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Abstract

Multiplexed microscopy imaging enables the simultaneous use of numerous flu-
orescent markers on one biological sample. This technique is especially useful
in cancer research, cellular and molecular biology, and drug discovery. Studying
these microscopic images is challenging due to the large scale of datasets, number
of channels that exceeds the natural imaging domain, and the lack of annotations.
In this work, we applied a self-supervised learning method for representation learn-
ing, and then studied the quality of the learned representations visually and by
classification tasks. Results show that although the model creates similar feature
embeddings for the same metadata labels, the model also captures some technical
variation between slides.

1 Introduction

Fluorescent microscopy imaging [15]] is a widely used technique in biological and biomedical fields.
Researchers use fluorescent markers to attach onto specific molecules or biological structures, that
become visible under the microscope. Nowadays, high throughput imaging (HTT) technologies use
robotic automation and are able to create large number of high-resolution images rapidly. These
images are analysed for observing previously unknown biological phenomena, discovering novel
drugs, and even for clinical diagnoses.

Cyclic multiplexed immunofluorescence microscopy imaging technique [3} [16] enables the simulta-
neous use of numerous (dozens at a time) fluorescent markers on one biological sample compared to
only 3-5 markers of traditional fluorescent microscopy imaging. Moreover, it enables imaging of
samples from multiple sources in one experiment, minimizing the risk of batch effects. Fig.|l|shows
three examples from multiplexed image datasets that consists of around 2,500 cancer sample images
from around 870 patients. Each multiplex image has six or more fluorescent markers representing the
image channels. In these examples, there are three structural markers: DAPI channel for cell nuclei,
epithelial channel for epithelial cells, and stroma channel for stromal cells. SMA, pSTAT3, FAP, and
PDFGRB channels present different proteins of interest. Typically, the fluorescent markers to use
for the tissue or cell samples are selected based on the research question from thousands of known
markers.

Working with fluorescent images, especially multiplex images is challenging for a few reasons.
Firstly, raw images are typically collected using a 16-bit range compared to 8-bit natural images. The
intensity of fluorescent images can vary drastically from low background noise to high intensity from
clustered markers or autofluorescent (artefacts). The 8-bit range with 256 different values does not
capture this intensity variance and results in loss of data, hence, a 16-bit range is preferred. However,
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Figure 1: Example of fluorescent microscopic images. Images are converted from multiple channels
into RGB images for visualization purposes. There are three structural markers: DAPI channel for
cell nuclei, Epithelial channel for epithelial cells, and Stroma channel for stromal cells. SMA,
pSTAT3, FAP, and PDFGRB represent the imaged proteins.

processing 16-bit multi-channel images requires more resources compared to natural RGB images.
Secondly, only limited annotations or incomplete ground truths are available due to the lack of
resources or privacy reasons. The sheer number of images makes it hard to annotate all images even
at the image level. Therefore, an unsupervised or self-supervised method to learn the representation
of the image dataset is our preferred solution.

In this paper, we present our approach to train a vision transformer (ViT) [10] using small patch
images with self-supervised "Self-Distillation with No Labels (DINO)" [6] method. Experiments are
done by training on multi-channel images and extracting the embeddings directly. Then, the feature
embeddings of patch images are aggregated by another self-supervised method [7]. We provided
qualitative results by reducing dimensions and visualizing with Uniform Manifold Approximation
and Projection (UMAP) [18], and quantitative results by predicting the clinical information with a
simple k-NN classifier.

2 Related Work

Image-based cell profiling field (bioimage profiling) quantifies biological phenotype differences
among a variety of cell populations under different perturbations [4]. Hundreds of morphological
features (shape, intensity, texture measurements) from thousands of cells can be measured and aggre-
gated to create phenotype profiles at the cell population level or even patient level. Compared with
other profiling methods (e.g., mRNA, protein, etc [[L1]), image-based profiling methods have a wider
range of applications that include identifying the mechanism-of-action of drugs for drug discovery,
specifying characters of a specific disease, and understanding functions of cellular organelles [13}15]].
Although many studies have been done on multiplex imaging data, such as measuring classical mor-
phological features for analyzing cancer micro-environments from multiplexed images [19], the large
number of channels makes measuring classical morphological features complex and expensive [12].

Due to common problem of lack-of-annotation, many unsupervised and weakly-supervised machine
learning methods are proposed for biological applications. Chen et al. [7] used multi-stage self-
supervised training to create features from low to high resolutions. Cross-Zamirski et al. [9] combined
DINO [i6] with weak labels with impressive results. Han et al. [[12] created weak labels from nuclei
channel for cell segmentation on multiplex imaging. Others have tried fully unsupervised methods
with various levels of success [17}20].

We chose DINO [6] method over other successful self-supervised learning methods, such as VI-
CReg [1]] and VICRegL [2] or SimCLRv2 [8] due to its simplicity and adaptability. Moreover, when
trained with a ViT as the backbone, it is somewhat easy to interpret the outcome by extracting the
attention maps [14] without using any class activation mapping techniques.

3 Methodology

Data preparation. Our multiplex image dataset is prepared in-house using human cancer tissue
samples. Tissue Microarray (TMA) spots with a diameter of around 1 mm are cut from the cancer
tissues. Around one hundred TMA spots can be prepared and imaged in one slide. The actual imaging
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Figure 2: Two-stage self-supervised neural network for training multiplex microscopic images. The
input TMA spots are large images having 4k pixel dimensions that include six to seven channels.
Stage 1 trains on the small patch images from the TMA spot images, and then Stage 2 aggregates
patch image-level feature embeddings to a TMA spot-level embedding.

is done with multiple rounds of staining with fluorescent markers, microscopic imaging, and washing
the TMA spots for the next staining round. Three types of cancer samples are imaged in this way:
prostate cancer, renal (kidney) cancer, and lung cancer. These datasets are collected using two rounds
of imaging resulting in six markers for renal and lung cancer, and seven markers for prostate cancer.
In addition, one marker is used in all rounds of imaging to enable image registration.

The pixel dimension of resulting images is around 4500 x 4500px for each TMA spot. Contrary
with [9]], we cut off pixel values lower than the median value of the respective slide to remove the
unnecessary background. Then, non-overlapped patches with the size of 256 x 256px are taken from
the tissue area. The outcome is a multi-channel dataset with 179k renal, 124k prostate, and 98k lung
cancer patch images taken from 2,500 TMA spots that belongs to 870 patients.

Stage 1. Training on the patch images. Fig. 2] shows a two-stage method that we are experimenting
with. In Stage 1, a ViT is trained with self-supervised strategy using multi-channel patch images
to capture the raw image patterns. We used DINO [6] training scheme with a modified ViT-B
backbone for multi-channel images. Feature embeddings for each patch image are extracted after
self-supervised training of the model.

Stage 2: Aggregating features. Feature embeddings from Stage 1 correspond to individual patch
images, and need to be aggregated into TMA spot-level features, then potentially to patient-level
features. One TMA spot is a complex mixture of various types of cells. Merely mean or median
aggregation from patch image features does not capture the complexity. To solve this challenge, a
self-supervised aggregation approach is used [[7]. The method takes 256 patches with 768 features
for each TMA spot as input, and reorganizes these features as channel dimension by considering
each ordered feature from all patch images as one image (256 x 768— > 768 x 16 x 16). Then, the
reorganized feature images are trained using a modified DINO-ViT method to extract TMA spot-level
features.

Downstream tasks. Downstream tasks with TMA spot-level features include classification for clinical
information (cancer histology subtype, aggressiveness, survival status, etc.), clustering for discovery
purposes, and outlier detection. Even though it is possible to use the patch-level feature embeddings
for downstream tasks, using TMA spot-level or patient-level information is more meaningful for
biomedical applications.

Training. We used the LUMI supercomputer with AMD MI250X GPUs for training. For all Stage
1 experiments, the main parameters used were ViT-B/16 backbone, 2 global crops of 224 x 224, 8
local crops of 96 x 96, total batch size of 1000. The student ViT uses the AdamW optimizer with
a learning rate starting from le — 5 after 10 warm-up epochs, and the teacher temperature as 0.04.
Data augmentation is limited to random horizontal flips, and random but small changes in brightness,
contrast, hue, saturation, and blurring. Images from each type of cancer are trained separately until
convergence. Dimensions of extracted feature vector is 768 for each patch image. For Stage 2, we
used modified ViT-S, 2 global crops of 14 x 14, and 2 local crops of 6 x 6. The output dimension is
384.

4 Results

Visualization of feature embeddings. We used UMAP [18] for dimensionality reduction of the
feature embeddings to visualize these in two dimensions (Fig.[3). On prostate cancer samples, we
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Figure 3: Feature embedding visualization with UMAP dimensionality reduction technique. On
prostate cancer figures, colors show different staging of the cancer. On renal cancer figures, color
code shows histology or subtype of the cancer.

Table 1: Average top-1 accuracy with the k-NN classifier for cancer stage classification task for
prostate cancer samples, and histology classification task for lung and renal cancer samples. "mean
agg." refers to classifications on aggregated TMA spot features that are created by averaging the
patch features.

Embedding name NSS NST No restriction NSS No restriction
(%) (%) (%) mean agg. (%) mean agg. (%)

Prostate patch image 30.45 50.28 85.52 - -

Prostate TMA spot 33.08 - 57.79 27.08 48.00

Renal patch image 69.35  79.63 90.35 - -

Renal TMA spot 71.96 - 83.91 72.89 84.13

Lung patch image 5345 60.95 79.13 - -

Lung TMA spot 57.07 - 65.02 55.62 58.04

studied the staging of the cancer. On renal and lung cancer, we focused on cancer histology sub-types.
Patch-level feature embeddings present more clearer clusters compared to TMA spot-level feature
embeddings. The reason is that patch images cover only a small area of the TMA spots, thus there is
much more variance in the patches. Moreover, there are similar patterns in patch images in different
TMA spots representing similar cellular neighborhoods.

Classification of feature embeddings. We used k-NN classifier (k=10) to study similarities of
feature embeddings of samples from the same class. Table [T|displays the average top-1 classification
accuracy achieved with the k-NN classifier trained on cancer stage for prostate, and histology for lung
and renal datasets. In the "Not-same-slide" (NSS) scenario, only feature embeddings from different
slides are used for training the k-NN classifier. Moreover, "Not-same-TMA spot" (NST) employs
only patch image feature embeddings from different spots. However, the classifier performs most
accurately when there are no restrictions. This could indicate the possibility of a batch effect between
slides, and even between TMA spots. The NSS classification is the most restrictive and, consequently,
less accurate than the other metrics.

5 Conclusion and Discussion

In this work, we used self-supervised training approach to learn the representation in multiplexed
microscopy images. UMAP visualization of extracted feature embeddings show promising clustering
by the cancer stage or histological subtype showing that the approach is able to learn biologically
meaningful representations. However, results of the classification tasks indicate that there seems to
be batch or slide effects between TMA slides and TMA spots.

The overall goal of this work is to study a pan-cancer dataset with unbiased self-supervised learning
approaches to find meaningful patterns that are relevant for cancer diagnostics and treatment. The
current results indicate that self-supervised learning is capable of recognizing patterns that represent
for instance cancer grading and aggressiveness, however, more thorough model interpretation is
needed to link these findings into biomarkers for diagnostics in the future.
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