Excess Risk). Let P θ∗

XY be a distribution from P(s)
2-GMM. For any130

s ∈ (0, 1], sufficiently large d and d < nl < nu, we have131

inf
ASSL

sup
∥θ∗∥=s

E
[
E
(
ASSL (Dl,Du) , P

θ∗

XY

)]
≍ e−

s2/2 min

{
s,

d

snl + s3nu

}
, (6)

where the infimum is over all the possible SSL algorithms that have access to both unlabeled and132

labeled data and the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu .133

A direct implication of the theorem is that ϵSSL

(
nl, nu,P(s)

2-GMM

)
≍134

min
(
ϵSL

(
nl, 0,P(s)

2-GMM

)
, ϵUL+

(
nl, nu,P(s)

2-GMM

))
, i.e. the minimax rate of SSL is the same as135

either that of SL or UL+, depending on the values of s, nu and nl. We can conclude the following.136

Remark 1. No SSL algorithm can improve the rates of both SL and UL+ for PXY ∈ P(s)
2-GMM.137

In order to prove the theorem, we derive both a minimax lower bound for SSL, and a matching upper138

bound. The proof of the upper bound is constructive. The algorithm that achieves the upper bound139

simply chooses between using a (minimax optimal) SL or UL+ algorithm based on the values of140

s, nl, and nu, as shown in Algorithm 2. We call this the SSL Switching Algorithm (SSL-S).141

While the rates of either SL or UL+ cannot be improved further using SSL algorithms, it is nonetheless142

possible to improve the error by a constant factor, independent of nl and nu. To see this, in Appendix B143

we describe an algorithm that uses both Dl and Du effectively and can hence achieve a provable144

improvement in error over both SL and UL+.145

3.1.1 Fine-grained analysis of different improvement regimes for SSL146

The observation in Remark 1 can be made formal using the improvement rates from Definition 1.147

Corollary 1. Assuming the setting of Theorem 1, the improvement rates of SSL can be written as:148

Improvement rate over SL: hl (nl, nu, s) ≍
nl

nl + s2nu
. (7)

Improvement rate over UL+: hu (nl, nu, s) ≍
s2nu

nl + s2nu
. (8)

149 We distinguish between the different scenario summarized in Table 1, based on the nature of the rate150

improvement over SL and UL+. Noticeably, SSL cannot achieve better rates than both UL+ and SL151

at the same time since there is no regime for which hl and hu are simultaneously 0.152

4 Conclusions and limitations153

In this study, we demonstrate that SSL cannot simultaneously improve the error rates of both SL and154

UL across all signal-to-noise ratios. Our theoretical analysis focuses exclusively on isotropic and155

symmetric GMMs due to limitations in the technical tools used for the proofs. Similar constraints156

can be observed in recent examinations of SL or UL algorithms [23, 37].157
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A Related work256

Other theoretical analyses of SSL algorithms. Beyond the theoretical studies highlighted in Sec-257

tion 2, there are a few others pertinent to our research. Specifically, Azizyan et al. [1], Singh et al.258

[32] present upper bounds for semi-supervised regression, which are contingent on the degree to259

which the marginal PX informs the labeling function. This is akin to the results we derive in this260

work. However, obtaining a minimax lower bound for semi-supervised regression remains an exciting261

direction for future work. We refer to [26] for an overview of prior theoretical results for SSL.262

Balcan and Blum [4] introduced a compatibility score, denoted as χ(f, PX) ∈ [0, 1], which connects263

the space of marginal distributions to the space of labeling functions. While their findings hint that264

SSL may surpass the SL minimax rates, they offer no comparisons with UL/UL+. Moreover, the265

paper does not discuss minimax optimality of the proposed SSL algorithms.266

On another note, even though SSL does not enhance the rates of UL, Sula and Zheng [33] demonstrate267

that labeled samples can bolster the convergence speed of Expectation-Maximization within the268

context of our study.269

To conclude, Schölkopf et al. [31] leveraged a causality framework to pinpoint scenarios where SSL270

does not offer any advantage over SL. In essence, when the covariates, represented by X , act as271

causal ancestors to the labels Y , the independent causal mechanism assumption dictates that the272

marginal PX offers no insights about the labeling function.273

Minimax rates for SL and UL. The proofs in this work rely on techniques used to derive minimax274

rates for SL and UL algorithms. Most of these prior results consider the same distributional assump-275

tions as our paper. Wu and Zhou [37] show a tight minimax lower bound for estimation error for276

spherical 2-GMMs from P2-GMM. Moreover, Azizyan et al. [2], Li et al. [23] derive minimax rates277

over P2-GMM for classification and clustering (up to permutation).278

In addition to the SL and UL algorithms considered in Section 3, Expectation-Maximization (EM) is279

another family of algorithms that is commonly analyzed for the same distributional setting considered280

in our paper. For instance, Wu and Zhou [37] rely on techniques from several previous seminal281

papers [11, 3, 13–15] to obtain upper bounds for EM-style algorithms.282

A.1 Brief overview of prior error bounds for SSL283

Upper bounds. The optimal condition for SSL is when both hl and hu approach zero as nl → ∞.284

There are numerous known upper bounds on the excess risk of SSL algorithms for P2-GMM distribu-285

tions. Nevertheless, existing results fall short of establishing that SSL algorithms can consistently286

outperform both SL and UL+. Earlier bounds primarily match the UL+ minimax rates [29, 30] or287

exhibit slower rates than UL+ [17]. In this work, we aim to discern if SSL can ever excel over the288

minimax rates of both SL and UL+ within the P2-GMM distribution family.289

Lower bounds. To our knowledge, three distinct minimax lower bounds for SSL have been290

proposed. Each suggests that there exists a distribution PXY where SSL cannot outperform the SL291

minimax rate. Ben-David et al. [6] substantiate this claim for learning thresholds from univariate data292

sourced from a uniform distribution on [0, 1]. Göpfert et al. [19] expand upon this by considering293

arbitrary marginal distributions PX and a “rich” set of realizable labeling functions, such that no294

volume of unlabeled data can differentiate between possible hypotheses. Lastly, Tolstikhin and Lopez-295

Paz [34] set a lower bound for scenarios with no implied association between the labeling function and296

the marginal distribution, a condition recognized as being unfavorable for SSL improvements [31].297

Each of the aforementioned results contends that a particular worst-case distribution PXY exists,298

where the labeled sample complexity for SSL matches that of SL, even with limitless unlabeled data.299

Within the spherical 2-GMM distributions P(s)
2-GMM with ∥θ∗∥ = s, this “hard” setting (where SSL300

and SL rates are equivalent) emerges for extremely low SNR s. Further insights on this topic are301

available in Section 3.1.1. Prior lower bounds do not capture other levels of the SNR s, and hence,302

cannot predict the best achievable error rate with SSL algorithms for moderate or large s.303
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Figure 1: Estimation error gap between SSL-S and SSL-W as revealed by Theorem 2 for varying SNR and nl

(nu = 10000). The maximum gap is reached at the switching point, indicated by the vertical dashed lines.

B Finding better SSL algorithms304

Section 3 shows that a simple algorithm that switches between the optimal SL and the opti-305

mal UL+ algorithm achieves the minimax SSL rates discussed in Theorem 2. However, the SSL306

Switching algorithm, albeit optimal in terms of rates, does not take full advantage of all the available307

data – it either uses only the labeled data for SL, or the unlabeled data and a small fraction of labeled308

samples for UL+ .309

In this section we describe a simple algorithm that has the desirable property that it utilises all the data310

at its disposal. We argue that this algorithm can lead to strictly lower error than the SSL-S algorithm.311

Unsurprisingly, this improvement is only in the constants and not in the actual learning rate for312

which Algorithm 2 is already minimax optimal. We show experimentally that the proposed algorithm,313

as well as other SSL algorithms such as self-training [38], can improve over the error of SSL-S on314

synthetic and real-world data. It remains an exciting direction for future work to characterize the315

exact improvement of self-training algorithms over SL and UL+.316

B.1 A weighted ensemble of θ̂UL+ and θ̂SL317

Algorithm 1: SSL-W algorithm
Input :Dl, Du, t
Result: θ̂SSL-W
θ̂SL ← ASL(Dl)

θ̂UL+ ← AUL+(Dl,Du)

θ̂SSL-W(t) = tθ̂SL + (1− t)θ̂UL+

return θ̂SSL-W(t)

A natural means to use both the labeled and unlabeled318

datasets in an SSL algorithm is to construct an ensemble319

of an SL and a UL+ estimator, trained on Dl and Du, re-320

spectively, where the influence of each estimator on the321

final prediction is controlled by a hyperparameter t. We322

call this the SSL Weighted algorithm (SSL-W) shown323

in Algorithm 1. With an appropriate choice of the weight324

t, it is possible to show that the performance of the SSL-W325

algorithm is better (up to sign permutation) than SSL-S.326

In practice, one can fix the sign permutation of the θ̂SSL-W327

estimator using a small amount of labeled data. The formal statement of this result together with the328

proof are deferred to Appendix F. The intuition for this improvement is that the ensemble estimator329

θ̂SSL-W achieves better error than the individual estimators that are part of the ensemble (i.e. θ̂SL and330

θ̂UL+), which, in turn, determine the error of the SSL-S algorithm.331

B.2 Empirical improvements over SSL Switching Algorithm332

In this section we present linear classification experiments on synthetic and real-world data to show333

that there indeed exist SSL algorithms that can improve over the error of the SSL Switching Algorithm.334

For both synthetic and real-world data, we use θ̂SL = 1
nl

∑nl

i=1 YiXi as the SL estimator and an335

Expectation-Maximization (EM) algorithm for the UL method (see Appendix G for implementation336

details). The optimal switching point for SSL-S and the optimal weight for SSL-W, as well as the337

optimal ℓ2 penalty for logistic regression are chosen using a holdout validation set.338
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Figure 2: Error gap between SSL-S/self-training and SSL-W on synthetic and real-world datasets.
The positive gap indicates that SSL-W and self-training outperform SSL-S (and hence, also SL and
UL+) for a broad range of nl values. See Appendix H for more datasets.

Synthetic data. We consider data drawn from symmetric and isotropic 2-GMM distributions339

P θ∗

XY over R2. The unlabeled set size is set to 5000 and we vary the SNR s and the labeled set340

size nl. Figures 2a and 3a show the gap between the SSL algorithms (i.e. SSL-W, SSL-S) and SL341

or UL+ as a function of the SNR s and the labeled set size nl, respectively. There are two main342

takeaways. First, for varying s and nl, SSL-W always outperforms SL and UL+, and hence, also343

SSL-S, as suggested in Appendix B.1. Second, as argued in Section 3.1.1, SSL-S improves more344

over UL+ for small values of the SNR s, and it improves more over SL for large values of the SNR.345

Real-world data. We consider 10 binary classification real-world datasets: five from the OpenML346

repository [35] and five 2-class subsets of the MNIST dataset [12]. For the MNIST subsets, we347

choose class pairs that have a linear Bayes error varying between 0.1% and 2.5%.4 We choose from348

OpenML datasets that have a large enough number of samples compared to dimensionality (see349

Appendix G for details on how we choose the datasets). The OpenML datasets span a range of Bayes350

errors that varies between 3% and 34%.351

In the absence of the exact data generating process, we quantify the SNR of the real-world datasets us-352

ing the fraction of the Bayes error that is captured by UL using the spherical and symmetrical 2-GMM353

parametric assumption for the distribution. More specifically, we use SNR =
Rpred(θ

∗
UL)−Rpred(θ

∗
Bayes)

Rpred(θ∗
Bayes)

√
d

,354

where d is the dimension of the data, θ∗
Bayes is obtained via SL on the entire dataset and θ∗

UL determines355

the predictor with optimal sign obtained via UL on the entire dataset.356

In addition to SSL-S (Algorithm 2) and SSL-W (Algorithm 1) we also evaluate the performance357

of self-training, using a procedure similar to the one analyzed in Frei et al. [17]. We use a logistic358

regression estimator for the pseudolabeling, and train logistic regression with a ridge penalty in the359

second stage of the self-training procedure. Note that an ℓ2 penalty corresponds to input consistency360

regularization [36] with respect to ℓ2 perturbations.361

Figure 3 shows the improvement in classification error of SSL algorithms (i.e. SSL-W and self-362

training) compared to SL and UL+ . Figure 2 shows the gap between SSL-W (or self-training) and363

SSL-S as the size of the labeled set varies. There is a broad spectrum of nl values for which the gap364

is positive indicating that it is indeed possible to improve over the SSL Switching algorithm even for365

data that does not follow the 2-GMM distribution that we consider in the theoretical analysis.366

Furthermore, Figure 3 shows that the gap between SSL-W (or self-training) and SL or UL follows367

the same trends as the synthetic experiments in Figure 3a. This finding suggests that the intuition368

presented in Appendix B.1 carries over to more generic distributions, beyond just 2-GMMs.369

C Parameter estimation error minimax rate370

Beyond the tight lower bound on the excess risk we detailed in Section 3.1, we also formulate a lower371

bound on the estimation error for the means of class-conditional distributions. This is especially372

relevant when addressing linear classification of symmetric and spherical GMMs. In this setting, a373

4We estimate the Bayes error of a dataset by training a linear classifier on the entire labeled dataset.
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Figure 3: Error gap between SL or UL and SSL-W for varying SNR. We see the same trends for both synthetic
and real-world data. Moreover, self-training also exhibits the same trend as θ̂SSL-W.

reduced estimation error points to not only a low excess risk but also suggests a small calibration error374

under the assumption of a logistic noise model [28]. The trend suggested by this result mirrors that375

of Theorem 1, and the arguments presented in Section 3.1.1 also remain applicable to the estimation376

error minimax rates. Similar to Theorem 1, an optimal algorithm that matches the minimax error rate377

is the SSL Switching algorithm presented in Algorithm 2. The formal conditions required for the378

theorem to hold as well as the proofs can be found in Appendix D.379

Let us define the estimation error as follows:380

Estimation error: Restim

(
A (Dl,Du) , P

θ∗

XY

)
:=
∥∥∥θ̂ − θ∗

∥∥∥2
2
. (9)

Theorem 2 (SSL Minimax Rate for Parameter Estimation). Let P θ∗

XY be a distribution from P(s)
2-GMM.381

For any s ∈ (0, 1], d ≥ 2, and sufficiently large nl and nu, we have382

inf
ASSL

sup
∥θ∗∥=s

E
[
Restim(ASSL(Dl,Du), P

θ∗

XY )
]
≍ min

{
s,

√
d

nl + s2nu

}
,

where the infimum is over all the possible SSL algorithms and the expectation is over Dl ∼
(
P θ∗

XY

)nl
383

and Du ∼
(
P θ∗

X

)nu .384

C.1 Proof sketch385

For the estimation error lower bound, we use Fano’s method with the packing construction in Wu and386

Zhou [37], who have employed this method to derive lower bounds in the context of unsupervised387

learning. Similarly, for the excess risk we adopt the packing construction in Li et al. [23]. Directly388

applying Fano’s method to derive the lower bound for the excess risk poses a challenge, given that389

the excess risk does not conform to the traditional framework of a (distribution-independent) metric.390

To overcome this challenge, we use techniques introduced in Azizyan et al. [2]. These mathematical391

tools make it possible to reduce the estimation problem to hypothesis testing by only using a property392

reminiscent of the triangle inequality instead of metric axioms.393

Since the algorithms have access to both labeled and unlabeled datasets in the semi-supervised setting,394

KL-divergences between the marignal and the joint distributions show up together in the lower bound395

after the application of Fano’s method, which is the key difference from its SL and UL counterparts.396

The lower bounds reveal that the SSL rate is either determined by the SL rate or the UL+ rate397

depending on s and the ratio of the sizes of the labeled and unlabeled samples. Hence, it follows that398

an algorithm that chooses between an SL and an UL+ algorithm can match the minimax error rate for399

SSL, for an appropriate choice of the switching point, that depends on s, nl and nu. We further show400

that selecting the optimal sign for the estimator returned by running UL using labeled samples only401

adds an exponential term to the UL upper bound.402
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D Proof of Theorem 2403

In this section we provide the proofs for the lower and upper bounds on the estimation error presented404

in Theorem 2. We formalize the conditions under which Theorem 2 holds in the following assumption:405

d ≥ 2, nu > O( d
s2 ) and nl > O( lognu

s2 ).406

D.1 Proof of lower bound407

Algorithm 2: SSL-S algorithm
Input :Dl, Du, s, ASL, AUL+

Result: θ̂SSL-S
θ̂SL ← ASL(Dl)

θ̂UL+ ← AUL+(Du,Dl)

if s ≤ min

{√
d
nl
,
(

d
nu

)1/4
}

θ̂SSL-S = 0

else if min

{√
d
nl
,
(

d
nu

)1/4
}

< s ≤
√

nl
nu

θ̂SSL-S = θ̂SL

else
θ̂SSL-S = θ̂UL+

return θ̂SSL-S

We first prove the estimation error lower bound in408

Theorem 2. As discussed in Section 2, consider the409

2-GMM distributions from P(s)
2-GMM, with isotropic410

components and identical covariance matrices.411

Consider an arbitrary set of predictors M =412

{θi}Mi=0 and . We can apply Fano’s method [10]413

to obtain that the following holds:414

inf
ASSL

sup
∥θ∗∥=s

EDl,Du

[
Restim(ASSL(Dl,Du), P

θ∗

XY )
]

≥ 1

2
min

i,j∈[M ]
i̸=j

∥θi − θj∥

1−
1 + 1

M

∑M
i=1D

(
P θi

XY

nl
P θi

X

nu∥P θ0

XY

nl
P θ0

X

nu
)

log(M)


=

1

2
min

i,j∈[M ]
i̸=j

∥θi − θj∥

1−
1 + 1

M

∑M
i=1 nlD

(
P θi

XY ||P
θ0

XY

)
+ nuD

(
P θi

X ||P θ0

X

)
log(M)


(10)

≥ 1

2
min

i,j∈[M ]
i̸=j

∥θi − θj∥

1−
1 + nl max

i∈[M ]
D
(
P θi

XY ||P
θ0

XY

)
+ nu max

i∈[M ]
D
(
P θi

X ||P θ0

X

)
log(M)

 ,

(11)

where D (·||·) denotes the KL divergence. In Equa-415

tion (10), we use the fact that the labeled and unla-416

beled samples are drawn i.i.d. from PX and PXY417

and in Equation (11) we upper bound the average418

with the maximum. The next step of the proof419

consists in choosing an appropriate packing {θi}Mi=1420

and θ0 on the sphere of radius s, i.e. 1
sθi ∈ Sd−1,421

that optimizes the trade-off between zhe minimum and the maxima in Equation (11).422

For the packing, we use the same construction that was employed by Wu and Zhou [37] for deriving423

adaptive bounds for unsupervised learning. This construction has the advantage that it also leads to424

a tight lower bound for the supervised setting. Let c0 and C0 be positive absolute constants and let425

M̃ = {ψ1, ..., ψM} be a c0-net on the unit sphere Sd−2 such that we have |M̃| = M ≥ eC0d. For426

an absolute constant α ∈ [0, 1] , we construct the following packing of the sphere of radius s in Rd:427

M =

{
θi = s

[√
1− α2

αψi

]∣∣∣∣ψi ∈ M̃
}
,

and define θ0 = [s, 0, ..., 0]. Note that, by definition, ∥θi − θj∥ ≥ c0sα, for any distinct i, j ∈ [M ],428

which lower bounds the first term in (11). Furthermore, ∥θi − θ0∥ ≤
√
2αs, for all i ∈ [M ].429

In the next step, we upper bound the maxima in Equation (11). First, we write the KL divergence430

between two GMMs with identitiy covariance matrices: we have that431

D
(
P θi

XY ||P
θ0

XY

)
=

1

2
∥θi − θ0∥22 ≤ α2s2, for all i = [M ]. (12)
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Second, we can upper bound the KL divergence between marginal distributions, namely432

D
(
P θi

X ||P θ0

X

)
, using Lemma 27 in Wu and Zhou [37], which implies that:433

max
i∈[M ]

D
(
P θi

X ||P θ0

X

)
≤ C max

i∈[M ]
∥1
s
θi −

1

s
θ0∥2s4 ≤ 2Cα2s4. (13)

Plugging Equations (12) and (13) into Equation (11) we obtain the following lower bound for the434

minimax error, which holds for any α ≤ 1:435

inf
ASSL

sup
∥θ∗∥=s

EDl,Du

[
Restim(ASSL(Dl,Du), P

θ∗

XY )
]
≥ 1

2
coαs

(
1− 1 + nls

2α2 + nuC1s
4α2

C0d

)
.

Minimizing over α yields the optimum value α = min
{
1,
√

C0d−1
3s2nl+3C1s4nu

}
, where the minimum436

comes from how we have constructed the packing, which requires that α ≤ 1. Using this value for α437

concludes the proof.438

D.2 Proof of upper bound439

We now prove the tightness of our lower bound by establishing the upper bound for the estimation440

error of the SSL Switching algorithm presented in Algorithm 2. We choose the following minimax441

optimal SL and UL+ estimators442

θ̂SL =
1

nl

nl∑
i=1

YiXi (14)

θ̂UL+ = sign
(
θ̂⊤

SLθ̂UL

)
θ̂UL, with θ̂UL =

√
(λ̂− 1)+v̂, (15)

where (λ̂, v̂) is the leading eigenpair of the sample covariance matrix Σ̂ = 1
nu

∑nu

j=0XjX
T
j and we443

use the notation (x)+ := max(0, x). By [37], this UL estimator is known to match the minimax rate.444

As the vanilla UL estimation problem is agnostic to the sign as discussed in section 2.2, in order to445

classify, the UL+ estimator needs to choose a sign, which it does in a way that aligns better with the446

SL estimator.447

We first bound the expected error incurred by the UL+ estimator:448

Proposition 1 (Fixing the sign of θ̂UL). Consider the UL+ estimator θ̂UL+ defined in Equation (15).449

There exist universal constants C,C ′ > 0 such that for nu ≥ (160/s)2d450

E
[
∥θ̂UL+ − θ∗∥

]
≤ C

√
d

s2nu
+ C ′se

− 1
2nls

2(1−c0
√

d log(nu)

s2nu
)2
.

The proof, given in Appendix D.3 uses prior results for upper bounds for the UL estimator and451

additionally characterizes the price that needs to be paid for selecting the best sign for θ̂UL.452

For the SL estimator θ̂SL, we apply standard results for Gaussian distributions, to upper bound the453

estimation error that holds for any regime of n, d.454

EDl∼(P θ∗
XY )

nl

[
∥θ̂SL − θ∗∥

]
≤
√

d

nl
. (16)

Using Equation (16) and Proposition 1 and switching between θ̂SL and θ̂UL+ according to the455

conditions in Algorithm 2, picking the better performing of the two depending on the regime, we456

can show that there exist universal constants C, c0 > 0 such that for 0 ≤ s ≤ 1, d ≥ 2 and457

nu ≥ (160/s)2d, we have458
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E
[
∥θ̂SSL-S − θ∗∥

]
≤ Cmin

{
s,

√
d

nl
,

√
d

s2nu
+ se

− 1
2nls

2
(
1−c0

√
d log(nu)

s2nu

)2
}
, (17)

where the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu .459

Matching lower and upper bound When nl > O( log(nu)
s2 ), the first additive component dominates460

in the last term in the right-hand side of Equation (17). Basic calculations then yield that the expected461

error of the switching algorithm is upper bounded by C ′ min
{
s,
√

d
nl+s2nu

}
for some constant C ′,462

which concludes the proof of the theorem.463

D.3 Proof of Proposition 1464

Recall that we consider the UL+ estimator θ̂UL+ = sign
(
θ̂⊤

SLθ̂UL

)
θ̂UL and denote β̂ :=465

sign
(
θ̂⊤

SLθ̂UL

)
. Now let β := sign(θ∗⊤θ̂UL) = argminβ̃∈{−1,+1}∥β̃θ̂UL − θ∗∥2.466

Note that we can write the expected squared estimation error of θ̂UL+ as467

E
[
∥θ̂UL+ − θ∗∥

]
= E

[
∥β̂θ̂UL − θ∗∥

]
= E

[
1{β̂=β}∥βθ̂UL − θ∗∥+ 1{β̂ ̸=β}∥βθ̂UL + θ∗∥

]
≤ E

[
1{β̂=β}∥βθ̂UL − θ∗∥

]
+ E

[
1{β̂ ̸=β}(∥βθ̂UL − θ∗∥+ 2∥θ∗∥)

]
≤ E

[
∥βθ̂UL − θ∗∥

]
+ 2sP(β̂ ̸= β). (18)

First, Wu and Zhou [37] established for this particular UL estimator that E
[
∥βθ̂UL − θ∗∥2

]
≤ C d

s2nu
.468

Moreover, the probability of incorrectly estimating the sign (permutation) can be written as469

P(β̂ ̸= β) = P
(
sign

(
θ̂⊤

SLθ̂UL

)
̸= sign

(
θ∗⊤θ̂UL

))
, where θ̂SL ∼ N (θ∗,

1

nl
Id)

≤ P
(
sign(Z̃) ̸= sign

(
θ∗⊤θ̂UL

))
, where Z̃ ∼ N (θ̂⊤

ULθ
∗,

1

nl
(θ̂⊤

ULθ̂UL))

≤ P
(
Z ′ ≥ |θ̂⊤

ULθ
∗|
)

, where Z ′ ∼ N (0,
1

nl
(θ̂⊤

ULθ̂UL))

= P
(
Z ≥

√
nls2SC(θ̂UL,θ

∗)
)

where Z ∼ N (0, 1),

where SC(θ̂UL,θ
∗) =

|θ̂⊤
ULθ

∗|
∥θ̂UL∥∥θ∗∥

herefore, for any A we have:470

P(β̂ ̸= β) ≤ P(Z ≥
√
nls2(1−A)) + P

(
SC(θ̂UL,θ

∗) ≤ 1−A
)

≤ e−
1
2nls

2(1−A)2 + P
(
SC(θ̂UL,θ

∗) ≤ 1−A
)
,

where we used the Chernoff bound in the last step. Finally, setting A = c0

√
d log(nu)

s2nu
as a corollary471

of Proposition 6 in Azizyan et al. [2] for nu ≥ (160/s)2d we have P
(
SC(θ̂UL,θ

∗) ≤ 1−A
)
≤ d

nu
.472

Therefore, for big enouhg nu, we have the following upper bound on estimating the sign wrong473

P(β̂ ̸= β) ≤ e
− 1

2nls
2
(
1−c0

√
d log(nu)

s2nu

)2

+
d

nu
.
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Combining this result with Equation (18) finishes the proof of the proposition, as we obtain474

E
[
∥θ̂UL+ − θ∗∥

]
≤ C

√
d

s2nu
+ C ′se

− 1
4nls

2(1−c0
√

d log(nu)

s2nu
)2
.

E Proof of Theorem 1475

In this section, we prove the minimax lower bound on excess risk for an algorithm that uses both476

labelled and unlabelled data and a matching (up to logarithmic factors) upper bound.477

E.1 Proof of lower bound478

We first prove the excess error minimax lower bound in Theorem 1: there exist a constant C0 > 0479

such that for any s > 0, nu, nl ≥ 0 and d ≥ 4, we have480

inf
ASSL

sup
∥θ∗∥=s

E
[
E
(
ASSL (Dl,Du) , P

θ∗

XY

)]
≥ C0e

−s2/2 min

{
d

snl + s3nu
, s

}
, (19)

where the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu . Our approach to proving this481

lower bound is again to apply Fano’s method [18] using the excess risk as the evaluation method. The482

reduction from estimation to testing usually hinges on the triangle inequality in metric space. As the483

excess risk does not satisfy the metric axioms, as previously used in Azizyan et al. [2], we can use484

Markov’s inequality to obtain the same reduction and then use Fano’s inequality:485

Let θ1, . . . ,θM ∈ Θ, M ≥ 2, and γ > 0. If for all 1 ≤ i ̸= j ≤M and θ̂,486

E
(
θ̂, P θi

XY

)
< γ implies E

(
θ̂, P

θj

XY

)
≥ γ, (20)

then487

inf
ASSL

max
i∈[0..M ]

E
[
E
(
ASSL(Dl,Du), P

θi

XY

)]
(21)

≥ γ

1−
1 + nl max

i ̸=j
D
(
P θi

XY ||P
θj

XY

)
+ nu max

i ̸=j
D
(
P θi

X ||P θj

X

)
log(M)

 ,

where the expectation is over Dl ∼
(
P θi

XY

)nl

and Du ∼
(
P θi

X

)nu

.488

In order to then lower bound the testing problem, we again pick θi, . . . ,θM to be an appropriate489

packing, so that Condition (20) can be satisfied. For that purpose, we can simply use the construction490

from Li et al. [23], which results in tight bounds for supervised and unsupervised settings. Let491

p = (d− 1)/6. By Lemma 4.10 in Massart [25], there exists a set M̃ = {ψ1, . . . , ψM}, such that492

∥ψi∥0 = p, ψi ∈ {0, 1}d−1, the Hamming distance δ (ψi, ψj) > p/2 for all 1 ≤ i < j ≤M = |M̃|,493

and logM ≥ p
5 log

d
p ≥ d log(6)/60 = c1d.494

Define495

M =

{
θi =

[√
s2 − pα2

αψi

]∣∣∣∣ψi ∈ M̃
}

for some absolute constant α. Note that since ∥θi∥ = s and ∥θi − θj∥2 = α2δ (ψi, ψj), we have496

pα2

2
≤ ∥θi − θj∥2 ≤ 2pα2 (22)

and497

s2 − pα2 ≤ θ⊤
i θj ≤ s2 − pα2/4. (23)
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First, we show that the excess risk satisfies Condition (20). As in the proof of Theorem 1 in Li et al.498

[23], we have that for any θ,499

Eθi
(θ) + Eθj

(θ) ≥ 2c0e
−s2/2 pα

2

s
.

and thus for all i and j ̸= i, it holds that500

Eθi
(θ) ≤ c0e

−s2/2 pα
2

s
=⇒ Eθj

(θ) ≥ c0e
−s2/2 pα

2

s
. (24)

Then since the condition in (20) is satisfied, we obtain501

inf
ASSL

sup
∥θ∗∥=s

EDl,Du

[
E
(
ASSL (Dl,Du) , P

θ∗

XY

)]
≥ inf

ASSL
max

i∈[0..M ]
E
[
E
(
ASSL(Dl,Du), P

θi

XY

)]

≥ c0e
−s2/2 pα

2

s

1−
1 + nl max

i ̸=j
D
(
P θi

XY ||P
θj

XY

)
+ nu max

i ̸=j
D
(
P θi

X ||P θj

X

)
log(M)

 .

(25)

Next, we bound the KL divergence between the two joint distributions and between the two marginals502

respectively in Equation (25).503

D
(
P θi

XY ||P
θj

XY

)
=

1

2
∥θi − θj∥22 ≤ pα2. (26)

where the inequality follows from (22). Using Proposition 24 in Azizyan et al. [2], we bound the KL504

divergence between the two marginals505

D
(
P θi

X ||P θj

X

)
≲ s4

(
1− θ⊤

i θj
∥θi∥∥θj∥

)
≤ ps2α2. (27)

where the inequality follows from (23). Plugging (26) and (27) into (25) and setting

α2 = c3 min

{
c1d− log 2

8(pnl + s2pnu)
,
s2

p

}
,

gives the desired result506

inf
ASSL

sup
∥θ∗∥=s

EDl,Du

[
E
(
ASSL (Dl,Du) , P

θ∗

XY

)]
≳ e−s2/2 min

{
d

snl + s3nu
, s

}
.

E.2 Proof of upper bound507

Next, we prove the upper bound on the excess risk of the SSL switching estimator θ̂SSL-S output by508

Algorithm 2 with the supervised and unsupervised estimators defined in Appendix D.2 to show the509

tightness of Theorem 1. In particular, we show that there exist universal constants C, c0 > 0 such510

that for 0 ≤ s ≤ 1, d ≥ 2 and for sufficiently large nu and nl,511

E
[
E(θ̂SSL-S)

]
≤ Ce−

1
2 s

2

min

{
s,
d log(nl)

snl
,
d log(dnu)

s3nu
+ se

− 1
2 s

2

(
nl

(
1−c0

√
d log(nu)

s2nu

)2
−1

)}
,

where the expectation is over Dl ∼
(
P θ∗

XY

)nl and Du ∼
(
P θ∗

X

)nu .512

The proof follows the same arguments as the proof of in Appendix D.2 where we instead use excess513

risk upper bounds for SL and UL from Li et al. [23].514

In addition, we also use a result that follows from Proposition 1 to choose the sign of the UL+515

estimator.516

Note that the upper bound on the excess risk of θ̂SSL-S is matching the lower bound in (19), up to517

logarithmic factors. We conjecture that the logarithmic factors are an artifact of the analysis and can518

be removed. For instance, it may be possible to extend results in Ratsaby and Venkatesh [29] that519

bound the excess risk using the estimation error upper bound without incurring logarithmic factors.520

However, their results are not directly applicable here.521
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F Theoretical guarantees for the SSL Weighted Algorithm522

In this section, we show theoretically that the SSL-W procedure introduced in Appendix B.1 can523

achieve lower squared estimation error (up to sign permutation) compared to SSL-S. This result524

shows that it is possible to improve the error of the naïve SSL-S algorithm by utilizing all the data525

that is available.526

For the purpose of the theoretical analysis, we consider a slightly different SSL-W estimator compared527

to the one introduced in Section B.1. First, recall that for the classification problem we consider,528

unsupervised learning produces a set of two feasible predictors {θ̂UL,−θ̂UL} and cannot discern529

between them without access to a (small) labeled dataset. We denote by θ∗
UL the UL estimator with530

correct sign, namely θ∗
UL := argminθ∈{θ̂UL,−θ̂UL} E

[
∥θ − θ∗∥2

]
.531

In what follows, we study theoretically the error of the SSL-W estimator constructed using θ∗
UL, i.e.532

θ∗
SSL-W(t) := tθ̂SL +(1− t)θ∗

UL. Therefore, our result characterizes the error of the SSL-W estimator533

up to a sign permutation. To choose the correct sign, one needs only a small labeled dataset, similar in534

size to what is prescribed by Proposition 1. While this step is not captured by Proposition 2, SSL-S is535

unlikely to close the gap to SSL-W when provided with this small amount of additional labeled data.536

We can now state Proposition 2, which shows that there exists an optimal weight for which the SSL-W537

predictor achieves lower estimation error than the SSL Switching predictor, θ̂SSL-S.538

Proposition 2. Consider a distribution P θ∗

XY ∈ P(s)
2-GMM and let d ≥ 2, and nl, nu > 0. Let θ∗

SSL-W(t
∗)539

be the SSL-W estimator introduced above. Then there exists a t∗ ∈ (0, 1) for which540

E

[∥∥∥θ̂SSL-S − θ∗
∥∥∥2]− E

[
∥θ∗

SSL-W(t
∗)− θ∗∥2

]
= min

{
r,
1

r

}
E
[
∥θ∗

SSL-W(t
∗)− θ∗∥2

]
, (28)

where r =
E[∥θ∗

UL−θ∗∥2]
E
[
∥θ̂SL−θ∗∥2

] , and the expectations are over Dl ∼
(
P θ∗

XY

)nl
,Du ∼

(
P θ∗

X

)nu .541

Since the RHS of Equation (28) is always positive, θ∗
SSL-W(t∗) always outperforms θ̂SSL-S as long as542

the conditions of Proposition 2 are satisfied. The magnitude of the error gap between SSL-S and543

SSL-W depends on the gap between SL and UL+ (see Figure 1). The maximum gap is reached for544

E
[
∥θ∗

UL − θ∗∥2
]
≈ E

[∥∥∥θ̂SL − θ∗
∥∥∥2] when SSL-W obtains half the error of SSL-S.545

F.1 Proof of Proposition 2546

The first step in proving Proposition 2 is to express the estimation error of θ̂SSL-W(t∗) in terms of the547

estimation errors of θ̂SL and θ̂UL+ which is captured by Lemma 1.548

Lemma 1. Let θ̂1 and θ̂2 be two statistically independent estimators of θ∗ ∈ Rd and let θ̂1 be549

unbiased, i.e. E
[
θ̂1

]
= θ∗. Then, the expected squared error of the weighted estimator θ̂t∗ =550

t∗θ̂1 + (1− t∗)θ̂2 with t∗ =
E[∥θ̂2−θ∗∥2]

E[∥θ̂1−θ∗∥2]+E[∥θ̂2−θ∗∥2]
is given by551

E
[
∥θ̂t∗ − θ∗∥2

]
=

 1

E
[
∥θ̂1 − θ∗∥2

] + 1

E
[
∥θ̂2 − θ∗∥2

]
−1

.

We can apply Lemma 1, since θ̂SL is unbiased and θ̂SL and θ̂UL+ are trained on Dl and Du respectively,552

and hence, are independent. The proof then follows from calculating the difference between the553

harmonic mean and the minimum of estimation errors of θ̂SL and θ̂UL+. Let x, y ∈ R+ and w.l.o.g.554

assume x ≤ y. Then we have:555

x−
(
1

x
+

1

y

)−1

= x− xy

x+ y
=

x2

x+ y
=
x

y

xy

x+ y
.
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Choosing x = min
{

E[∥θ̂UL+ − θ∗∥2],E[∥θ̂SL − θ∗∥2]
}

and y =556

max
{

E[∥θ̂UL+ − θ∗∥2],E[∥θ̂SL − θ∗∥2]
}

finishes the proof and yields the desired result for557

t∗ =
E[∥θ̂2−θ∗∥2]

E[∥θ̂1−θ∗∥2]+E[∥θ̂2−θ∗∥2]
.558

Remark. Note that this lemma holds for arbitrary distributions and estimators as long as they are559

independent and one of them is unbiased. Therefore, future results that derive upper bounds for SL560

and UL+ for other distributional assumptions and estimators can seamlessly be plugged into Lemma 1.561

By the same argument, θ̂SSL-W obtained by other SL and UL+ estimators can also be expected to562

improve over the respective SL and UL+ estimators, given that one of them is unbiased.563

F.2 Proof of Lemma 1564

By definition of θ̂t∗ , we have565

E
[
∥θ̂t∗ − θ∗∥2

]
= E

[
∥t∗θ̂1 + (1− t∗)θ̂2 − θ∗∥2

]
= E

[
t∗2∥θ̂1 − θ∗∥2 + (1− t∗)

2∥θ̂2 − θ∗∥2 + 2t∗(1− t∗)(θ̂1 − θ∗)⊤(θ̂2 − θ∗)
]

= E
[
t∗2∥θ̂1 − θ∗∥2 + (1− t∗)

2∥θ̂2 − θ∗∥2
]
,

where the last equality holds due to the independence of θ̂1 and θ̂2 and the unbiasedness of θ̂1.566

Plugging in t∗ = E∥θ̂2−θ∗∥2

E∥θ̂1−θ∗∥2+E∥θ̂2−θ∗∥2
, we get567

E∥θ̂t∗ − θ∗∥2 =

(
E∥θ̂2 − θ∗∥2

E∥θ̂1 − θ∗∥2 + E∥θ̂2 − θ∗∥2

)2

E∥θ̂1 − θ∗∥2

+

(
E∥θ̂1 − θ∗∥2

E∥θ̂1 − θ∗∥2 + E∥θ̂2 − θ∗∥2

)2

E∥θ̂2 − θ∗∥2

=
E∥θ̂1 − θ∗∥2E∥θ̂2 − θ∗∥2

E∥θ̂1 − θ∗∥2 + E∥θ̂2 − θ∗∥2

=
1

1
E∥θ̂1−θ∗∥2

+ 1
E∥θ̂2−θ∗∥2

.

G Simulation details568

G.1 Methodology569

We split each dataset in a test set, a validation set and a training set. The unlabeled set size is fixed570

to 5000 for the synthetic experiments and 4000 for the real-world datasets. The size of the labeled571

set nl is varied in each experiment. For each dataset, we draw a different labeled subset 20 times572

and report the average and the standard deviation of the error gap (or the error) over these runs. The573

validation and the test set have 1000 labeled samples each.574

We use logistic regression from Scikit-Learn [27] as the supervised algorithm. We use the validation575

set to select the ridge penalty for SL. For the unsupervised algorithm, we use an implementation of576

Expectation-Maximization from the Scikit-Learn library. We also use the self-training algorithm from577

Scikit-Learn with a logistic regression estimator. The best confidence threshold for the pseudolabels578

is selected using the validation set. Moreover, the optimal weight for SSL-W is also chosen with the579

help of the validation set. We give SSL-S the benefit of choosing the optimal switching point between580

SL and UL+ by using the test set. Even with this important advantage, SSL-W (and sometimes581

self-training) still manage to outperform SSL-S.582
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G.2 Details about the real-world datasets583

Tabular data. We select tabular datasets from the OpenML repository [35] according to a number584

of criteria. We focus on high-dimensional data with 100 ≤ d < 1000, where the two classes are585

not suffering from extreme class imbalance, i.e. the imbalance ratio between the majority and the586

minority class is at most 5. Moreover, we only consider datasets that have substantially more samples587

than the number of features, i.e. n
d > 10. In the end, we are left with 5 datasets, that span a broad588

range of application domains, from ecology to chemistry and finance.589

To assess the difficulty of the datasets, we train logistic regression on the entire data that is available,590

and report the training error. Since we train on substantially more samples than the number of591

dimensions, the predictor that we obtain is a good estimate of the linear Bayes classifier for each592

dataset.593

Furthermore, we measure the extent to which the data follows a GMM distribution with spherical594

components. We fit a spherical Gaussian to data coming from each class and use linear discriminant595

analysis (LDA) for prediction. We record the training error (of the best permutation). Intuitively,596

this is a score of how much our assumption about the connection between the marginal PX and the597

labeling function P (Y |X) is satisfied. In Figure 3 we rank datasets by SNR using the following598

formula to estimate SNR: SNR =
Rpred(θ

∗
UL)−Rpred(θ

∗
Bayes)

Rpred(θ∗
Bayes)

√
d

, where θ∗
Bayes is the linear Bayes classifier599

and θ∗
UL the LDA classifier described above.5 If the data distribution is very similar to an isotropic600

GMM (i.e. Rpred(θ
∗
UL) ≤ 0.1), then we simply take the linear Bayes error as the estimate of the SNR.601

Image data. In addition to the tabular data, we also consider a number of datasets that are subsets602

of the MNIST dataset [22]. More specifically, we create binary classification problems by selecting603

class pairs from MNIST. We choose 5 classification problems which vary in difficulty, as measured604

by the Bayes error, from easier (e.g. digit 0 vs digit 1) to more difficult (e.g. digit 5 vs digit 9).605

Table 2 presents the exact class pairs that we selected. To make the problem more amenable for linear606

classification, we consider as covariates the 20 principle components of the MNIST images.607

Dataset name d Linear classif. training error LDA w/ spherical GMM training error

mnist_0v1 784 0.001 0.009
mnist_1v7 784 0.006 0.036
madeline 259 0.344 0.381
philippine 308 0.240 0.318
vehicleNorm 100 0.141 0.177
mnist_5v9 784 0.024 0.045
mnist_5v6 784 0.024 0.042
a9a 123 0.150 0.216
mnist_3v8 784 0.042 0.105
musk 166 0.037 0.270

Table 2: Some characteristics of the datasets considered in our experimental study.

H More experiments608

In this section we present further experiments that complement Figure 2 and indicate that the SSL609

Weighted algorithm (SSL-W) can indeed outperform the naive baseline of the Switching algorithm610

(SSL-S) on other real-world datasets. The extent of the error gap is determined by the nu

nl
ratio as well611

as the signal-to-noise ratio that is specific to each dataset. In addition, we also show that self-training612

can outperform SSL-W in some scenarios. While in this work we provide guarantees only for SSL-W,613

it remains an exciting direction for future work to provide an analysis of self-training that can indicate614

when it performs best.615

5Note that we refer to the LDA estimator as UL since we use it as a proxy to assess how well unsupervised
learning can perform on each dataset.
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Figure 4: Error gap between SSL-S/self-training and SSL-W on real-world datasets. The positive gap indicates
that SSL-W (and, in turn, self-training) outperforms SSL-S (and hence, also SL and UL+) for a broad range of
nl values.
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