
Language-Conditioned Semantic Search-Based Policy
for Robotic Manipulation Tasks

Jannik Sheikh
Bielefeld University
Bielefeld, Germany

jsheikh@techfak.uni-bielefeld.de

Andrew Melnik
Bielefeld University
Bielefeld, Germany

andrew.melnik.papers@gmail.com

Gora Chand Nandi
Indian Institute of Information Technology

Allahabad, India
gcnandi@iiita.ac.in

Robert Haschke
Bielefeld University
Bielefeld, Germany

rhaschke@techfak.uni-bielefeld.de

Abstract

Solving various robotic manipulation tasks intelligently is a topic of great inter-
est. Traditional reinforcement learning and imitation learning approaches require
policy learning utilizing complex strategies that are difficult to generalize well. In
this work, we propose a language-conditioned semantic search-based method to
produce an online search-based policy from the available demonstration dataset
of state-action trajectories. Here we directly acquire actions from the most sim-
ilar manipulation trajectories found in the dataset. Our approach surpasses the
performance of the baselines on the CALVIN benchmark and exhibits strong zero-
shot adaptation capabilities. This holds great potential for expanding the use of
our online search-based policy approach to tasks typically addressed by Imitation
Learning or Reinforcement Learning-based policies.

1 Introduction

In recent years, the field of robotics has significantly evolved, with robots becoming more powerful,
versatile, and interactive. Agents are no longer limited to performing repetitive industry-specific
tasks. This change is driven and supported in large parts by research and successes in the areas of
reinforcement learning Nguyen & La (2019), imitation learning Hussein et al. (2017), and recently
by the immense progress in the field of natural language processing and computer vision Rana et al.
(2023).

For any agent to be able to interact within an environment seamlessly depends largely on its ability
to collect, process, and understand data that are largely unstructured. This data forms the agent’s
perception and guides its decisions, actions, and reactions. Among the innumerable sensory inputs an
agent can use, visual data is an invaluable resource. What objects are in the environment, what objects
are important to a task? Trivial for humans, but complex and challenging for robots, as it involves
processes such as object recognition, object detection, or object localization using unstructured data.

Motivation Instead of the traditional approach of training a complex policy to solve specific tasks,
our work explores a framework for solving various robot manipulation tasks by using a semantic
search-based approach to generate an online search-based policy, inspired by the work of Malato
et al. (2023), Beohar & Melnik (2022), Beohar et al. (2022), Rana et al. (2023).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Overview of all four different environments in CALVIN. First row: RGB images of the
static camera view. Second row: Latent representation of the static camera view of a specific object.
Third row: RGB images of the gripper camera view. Fourth row: Latent representation of the gripper
camera view of a specific object.

2 Method

Benchmark The CALVIN benchmark Mees, Hermann, Rosete-Beas & Burgard (2022) contains
four different tabletop environments (A, B, C, and D) as seen in Figure 1. We evaluated our
approach on 34 robotic manipulation tasks of the benchmark. The demonstration dataset of the
benchmark was obtained from teleoperated "play" data, thus consisting of state xi and action ai pair
trajectories τ . Therefore τ contains the exact information of how the agent, controlled by a human,
got from some initial state x0 to a goal state xg, for completing a task. This guarantees that the
goal state is reachable from the initial state under the performed actions. This results in a dataset
Dplay = {τ |τ = {(xi, ai)}ni=0 and 0 ≤ n ≤ 64}
Those environments always contain a desk with stationary and movable objects to interact with,
whose initial positions vary over the environments. A drawer and sliding door can be opened and
closed. A button toggles an LED light and a switch operates a light bulb. Further three different-sized,
colored, and shaped blocks are somewhere located on the desk. A 7-DoF robot arm with a parallel
gripper is used to interact with the environment.

Instead of training a policy to solve tasks, we used search in the latent space of object shapes Melnik
et al. (2021), Rothgaenger et al. (2023) to find similar states in the demonstration dataset (see Figure
2) and clone the actions from the most similar trajectory.

Masking In our approach, we experimented first with transforming the current state xt obtained by
the static and the gripper camera views into latent spaces zts and ztg by color-based and low-level
feature-based segmentation methods. To ensure that our framework achieves better generalization
and scalability we further investigated the use of Large Scale Models, like GLIP Li et al. (2022)
and FastSAM Zhao et al. (2023). We fine-tune GLIP on a small subset of examples based on the
color-based and low-level feature-based segmentation method. GLIP leverages the pre-trained BERT
text encoder Devlin et al. (2019) to condition the object detection on text. Since we have natural
language instructions, these instructions can be used to identify the relevant objects that we want to
encapsulate in our latent space. Subsequently, we use the result of GLIP to condition FastSAM to
generate the mask of the object of interest.

2

Model Similarity Search

Copy A
ctions

Current State Current State

Dataset Dataset

Te
xt

 in
st

ru
ct

io
n

Figure 2: Overview of our approach. Given xt, we obtain a binary mask of the object of interest in
the static and gripper camera views and then compute simzs to find the most similar state in dataset
trajectories and start cloning the corresponding actions.

Search We obtain reference images imgts and imgtg from the static and gripper camera view, cap-
turing the current state t in the environment. By passing imgts and imgtg through our segmentation
pipeline conditioned on text l we obtain two latent representations: zts and ztg .

Each τ ∈ Dplay|l consists of a series of xis and xig , where xis refers to the RGB images of xi the static
camera and xig of the gripper camera. Both xis and xig give a visual representation of the agent’s
progress toward the target object. Analogous to our approach described for the reference images,
these sequences can be processed to obtain the corresponding latent representations sis and sig.
Rather than processing every image-pairs within a given trajectory, we strategically select frames at
regular intervals. This is motivated by the observation that successive steps often encapsulate similar
information. By selecting images at every ith step from τ , we further optimize for computational
efficiency.

Similarity Measurement Given the reference latent representations zts and ztg for state t, and
the latent representations sis and sig from a trajectory τ ∈ Dplay|l, we derive a weighted similarity
coefficient as follows:

simzs = α · score(ztg, sig) + (1− α) · score(zts, sis) (1)

Here, the score is defined by the Dice coefficient:

2|A ∩B|
|A|+ |B|

=
2TP

2TP + FP + FN

In addition, we scale the dice coefficient by a size coefficient. This coefficient serves to help identify
latent representations containing objects of similar size, thus capturing the physical proximity of the
robot arm to the objects. This primarily influences the relationship between ztg and sig , since zts and
sis are always captured from the same distance to the table. When objects in the binary masks mtg

and mig have nearly equivalent sizes, it indicates that the robot arm is at a similar distance from the
objects in both scenarios. The size coefficient, size_coef , is then defined as the ratio between ztg
and sig .

Finally, the weighted dice coefficient is calculated as:

3

weighted_dice_coef (score) = dice_coef × size_coef (2)

Initiating the Search Process Given that the length of each trajectory is finite and over time the
observed state will differ from the initial search and, consequently, from the trajectory we copy, we
keep track of the standard deviation of simzs. After each execution of ai ∈ τ , we collect the next
state xi+1 from τ and generate si+1s and si+1g . Concurrently, we obtain the newly observable state
in the environment xt, from which we derive zts and ztg. We then compute simzs and store the
results. If the change in the standard deviation over the last two steps exceeds a certain threshold T or
if there are no actions left in the current trajectory, we trigger a new search with the current state xt.

Switching Trajectories If the similarity score simzs between zts,ztg and sis, sig is greater than
the similarity value of the currently pursued trajectory, we switch to the ith step of that new trajectory.
Moreover, if there are no actions left in the current trajectory we pursue, we switch to τ corresponding
to the highest simzs computed in the given step.

Executing Actions Our action set has both absolute (aabs) and relative (arel) actions. aabs enable
long-range movements that allow the agent to quickly reduce the distance to the target object. In
contrast, arel, allows finer movements that are important for local control and adjustment. On this
basis, we execute aabs primarily at the beginning of an evaluation or when ztg is a zero vector. This
indicates that the object of interest is not visible in the gripper camera. However, once ztg contains
non-zero values and our similarity score simzs exceeds a certain threshold, we switch to arel.

3 Results

CALVIN offers different evaluation environments. We are particularly interested in getting correct
output in the zero-shot multi-environment scenario, where the agent is trained on three of the four
environments, A, B, and C, and evaluated on the unseen environment D (see Figure 1). Each
evaluation starts by resetting the simulator to the initial state of an unseen demonstration. As seen in
Table 1, our method outperforms the previous best methods MCIL Lynch & Sermanet (2021) and
HULC Mees, Hermann & Burgard (2022).

Method Input Score
Baseline Static RGB & Gripper RGB 30.4%
HULC Static RGB & Gripper RGB 41.8%
Ours Static RGB & Gripper RGB 50.3%

Table 1: Zero-Shot Multi Environment.

4 Conclusion

In this work, we propose a method for solving various robot manipulation tasks using semantic
search in the demonstration dataset and copying actions from the best matching state. We show that
the proposed method generalizes for multi-environments. For better generalization and scalability,
further research needs to be conducted to verify the proposed method for different domains and
problems. Also, we may try evaluating the weighted similarity coefficient in the exponential domain
to see if it can further improve the results. Large-scale pre-trained models seamlessly align with the
suggested architecture, holding significant promise for capturing the latent representation of semantic
segmentation of language-conditioned objects of interest.

5 Limitations

Due to efficiency reasons, we could not use the entire dataset for our search method. To address
this issue, future research could explore options such as using pre-generated datasets and merging
clustering and indexing techniques to speed up the process.

4

References
Beohar, S., Heinrich, F., Kala, R., Ritter, H. & Melnik, A. (2022), ‘Solving learn-to-race autonomous

racing challenge by planning in latent space’, arXiv preprint arXiv:2207.01275 .

Beohar, S. & Melnik, A. (2022), ‘Planning with rl and episodic-memory behavioral priors’, arXiv
preprint arXiv:2207.01845 .

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019), ‘Bert: Pre-training of deep bidirectional
transformers for language understanding’.

Hussein, A., Gaber, M. M., Elyan, E. & Jayne, C. (2017), ‘Imitation learning: A survey of learning
methods’, ACM Computing Surveys (CSUR) 50(2), 1–35.

Li, L. H., Zhang, P., Zhang, H., Yang, J., Li, C., Zhong, Y., Wang, L., Yuan, L., Zhang, L., Hwang,
J.-N., Chang, K.-W. & Gao, J. (2022), ‘Grounded language-image pre-training’.

Lynch, C. & Sermanet, P. (2021), ‘Language conditioned imitation learning over unstructured data’.

Malato, F., Leopold, F., Hautamaki, V. & Melnik, A. (2023), ‘Behavioral cloning via search in
embedded demonstration dataset’, arXiv preprint arXiv:2306.09082 .

Mees, O., Hermann, L. & Burgard, W. (2022), ‘What matters in language conditioned robotic imitation
learning over unstructured data’, IEEE Robotics and Automation Letters 7(4), 11205–11212.

Mees, O., Hermann, L., Rosete-Beas, E. & Burgard, W. (2022), ‘Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks’, IEEE Robotics and Au-
tomation Letters (RA-L) 7(3), 7327–7334.

Melnik, A., Harter, A., Limberg, C., Rana, K., Sünderhauf, N. & Ritter, H. (2021), Critic guided
segmentation of rewarding objects in first-person views, in ‘KI 2021: Advances in Artificial
Intelligence: 44th German Conference on AI, Virtual Event, September 27–October 1, 2021,
Proceedings 44’, Springer, pp. 338–348.

Nguyen, H. & La, H. (2019), Review of deep reinforcement learning for robot manipulation, in ‘2019
Third IEEE International Conference on Robotic Computing (IRC)’, pp. 590–595.

Rana, K., Melnik, A. & Sünderhauf, N. (2023), ‘Contrastive language, action, and state pre-training
for robot learning’, arXiv preprint arXiv:2304.10782 .

Rothgaenger, M., Melnik, A. & Ritter, H. (2023), ‘Shape complexity estimation using vae’, arXiv
preprint arXiv:2304.02766 .

Zhao, X., Ding, W., An, Y., Du, Y., Yu, T., Li, M., Tang, M. & Wang, J. (2023), ‘Fast segment
anything’.

5

	Introduction
	Method
	Results
	Conclusion
	Limitations

