
Learning Useful Representations of
Recurrent Neural Network Weight Matrices

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recurrent Neural Networks (RNNs) are general-purpose parallel-sequential com-1

puters. The program of an RNN is its weight matrix. How to learn useful2

representations of RNN weights that facilitate RNN analysis as well as down-3

stream tasks? While the “mechanistic approach” directly looks at some RNN’s4

weights to predict its behavior, the “functionalist approach” analyzes its overall5

functionality—specifically, its input-output mapping. Our two novel functionalist6

approaches extract information from RNN weights by ‘interrogating’ the RNN7

through probing inputs. Our novel theoretical framework for the functionalist8

approach demonstrates conditions under which it can generate rich representations9

that help determine RNN behavior. RNN weight representations generated by10

mechanistic and functionalist approaches are compared by evaluating them in two11

downstream tasks. Our results show the superiority of functionalist methods.12

1 Introduction13

For decades, researchers have developed techniques for learning internal representations of complex14

objects in deep neural networks (NNs). This expertise has significantly advanced the field by15

enabling models to convert data into formats useful for solving problems. In particular, recurrent NNs16

(RNNs) have been widely adopted due to their computational universality [18]. Low-dimensional17

representations of the programs of RNNs (their weight matrices) are of great interest as they can18

speed up the search for solutions to given problems. For instance, compressed representations of19

RNN weight matrices have been used to evolve RNN parameters [10] for controlling a car from raw20

video input [9], using Fourier-type transforms, e.g., the coefficient of the Discrete Cosine Transform21

(DCT) [19], without using the capabilities of NNs to learn such representations. Recent work has22

seen a rise of representation learning techniques for NN weights using NNs as encoders [20, 17, 1, 4].23

However, there is a lack of methods for learning representations of RNNs. This paper introduces24

novel techniques for learning them, using powerful NNs which may be RNNs themselves. Just like25

representation learning in other fields, such as computer vision, facilitates solutions of specific tasks,26

such techniques can facilitate learning, searching, and planning with RNNs.27

2 Self-supervised Learning of Function Representations28

We consider a Recurrent Neural Network (RNN), fθ : RX × RH → RY × RH ; (x, ho) 7→ (y, hn),29

parametrized by θ ∈ Θ, which maps an input x and hidden state ho to an output y and a new hidden30

state hn. The RNN interacts with a potentially stochastic environment, E , that maps an RNN’s output31

y to a new input x. The environment may have its own hidden state η. By sequentially interacting32

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

fθ1fθ1
fθ1fθ1fθ1fθ

ER

EI

EO

E(θ) A

̂x

̂y

x

ỹ

θ

Non-Interactive Function Encoder

Function Emulator

Function
Embedding

fθ1
RNN

Weights fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

 S1 S2 S3

fθ1fθ1
fθ1fθ1fθ1fθ

ER

EI

EO

E(θ) A

̂x

̂y

x

ỹ

θ

Interactive Function Encoder Function Emulator

Function
Embedding

fθ1
RNN

Weights fθ

ER

EI

EO

̂x

̂y

fθ

ER

EI

EO

̂x

̂y

ER ER

BOS EOS

Figure 1: Left: Non-Interactive Encoder. Right: Interactive Encoder.

with the environment, the RNN produces a rollout defined by:33 {
xt, ηt = E(yt−1, ηt−1)

yt, ht = fθ(xt, ht−1),

with fixed initial states y0, η0 and h0. For instance, fθ might be an autoregressive generative model,34

with E acting as a stochastic environment that receives a probability distribution over some language35

tokens, yt—the output of f—, and produces a representation (e.g., a one-hot vector) of the new input36

token xt+1. When the environment is stochastic, numerous rollouts can be generated for any θ ∈ Θ.37

A rollout sequence of a function fθ in environment E has the form Sθ = (x1, y1, x2, y2, . . .).38

Encoder and Emulator Our primary objective is to propose, analyze, and train several methods39

for representing RNN weights. We define the Encoder Eϕ : Θ → RM ; θ 7→ z, parametrized by40

ϕ ∈ Φ as a function mapping the RNN parameters θ to a lower-dimensional representation z. To train41

the encoder Eϕ, we consider an Emulator Aξ : RX × RB × RZ → RY × RB ; (x, bo, z) 7→ (ỹ, bn),42

parametrized by ξ ∈ Ξ. The Emulator is an RNN with hidden state b that learns to imitate different43

RNNs fθ based on their function encoding z = E(θ).44

Dataset and Training We consider a dataset D = {(θi, Sθi)|i = 1, 2, . . . } composed of tuples,45

each containing the parameters of a different RNN and a corresponding rollout sequence. We46

assume that all RNNs have the same initial state h0 but have been trained on different tasks. Our47

self-supervised learning approach to training function representations is inspired by the work of [12]).48

The Encoder Eϕ and the Emulator Aξ are jointly trained by minimizing a loss function L. This49

loss function measures the behavioral similarity between an RNN fθ and the Emulator Aξ, which50

is conditioned on the function representation z = Eϕ(θ) of θ as produced by the Encoder Eϕ. Put51

simply, the Emulator utilizes the representations of a set of diverse RNNs fθ to imitate their behavior:52

min
ϕ,ξ

E(θ,S)∼D
∑

(xi,yi)∈S

L
(
Aξ(xi, bi−1, Eϕ(θ)), yi

)
. (1)

In the case of continuous outputs y, the mean-squared error provides a suitable loss function. Con-53

versely, for categorical outputs, we employ the inverse Kullback-Leibler divergence.54

2.1 RNN Encoders55

In this section, we explore various mechanistic and functionalist methods for constructing RNN56

encoders. These approaches will be compared in our experimental section. Implementation details57

are described in Appendix B.58

Flattened Weights (Mechanistic) Flattening the weights into a single vector presents the most59

straightforward method for encoding an RNN. While this technique has shown efficacy on a modest60

scale [3, 6], it faces challenges when applied to larger parameter vectors, especially in handling61

weight-space symmetries such as neuron permutations.62

Neural Functional (Mechanistic) Fast Weight Programmers [14, 15, 13, 8] are neural networks63

that can process the gradients or weights of another neural network. A recent variant thereof, called64

Neural Functionals[21], has been used to learn representations of neural network weights that are65

2

invariant to the permutation of hidden neurons. The architecture comprises layers that display66

equivariance to neuron permutations, followed by a final pooling operation that ensures the invariance67

property. Neural Functionals have been theoretically proven to be able to extract all information from68

the weights of a neural network [11]. However, their implementation to date has been confined to69

feedforward networks, such as MLPs and CNNs.70

Non-Interactive RNN Probing (Functionalist) In the context of Reinforcement Learning and71

Markov Decision Processes, policy fingerprinting has emerged as an effective way to evaluate72

feedforward neural network policies [4, 5, 2]. In policy fingerprinting, a set of learnable probing73

inputs is given to the network. Based on the set of corresponding policy outputs, a function (policy)74

representation is produced. This approach can be adapted in a straightforward way for RNNs by75

learning whole probing sequences instead of probing inputs (see Figure 1, left). In the context of this76

paper, we refer to this approach as non-interactive RNN probing.77

Interactive RNN Probing (Functionalist) The probing sequences for non-interactive RNN probing78

are static, i.e., at test time, the probing sequences do not depend on the specific RNN being evaluated.79

The alternative is to make the probing sequences dynamically dependent on the given RNN. Each80

item in the probing sequences should depend on the outputs of the given RNN to the previous items81

(Figure 1, right). This idea has been described previously to extract arbitrary information from a82

recurrent world model [16]. Our theoretical framework shows that this novel approach, which we83

call interactive RNN probing, is more powerful than non-interactive probing in certain cases.84

2.2 A Theoretical Framework for the Functionalist Approach85

Developing an abstract theoretical model based on the functionalist view of RNN weights provides86

fundamental insights into the potential and limitations of this approach. The functionalist perspective87

emphasizes the overall functionality, disregarding the specific underlying mechanisms of RNNs.88

Therefore, our abstraction adopts total Turing machines as a model of computation. Practically,89

the function encoder is trained using a dataset of functions. In contrast, the encoder maintains90

perpetual direct access to the dataset in our theoretical framework. Note that our framework does not91

incorporate the concept of generalization to unseen functions or networks. We detail our theoretical92

functionalist framework and explore the interactive and non-interactive approach.93

Let D represent a set of n total computable functions {fi : N → N|i = 1, 2, . . . , n}. In other words,94

D comprises n Turing machines that halt on every input, with no pair being functionally equivalent.95

Let ID denote another Turing machine, which we call the Interrogator. ID has access to the function96

set D (e.g., the corresponding Turing numbers might be written somewhere on its tape). Moreover,97

ID is given access to one function fC ∈ D as a black box. ID can interact with fC by providing an98

input x ∈ N and subsequently reading the corresponding output fC(x). The task of ID is to identify99

which member of D corresponds to function fC , while minimizing interactions with fC . Specifically,100

ID must return i ∈ {1, . . . , n} such that fC = fi. This setup is depicted in Figure 3 (Appendix). The101

proofs of the following propositions can be found in Appendix A.102

Proposition 2.1. Any function fC from a set D can be identified by an interrogator through at most103

|D| − 1 interactions.104

An Interrogator is called interactive if the value xj of the jth probing input depends on105

fC(x1), . . . , fC(xj−1), i.e., the outputs corresponding to the previous probing inputs. This im-106

plies that the probing inputs generally depend on the specific function fC given to I . Conversely, a107

non-interactive Interrogator can only provide a fixed set of probing inputs to fC , and their values do108

not depend on the outputs of fC . In the proof of Proposition 2.1, the probing inputs given to fC do109

not dynamically depend on fC . This means that the theorem holds for non-interactive Interrogators.110

A natural question arises: Can interactive Interrogators identify a function using fewer interactions?111

Although there are instances where they need exponentially fewer interactions, in the worst-case112

scenario, both methods necessitate an equivalent number of interactions:113

Proposition 2.2. The upper bound for probing interactions required to identify a function from a114

given function set D is |D| − 1 for both interactive and non-interactive Interrogators.115

Proposition 2.3. There exist function sets for which an interactive Interrogator requires exponentially116

fewer probing interactions to identify a member than does a non-interactive one.117

3

1 2 3 4 5 6 7 8
parallel probing sequences

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy

flattened
neural functional
non-interactive
interactive

1 2 3 4 5 6 7 8
parallel probing sequences

0.01

0.02

0.03

0.04

0.05

0.06

0.07

pr
ed

ict
io

n
lo

ss

flattened
neural functional
non-interactive
interactive

Figure 2: Left: Accuracy of a language classifier, trained using the generated function encodings.
Right: Loss of a performance predictor, also trained on the generated function encodings, depicted
on the test set. Plots are presented as a function of the number of parallel probing sequences (only
relevant for interactive and non-interactive probing encoders). Both graphs display the mean and
bootstrapped 95% confidence intervals, aggregated across 15 seeds.

3 Experiments118

We empirically analyze various approaches to learning representations of RNNs, with a specific focus119

on LSTM [7] weights. Each LSTM in our dataset serves as an autoregressive generative model of a120

specific formal language. The set of formal languages is identical to the one constructed for the proof121

of Proposition 2.3. Each LSTM is trained on strings from a particular language using the standard122

language modelling objective. We split the dataset into training, validation, and out-of-distribution123

(OOD) test parts. The OOD split includes only tasks in which the relative frequencies of each token124

appearance are small (i.e., all tokens appear approximately the same number of times). The validation125

set is used for early stopping during training. All shown results are derived from the test set. The126

experiments employ the four types of function encoders described in Section 2.1. The encoders’127

hyperparameters are selected to ensure a comparable number of parameters among them. The training128

details remain consistent across all runs. All encoders are trained end-to-end together with an LSTM129

emulator to minimize the loss defined in Equation 1, utilizing the reverse Kullback-Leibler divergence130

as the loss function L. Further details, along with additional experimental results, are given in131

Appendix C.132

The objective is to ensure that the LSTM weight encodings z serve as generally useful representations.133

We verify this by training models for two downstream tasks using the fixed representations provided134

by the encoder E. The first task involves classifying the language on which an LSTM fθ was trained,135

given its encoding E(θ). This classification is inherently challenging, considering the dataset contains136

a total of 216 different languages, and some networks are nearly untrained. The second task aims to137

predict the performance of fθ, defined as the percentage of strings generated by fθ belonging to the138

language that fθ was trained on. We present the results for these tasks in Figure 2. A visualization139

of the learned embedding spaces can be found in Figure 8 in the Appendix. From the results, it is140

evident that the interactive probing encoder yields the most useful representations for both tasks.141

Having multiple probing sequences in parallel benefits both interactive and non-interactive encoders.142

The representations derived from the flattened weights and the neural functional encoder appear to143

contain no useful information for the language classifier. In predicting accuracy, representations144

from neural functionals outperform those based on flattened weights but fall short when compared to145

functionalist representations.146

4 Conclusion and Future Work147

We identified two classes of methods for learning RNN weight representations. Firstly, we adapted the148

Mechanistic Neural Functional approach to RNNs and, secondly, presented two novel Functionalist149

methods, theoretically demonstrating when their representations can be utilized to identify RNNs.150

Functionalist methods outperformed Mechanistic ones, learning more useful RNN weight representa-151

tions for two downstream tasks. Future work will explore the combination of both approaches and152

evaluate their performance on more challenging problems.153

4

References154

[1] E. Dupont, H. Kim, S. Eslami, D. Rezende, and D. Rosenbaum. From data to functa: Your data155

point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204, 2022.156

[2] F. Faccio, V. Herrmann, A. Ramesh, L. Kirsch, and J. Schmidhuber. Goal-conditioned generators157

of deep policies. arXiv preprint arXiv:2207.01570, 2022.158

[3] F. Faccio, L. Kirsch, and J. Schmidhuber. Parameter-based value functions. Preprint159

arXiv:2006.09226, 2020.160

[4] F. Faccio, A. Ramesh, V. Herrmann, J. Harb, and J. Schmidhuber. General policy evaluation and161

improvement by learning to identify few but crucial states. arXiv preprint arXiv:2207.01566,162

2022.163

[5] J. Harb, T. Schaul, D. Precup, and P.-L. Bacon. Policy evaluation networks. arXiv preprint164

arXiv:2002.11833, 2020.165

[6] V. Herrmann, L. Kirsch, and J. Schmidhuber. Learning one abstract bit at a time through166

self-invented experiments encoded as neural networks. arXiv preprint arXiv:2212.14374, 2022.167

[7] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–168

1780, 1997.169

[8] K. Irie, I. Schlag, R. Csordás, and J. Schmidhuber. Going beyond linear transformers with170

recurrent fast weight programmers. Advances in Neural Information Processing Systems,171

34:7703–7717, 2021.172

[9] J. Koutník, G. Cuccu, J. Schmidhuber, and F. Gomez. Evolving large-scale neural networks for173

vision-based reinforcement learning. In Proceedings of the 15th annual conference on Genetic174

and evolutionary computation, pages 1061–1068, 2013.175

[10] J. Koutník, F. Gomez, and J. Schmidhuber. Evolving neural networks in compressed weight176

space. In Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation,177

pages 619–626, 2010.178

[11] A. Navon, A. Shamsian, I. Achituve, E. Fetaya, G. Chechik, and H. Maron. Equivariant179

architectures for learning in deep weight spaces. arXiv preprint arXiv:2301.12780, 2023.180

[12] R. Raileanu, M. Goldstein, A. Szlam, and R. Fergus. Fast adaptation via policy-dynamics value181

functions. arXiv preprint arXiv:2007.02879, 2020.182

[13] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers.183

In International Conference on Machine Learning, pages 9355–9366. PMLR, 2021.184

[14] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent185

networks. Neural Computation, 4(1):131–139, 1992.186

[15] J. Schmidhuber. A ‘self-referential’weight matrix. In International Conference on Artificial187

Neural Networks, pages 446–450. Springer, 1993.188

[16] J. Schmidhuber. On learning to think: Algorithmic information theory for novel combi-189

nations of reinforcement learning controllers and recurrent neural world models. Preprint190

arXiv:1511.09249, 2015.191

[17] K. Schürholt, D. Kostadinov, and D. Borth. Hyper-representations: Self-supervised representa-192

tion learning on neural network weights for model characteristic prediction. 2021.193

[18] H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Applied Mathematics194

Letters, 4(6):77–80, 1991.195

[19] R. K. Srivastava, J. Schmidhuber, and F. Gomez. Generalized compressed network search. In196

Proceedings of the fourteenth international conference on Genetic and evolutionary computation197

conference companion, GECCO Companion ’12, page 647–648, New York, NY, USA, 2012.198

ACM, ACM.199

5

[20] T. Unterthiner, D. Keysers, S. Gelly, O. Bousquet, and I. O. Tolstikhin. Predicting neural200

network accuracy from weights. ArXiv, abs/2002.11448, 2020.201

[21] A. Zhou, K. Yang, K. Burns, Y. Jiang, S. Sokota, J. Z. Kolter, and C. Finn. Permutation202

equivariant neural functionals. arXiv preprint arXiv:2302.14040, 2023.203

6

ID

fC

f1f1f1f1 i

⏟D

x fC(x)

Figure 3: The Interrogator ID has access to
the set of functions D and can interact with
one function fC , which it has to identify.

f1

f2 f3 f4

f7

f5 f6

x1

x2 x3

x4 x5

x6

Figure 4: A binary tree constructed as de-
scribed in the proof of Theorem 2.1. Giving
the inputs xj corresponding to all branching
nodes to a function allows to uniquely iden-
tify it.

A Theoretical Results204

Lemma A.1. Given any subset G ⊆ D, |G| ≥ 2, there exists an input x that can be computed for205

which fa(x) ̸= fb(x) with fa, fb ∈ G.206

Proof. This follows immediately from the fact that all functions in G are total computable and207

functionally distinct.208

Proposition 2.1. Any function fC from a set D can be identified by an interrogator through at most209

|D| − 1 interactions.210

Proof. According to Lemma A.1, it is possible to split any set G ⊆ D, |G| ≥ 2 into two nonempty,211

non-overlapping subsets: Ga := {f ∈ G|f(xj) = fa(xj)} and Gb := {f ∈ G|f(xj) ̸= fa(xj)} for212

some fa ∈ G and xj ∈ N. Any resulting subset that has at least two members can be split again213

using the same procedure with a different probing input xj+1. Starting from the full set D, it is214

possible to construct a binary tree (see Figure 4) where the leaves are subsets of D containing exactly215

one uniquely identified function. The branching (i.e., non-leaf) nodes correspond to the splitting216

operation, which involves observing the output of a specific probing input xj .217

The Interrogator can identify a given function fC ∈ D by providing it with all inputs xj corresponding218

to the branching nodes in the binary tree and observing the outputs. Since any binary tree with n219

leaves has exactly n − 1 branching nodes, any function fC ∈ D can be identified using |D| − 1220

interactions.221

Of course, there are ‘easy’ function sets in the sense that their members can be identified using much222

fewer interactions. Consider, for example, the set {n 7→ i ∀n|1 ≤ i ≤ L}. Here, only one (any)223

probing input is necessary, since the identity of the function can be directly read from the output.224

Proposition 2.2. The upper bound for probing interactions required to identify a function from a225

given function set D is |D| − 1 for both interactive and non-interactive Interrogators.226

Proof. It is easy to construct function sets D for which the members cannot be identified in less than227

|D| − 1 interactions, even by an interactive Interrogator.228

One such function set is {ξi|1 ≤ i ≤ L} with ξi : n 7→
{
0 if n = i,

n else
. In the worst case, there is no229

way around trying all inputs i, . . . , L− 1.230

Proposition 2.3. There exist function sets for which an interactive Interrogator requires exponentially231

fewer probing interactions to identify a member than does a non-interactive one.232

7

Proof. We construct a concrete set of functions that an interactive Interrogator can identify exponen-233

tially faster than a non-interactive one. Consider the family of context-sensitive languages234

Lm1,...,mk
:= {an+m1

1 an+m2
2 . . . an+mk

k |n ∈ N}, (2)

with m1, . . . ,mk ∈ N and a1, . . . , ak being the letters/tokens of the language. The parameters mi235

define the relative number of times different tokens may appear. As an example, one member of the236

language L3,1,2 is the string a1a1a1a1a2a2a3a3a3.237

Let GL := {Lm1,...,mk
|m1, . . . ,mk ∈ {1, . . . ,M}}, i.e., a set of such languages with different238

parameters mi. GL contains Mk languages. To each language Lm1,...,mk
, we can assign a unique239

generative function gm1,...,mk
. This function, given a partial string from the language, returns a list240

of the allowed tokens for the next step. If the input string is not a partial string of the language,241

it returns the empty string ϵ. For example, g3,1,2(a1a1a1) = (a1, a2), g3,1,2(a1a1a1a1a2) = (a2),242

and g3,1,2(a1a1a2a2) = ϵ. Our function set DL is a set of such generative functions, DL :=243

{gm1,...,mk
|m1, . . . ,mk ∈ {1, . . . ,M}}.244

For an interactive Interrogator, there is a simple strategy to identify a given function gC ∈ DL using245

M · k interactions: The first input is the string aM1 a2. From there on, the Interrogator acts as an246

autoregressive generative model—it appends the allowed token returned by gC to the string and uses247

it as the new input. Only one valid token will be returned by gC for all probing input strings that are248

generated using this approach since the n is determined from the first input string. This is repeated249

until ϵ is returned, which is after a maximum of (M − 1) · k calls to gC . The last probing input string250

will be ar11 . . . arkk with r1 = M , from which the language can be inferred in the following way: Let251

n := min{r1, . . . , rk}. The language gC is generating is thus Lr1−n,...,rk−n.252

The non-interactive Interrogator cannot use this strategy, since every probing input except the first253

depends on gC’s output for the previous probing input. We can show that in the non-interactive254

setting, (M − 1)k calls to gC are needed to identify it. Assuming n = 0, there are Mk−1 unique255

prefixes for the first token ak. Each of these prefixes is only allowed in M languages Lm1,...,mk−1,·,256

namely the ones with specific m1, . . . ,mk−1. Remember that gC returns ϵ whenever it is given a257

substring that is not part of its language. That means, to determine mk, Mk−1(M − 1) different258

inputs have to be given to fC . It follows that in total,
∑k−1

b=2 M b(M − 1) = Mk −M2 inputs are259

needed to identify the exact language of gC .260

In short, to identify a function from the set DL described above, an interactive Interrogator needs261

O(Mk) probing inputs, whereas a non-interactive one needs O(Mk).262

B Implementation Details263

Flattened Weights For the flattened weights Encoder, all parameters θ of the RNN to be encoded264

are flattened into a vector. This weight vector is given as input to a multi-layer perceptron (MLP)265

with ReLU nonlinearities, which outputs the RNN encoding z.266

Neural Functional For the neural functional (NF) Encoder, we adapt the equivariant NF-layer267

[21] for LSTMs. To preserve both equivariance to neuron permutation and functional universality,268

the appropriate row- and column-wise feature extractors have to be added for input-to-hidden and269

hidden-to-hidden weights, considering rollouts across time and depth of the network.270

Non-interactive RNN Probing A diagram of the non-interactive probing encoder is shown in271

Figure 1 (left). RNN probing Encoders have three main components: the core LSTM ER, an input272

projection MLP EI and an output projection MLP EO.273

For the the non-interactive Encoder, a learnable latent probing sequence (S1, S2, . . . , Sl) with a fixed274

length l is given to EI . EI(Si) is interpreted as either one a several parallel probing inputs x̂i and275

given to fθ. The resulting probing outputs ŷi := fθ(x̂i) are given to EO (in the case of multiple276

parallel probing outputs, the values ŷi are concatenated). The sequence of probing output projections277

(EO(ŷ1), . . . , EO(ŷl)) is given as input to ER, preceded by a begin-of-sequence (BOS) and followed278

by an end-of-sequence (EOS) token. ER’s output after the EOS token is transformed with a learned279

linear projection into the RNN representation z.280

8

Interactive RNN Probing As can be seen in Figure 1 (right), the interactive probing encoder281

differs from the non-interactive one in one crucial aspect: Instead of having a learned but static latent282

probing sequence, the probing inputs at each step are based on the output of ER from the current step,283

which in turn depends on the probing outputs of the previous step. This means that the interactive284

probing Encoder can dynamically adapt the probing sequences to the particular RNN fθ that is being285

encoded.286

Emulator The Emulator Aξ is an LSTM network. The conditioning on the function representation287

z is done by adding a learned linear projection of z to the embedding of the begin-of-sequence token.288

C Experimental Details289

LSTM Dataset The set of languages is {Lr,r+o1,r+o2,r+o3 |o1, o2, o3 ∈ {−3, . . . , 2} and r =290

−min{o1, o2, o3}}, with L defined in Equation 2. This set contains 63 = 216 uniquely identifiable291

languages. The training data for each LSTM are strings from a particular language of length ≤ 40,292

with an additional begin-of-sequence and end-of-sequence token.293

The LSTMs trained for the dataset have two layers with a hidden size of 32, resulting in a total of294

13766 parameters. In total, 1000 such networks are trained, each on one of the 216 possible languages.295

For each LSTM, 10 snapshots (at steps 0, 100, 200, 500, 1000, 2000, 5000, 10000 and 20000) are296

saved during training. A snapshot consists of the LSTM’s current weights and 100 sequences, also of297

length 40, generated by it.298

Hyperparameters Table 1 shows the hyperparameters shared by all four encoder types in the299

experiments. Hyperparameters specific to probing, flattened and neural functional encoders are shown300

in Tables 2, 3 and 4, respectively.301

Hyperparameter Value
A hidden size 256
A #layers 2
z size 16
batch size 64
optimizer AdamW
learning rate 0.0001
weight decay 0.01
gradient clipping 0.1

Table 1: General hyperparameters

Hyperparameter Value
ER hidden size 256
ER #layers 2
EI hidden size 128
EI #layers 1
EO hidden size 128
EO #layers 1
probing sequence length 22

Table 2: Hyperparameters for probing (inter-
active and non-interactive) encoders

Hyperparameter Value
hidden size 128
#layers 3

Table 3: Hyperparameters for flattened
weights encoders

Hyperparameter Value
#channels 32
#layers 4

Table 4: Hyperparameters for neural func-
tional encoders

9

1 2 3 4 5 6 7 8
parallel probing sequences

0.01

0.02

0.03

0.04

0.05

0.06

em
ul

at
io

n
lo

ss

flattened
neural functional
non-interactive
interactive

Figure 5: Emulation loss (Equation 1). Plot-
ted as a function of the number of parallel
probing sequences. Mean and bootstrapped
95% confidence intervals across 15 seeds.

10 15 20 25 30 35 40
probing sequence length

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

em
ul

at
io

n
lo

ss

non-interactive
interactive

Figure 6: Emulation loss as a function of prob-
ing sequence length. Mean and bootstrapped
95% confidence intervals across 15 seeds.

Additional Results Figure 5 shows the test losses of the different Emulators (as defined in Equa-302

tion 1). The relative performance of the different encoders types is similar as for the downstream303

tasks shown Figure 2.304

We also investigate the results for different lengths of the probing sequence for the interactive and305

non-interactive probing encoders. In principle, for an interactive probing encoder to correctly identify306

all languages from the dataset using the strategy explained in the proof of Proposition 2.3, a probing307

sequence of length at least 18 is needed. Figure 7 show the probing sequences of different interactive308

probing encoders generated for a specific LSTM that generates strings from the languages L3,0,2,4. A309

sequence length of 7 is clearly too short, and no insightful probing sequence is learned. For sequence310

lengths 12, 22 and 42, the encoder learns to probe actual strings of different lengths from the language.311

Note that for this particular language, there exists a string of length < 12, this is not the case for all312

languages used in the dataset. This can also be seen in Figure 6, where only the interactive encoder313

with a sequence length of 22 has good performance. A long probing sequence length leads to training314

instabilities.315

3
0
2
4

4
1
3
5

5
2
4
6

sequence
length: 7

sequence
length: 12

sequence
length: 22

sequence
length: 42

num
occurrences:

num
occurrences:

num
occurrences:

Task: L3,0,2,4

Figure 7: Probing sequences generated for g2,0,1,3 by the best performing interactive function encoder
with different probing sequence lengths. For the sequence lengths 12, 22 and 42, the encoder produces
a insightful probing sequence, i.e. probing sequences that belong to the corresponding language.

10

Flattened

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Neural Functional

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Non-interactive (1 probing sequence)

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Interactive (1 probing sequence)

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Figure 8: PCA of the function encodings generated by different encoders. Left column: Colored by
language, Right column: Colored by performance (i.e., accuracy). The two columns correspond to
the two down-stream tasks for which the results are shown in Figure 2.

11

	Introduction
	Self-supervised Learning of Function Representations
	RNN Encoders
	A Theoretical Framework for the Functionalist Approach

	Experiments
	Conclusion and Future Work
	Theoretical Results
	Implementation Details
	Experimental Details

