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Abstract
Semi-supervised learning is a popular machine learning paradigm that utilizes1

a large amount of unlabeled data as well as a small amount of labeled data to2

facilitate learning tasks. While semi-supervised learning has achieved great success3

in training neural networks, its theoretical understanding remains largely open. In4

this paper, we aim to theoretically understand a semi-supervised learning approach5

based on pre-training and linear probing. We prove that, under a certain data6

generation model and two-layer convolutional neural network, the semi-supervised7

learning approach can achieve nearly zero test loss, while a neural network directly8

trained by supervised learning on the same amount of labeled data can only achieve9

constant test loss. Through this case study, we demonstrate a separation between10

semi-supervised learning and supervised learning in terms of test loss provided the11

same amount of labeled data.12

1 Introduction13

Semi-supervised learning (Scudder, 1965; Fralick, 1967; Agrawala, 1970), which leverages both a14

small amount of labeled data and a large amount of unlabeled data to improve learning performance,15

is one of the most widely used approaches. It has been shown to achieve promising performance16

for a wide variety of tasks, including image classification (Rasmus et al., 2015; Springenberg, 2015;17

Laine and Aila, 2016), image generation (Kingma et al., 2014; Odena, 2016; Salimans et al., 2016),18

domain adaptation (Saito et al., 2017; Shu et al., 2018; Lee et al., 2019), and word embedding (Turian19

et al., 2010; Peters et al., 2017). One of the popular semi-supervised learning approaches is pseudo-20

labeling (Lee et al., 2013; Xie et al., 2020; Pham et al., 2021b; Rizve et al., 2021), which generates21

pseudo-labels of unlabeled data for pre-training. This approach has been remarkably successful in22

improving performance on many tasks. In this paper, we attempt to theoretically explain the success23

of semi-supervised learning with pseudo-labelers in training neural networks. The contributions of24

our work are summarized as follows.25

• We theoretically show that with the help of pseudo-labelers, CNN can learn the feature representa-26

tion during the pre-training stage. Moreover, the learned feature is highly correlated with the true27

labels of the data, even though the true labels are not used during the pre-training stage.28

• Based on our analysis of the pre-training process, we further show that when linear-probing the29

pre-trained model in the downstream task, the final classifier can achieve near-zero test loss and30

test error. Notably, these guarantees of small test loss and error only require a very small number31

of labeled training data.32

• As a comparison, we show that standard supervised learning cannot learn a good classifier under33

the same setting. Specifically, we show that, even when the training process converges to a global34

minimum of the training loss, the learned two-layer CNN can only achieve constant level test35

loss. This, together with the aforementioned results for semi-supervised learning, demonstrates the36

advantage of semi-supervised learning over standard supervised learning.37
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2 Problem Setup and Preliminaries38

In this section, we will introduce our data model, the convolutional neural network, and the details of39

the training algorithms considered in this paper. Inspired by recent work (Allen-Zhu and Li, 2020b;40

Zou et al., 2021; Shen et al., 2022; Cao et al., 2022), we consider a data model where each data input41

x consists of two patches x(1) and x(2), where each patch has d dimensions. We focus on the binary42

classification task and present our data distribution D as follows.43

Data distribution. Each data point (x, y) with x = [x(1)⊤,x(2)⊤]⊤ ∈ R2d and y ∈ {−1,+1} is44

generated as follows: the label y is generated as a Rademacher random variable; one of x(1),x(2) is45

given by the feature vector y · v, the other is given by a noise vector ξ that is generated from a dd-46

dimensional Gaussian distribution N
(
0, σ2

p(I− vv⊤/∥v∥22)
)
. We denote by D the joint distribution47

of (x, y), and denote by Dx the marginal distribution of x.48

2.1 Supervised Learning Models49

For supervised learning, we consider a two-layer CNN whose filters are applied to the patches x(1)50

and x(2) respectively and parameters in the second layers are set to be ±1. Then the CNN can be51

written as fW(x) = f+1
W (x)− f−1

W (x) where fW(x)+1, fW(x)−1 are formulated as52

f+1
W (x) =

m∑
j=1

[
σ
(
⟨wj ,x

(1)⟩
)
+σ
(
⟨wj ,x

(2)⟩
)]
, f−1

W (x) =

2m∑
j=m+1

[
σ
(
⟨wj ,x

(1)⟩
)
+σ
(
⟨wj ,x

(2)⟩
)]
.

(2.1)
Here σ is activation function ReLUq(·) = [ · ]q+(q > 2), m is the width of the network, wj ∈ Rd53

denotes the j-th filter, and W is the collection of all filters {wj}2mj=1. Given labeled training dataset54

S′ = {(x′
i, y

′
i)}

nl
i=1, we train the CNN model by minimizing the empirical cross-entropy loss55

LS′(W) =
1

nl

nl∑
i=1

Li(W),

where Li(W) = ℓ
(
y′i · fW(x′

i)
)

with ℓ(z) = log(1 + exp(−z)) denotes the individual loss for the56

training example (xi, yi). We minimize the empirical function LS′(W) with gradient descent as57

follows58

w
(t+1)
j = w

(t)
j − η · ∇wj

LS′(W(t)), w
(0)
j ∼ N (0, σ2

0I), j ∈ [2m],

where η > 0 is the learning rate and σ0 defines the scale of random initialization.59

2.2 Semi-supervised Learning Models60

For semi-supervised pre-training, we assume that we have access to K pseudo-labelers {fw
k }Kk=1.61

The accuracy of k-th pseudo-labeler is pk ∈ (1/2, 1). Then we use K pseudo-labelers to generate K62

pseudo-labeled dataset {Sk}Kk=1, where Sk :=
{
(xi, ŷk,i)

∣∣ ŷk,i = fw
k (xi)

}nu

i=1
. Next we solve K pre-63

training tasks with two-layer CNN models {fWk
}Kk=1 defined in (2.1) using {Sk}Kk=1 respectively.64

We consider learning the model parameter Wk by optimizing the empirical loss of both pseudo-65

labeled dataset Sk and labeled dataset S′ = {(x′
i, y

′
i)}

nl
i=1 with weight decay regularization66

LSk∪S′(Wk) =
1

nu + nl

( nu∑
i=1

Li(Wk) +

nl∑
i′=1

Li′(Wk)

)
+

λ

2
∥Wk∥2F ,

where λ ≥ 0 is the regularization parameter, Li(Wk) = ℓ
(
ŷk,i ·fWk

(xi)
)

denotes the individual loss67

for the pseudo-labeled data Li′(Wk) = ℓ(y′i · fWk
(x′

i)) denotes the individual loss for the labeled68

data (x′
i, y

′
i). We also use gradient descent to minimize the regularized loss function LSk∪S′(Wk)69

starting from w
(0)
k,j ∼ N (0, σ2

0Id).70

Downstream Task: Linear Model. The semi-supervised pre-training gives us K CNN models71

with parameters {W∗
k}Kk=1. Based on them, for the downstream task, we consider a linear model72

ga(x) =

K∑
k=1

akfW∗
k
(x),
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where ak ∈ R denotes the trainable weight for the k-th pre-trained model. Then, given {fW∗
k
}Kk=173

and labeled training data S′ = {(x′
i, y

′
i)}ni=1, we consider learning the downstream linear model74

parameter a by optimizing the following empirical loss75

LS′(a) =
1

n

n∑
i=1

ℓ
(
y′i · ga(x′

i)
)
.

We initialize a as an all-zero vector and optimize the empirical loss by gradient descent with learning76

rate η, i.e.,77

a(t+1) = a(t) − η · ∇aLS′(a(t)), a(0) = 0.

3 Main Results78

In this section, we start with a condition that is required by our analysis.79

Condition 3.1. The strength of the signal is ∥v∥22 = Θ(d), the noise variance is σp = Θ(dϵ),80

where 0 < ϵ < 1/8 is a small constant, and the width of the network satisfies m = polylog(d).81

We also assume that the size of the unlabeled dataset nu = Ω(d4ϵ), and labeled data nl = Θ̃(1).82

For both supervised learning and semi-supervised learning settings, we initialize the weight with83

σ0 = Θ(d−3/4). For semi-supervised learning, we require λ = o(d3/4) and assume that there exists84

a constant C such that for all pseudo-labelers, their test accuracy pk > 1/2 + C.85

Next, we present the main theoretical results in this paper.86

Theorem 3.2 (Semi-supervised Learning: Pre-training). Let k ∈ [K] and consider the semi-87

supervised pre-training of fWk
(x). For any test data point (x, y), denote ŷ = fw

k (x). Then88

under Condition 3.1, after T0 = Θ̃(dq/4−3/2η−1) training iterations with learning rate η = O(d−1.1),89

the trained neural network f
W

(T0)

k

(x) can achieve nearly 0 test error on the distribution D.90

Theorem 3.2 characterizes the prediction power of the feature representation learned in the pre-trained91

models using unlabeled data. For any test data point (x, y), the sign of y can be predicted based on92

fW(T0)(x) with high probability.93

Theorem 3.3 (Semi-supervised Learning: Downstream). Let
{
f
W

(Tk
0 )

k

}d
k=1

be the neural networks94

trained according to the K pre-training tasks, and consider the learning of the downstream task based95

in
{
f
W

(Tk
0 )

k

}d
k=1

. Under Condition 3.1, after T ′ = Θ(d0.1/η) iterations with learning rate η = Θ(1),96

with probability 1− o(1), the obtained a(T
′) satisfies:97

• Training error is 0: 1
n

∑n
i=1 1[yi · ga(T ′)(xi) ≤ 0] = 0.98

• Test error and loss are nearly 0: P(x,y)∼D[y · ga(T ′)(x) ≤ 0] = o(1), LD
(
a(T

′)
)
= o(1).99

Theorem 3.3 shows that the feature representation learned based on the semi-supervised pre-training100

can ensure small training and test errors for the supervised downstream task. Notably, this result101

holds even though we assume that there are only a constant number of labeled data. This shows102

that semi-supervised learning can significantly reduce the need for a large labeled training dataset.103

For comparison, we also have the following guarantees on the performance of standard supervised104

learning of CNNs.105

Theorem 3.4 (Supervised Learning). Under supervised learning setting, after gradient descent for106

T = Θ̃(d(1/4−ϵ)q−3/2η−1) iterations with learning rate η = O(d−1−2ϵ), then there exists t ≤ T107

such that with probability 1− o(1) the CNNs defined in (2.1) with parameter W(t) satisfies:108

• Training loss is nearly zero: LS′
(
W(t)

)
= o(1).109

• Test loss is high: LD
(
W(t)

)
= Θ(1).110

Theorem 3.4 shows that although standard supervised learning can train a CNN model with nearly111

zero training loss, the obtained CNN model generalizes poorly to test data. Comparing Theorem 3.4112

with Theorem 3.3 shows that the generalization of semi-supervised learning and supervised learning113

are largely different. The reason behind this difference is that the pre-training, with a relatively large114

number of unlabeled training data, helps learn a feature representation that captures the feature in115
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Table 1: Training error and loss, test error and loss for semi-supervised and supervised learning.
Semi-supervised

Supervised
Pre-train Downstream

Training error 0.1753± 0.0259 0 0
Test error 0 0 0.4982± 0.0208
Training loss 0.4155± 0.0418 0.0150± 0.0022 (6.473± 5.031)× 10−7

Test loss 0.2200± 0.0886 0.0182± 0.0021 0.6931± 0.0005
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Figure 1: Visualization of the feature learning and noise memorization in the training process. (Left:
Semi-supervised, Right: Supervised)

our data model, while direct application of supervised learning can only memorize the noises in the116

training dataset, which is independent of the labels of the data.117

4 Experiments118

In this section, we perform numerical experiments on synthetic datasets, generated according to the119

data distribution in Section 2, to verify our main theoretical results. The detailed experiment setting120

can be seen from Appendix B.121

For semi-supervised learning, we first use a plain classifier to generate nu pseudo-labels for unlabeled122

samples in order to help semi-supervised learning. After that, for pre-training, we use these pseudo-123

labeled samples and nl labeled samples together to train a CNN. After 200 iterations, we can obtain a124

CNN model with a training error close to the error of pseudo-labeler and zero test error, according125

to Table 1. For the downstream task, we use nl labeled samples to train a linear probe. After 100126

iterations, we can obtain a final model with low training and test loss as well as 100% training127

accuracy and test accuracy. For supervised learning, we directly use nl labeled data to train the same128

CNN model. After 200 iterations, we obtain a CNN with 0 training error and small training loss,129

about 0.5 test error, and high test loss, which indicates supervised learning will give a model that130

behaves badly and even no better than a random guess.131

Moreover, we also calculate the inner products representing feature learning and noise memorization132

respectively, to verify our key lemmas. The results are reported in Figure 1. It can be seen from Figure133

1 that under semi-supervised learning setting the algorithm will the feature learning will dominate the134

noise memorization though the noise patch has a larger norm than the signal patch, while under the135

supervised learning setting, the algorithm will entirely forget the feature but fit noise.136

5 Conclusion137

In this paper, we study semi-supervised learning with pseudo-labelers and provide a theoretical138

understanding of the success of semi-supervised learning. We show the advantage of semi-supervised139

learning over supervised learning through a case study. By considering a simple data model and140

two-layer CNN, we present a comprehensive analysis of the training procedure from a beyond-NTK141

feature learning perspective. We prove that the final classifier of a semi-supervised learning scenario142

can achieve near-zero test loss and error with only a small number of labeled training data, while its143

supervised-learned counterpart fails to achieve the same performance with the same data complexity.144
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A Related Work330

Semi-supervised learning methods in practice. Since the invention of semi-supervised learning331

in Scudder (1965); Fralick (1967); Agrawala (1970), a wide range of semi-supervised learning332

approaches have been proposed, including generative models (Miller and Uyar, 1996; Nigam et al.,333

2000), semi-supervised support vector machines (Bennett and Demiriz, 1998; Xu et al., 2007, 2009),334

graph-based methods (Zhu et al., 2003; Belkin et al., 2006; Zhou et al., 2003), and co-training (Blum335

and Mitchell, 1998), etc. For a comprehensive review of classical semi-supervised learning methods,336

please refer to Chapelle et al. (2010); Zhu and Goldberg (2009). In the past years, a number of337

deep semi-supervised learning approaches have been proposed, such as generative methods (Odena,338

2016; Li et al., 2019), consistency regularization methods (Sajjadi et al., 2016; Laine and Aila, 2016;339

Rasmus et al., 2015; Tarvainen and Valpola, 2017) and pseudo-labeling methods (Lee et al., 2013;340

Zhai et al., 2019; Xie et al., 2020; Pham et al., 2021a). In this work, we will focus on pseudo-labeling341

methods.342

Theory of semi-supervised learning. To understand semi-supervised learning, Castelli and Cover343

(1995, 1996) studied the relative value of labeled data over unlabeled data under a parametric344

assumption on the marginal distribution of input features. Later, a series of works proved that345

semi-supervised learning can possess better sample complexity or generalization performance than346

supervised learning under certain assumptions on the marginal distribution (Niyogi, 2013; Globerson347

et al., 2017) or the ratio of labeled and unlabeled samples (Singh et al., 2008; Darnstädt, 2015), while348

Balcan and Blum (2010) provided a unified PAC framework able to analyze both sample-complexity349

and algorithmic issues. Oymak and Gulcu (2021); Frei et al. (2022b) considered semi-supervised350

learning with pseudo-labers by learning a linear classifier for mixture models and convergence to351

Bayes-optimal predictor.352

Self-supervised learning in practice. A closely related learning paradigm to semi-supervised353

learning is called self-supervised learning, which creates human-designed supervised learning prob-354

lems to leverage natural structures and learn representations from unlabeled data. Representative355

self-supervised learning approaches include contrastive learning and pretext-based self-supervised356

learning. Contrastive learning (Caron et al., 2020; He et al., 2020; Chen et al., 2020) aims to group357

similar examples closer and dissimilar examples far from each other by utilizing a similarity metric,358

while pretext-based self-supervised tries to learn a good representation from pretext tasks generated359

from the unlabeled data to facilitate downstream learning tasks. In practice, various pretext tasks360

have been proposed, which include (1) generation-based ones such as colorizing grayscale images361

(Zhang et al., 2016), image inpainting (Pathak et al., 2016), image and video generation with GAN362

(Goodfellow et al., 2014; Brock et al., 2018; Karras et al., 2019; Vondrick et al., 2016; Tulyakov et al.,363

2018); and (2) context-based ones such as image jigsaw puzzle (Noroozi and Favaro, 2016), geometric364

transformation (Gidaris et al., 2018; Jing et al., 2018), frame order verification and recognition (Lee365

et al., 2017; Misra et al., 2016; Wei et al., 2018). The semi-supervised learning approach with366

pseudo-labelers studied in this paper is related to pretext-based self-supervised learning because the367

unlabeled data with pseudo-labels can be seen as a particular pretext task.368

Theory of self-supervised learning. In order to understand self-supervised learning, there is a line369

of work towards understanding contrastive learning (Saunshi et al., 2019; Tsai et al., 2020; Mitrovic370

et al., 2020; Tian et al., 2020; Wang and Isola, 2020; Tosh et al., 2021a,b; HaoChen et al., 2021;371

Wen and Li, 2021; Saunshi et al., 2022), which is one of the most used self-supervised learning372

approaches based on data augmentation. Unlike contrastive learning, the theoretical understanding373

of pretext-based self-supervised learning is still rather limited. The only notable works are Lee374

et al. (2020) and Wei et al. (2020). Lee et al. (2020) proved generalization guarantees for self-375

supervised algorithms using empirical risk minimization on the pretext task under certain conditional376

independence assumptions. Wei et al. (2020) proved that under an “expansion” assumption, the377

minimizer of the population loss based on self-training and input-consistency regularization will378

achieve high prediction accuracy. Since semi-supervised learning with pseudo-labelers can be seen379

as a special case of pretext-based self-supervised learning (the pretext task is generated by the380

pseudo-labelers), we believe the case study in the current paper and its theoretical understanding can381

shed light on pretext-based self-supervised learning as well.382

Feature learning by neural networks. Our work is also closely related to several recent works that383

study how neural networks learn the features. Allen-Zhu and Li (2020a) showed that adversarial384
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training purifies the learned features by removing certain “dense mixtures” in the hidden layer weights385

of the network. Allen-Zhu and Li (2020b) studied how ensemble and knowledge distillation work in386

deep learning when the data have “multi-view” features. Zou et al. (2021) studied an aspect of feature387

learning by Adam and GD and showed that GD can learn the sparse features while Adam may fail even388

with proper regularization. Notably, there are two concurrent works studying the benign overfitting389

phenomenon in learning neural networks: Frei et al. (2022a) established theoretical guarantees for390

benign overfitting of two-layer fully connected neural networks with zero training error and test error391

close to the Bayes-optimal error, while Cao et al. (2022) studied the benign overfitting phenomenon392

in training a two-layer convolutional neural network (CNN), achieving arbitrarily small training and393

test loss. Our work studies a different aspect of feature learning afforded by semi-supervised learning394

versus supervised learning: given a small amount of labeled data, semi-supervised learning can learn395

the features with the help of pseudo-labelers, while supervised learning fails to learn the features and396

tends to overfit the noise in the training data.397

Comparison with related work. A recent line of work (Oymak and Gulcu, 2021; Frei et al., 2022b)398

studies the semi-supervised learning methods with pseudo-labelers. Our results are different from399

theirs in several aspects: (i) we are considering learning with CNNs rather than a linear model, so400

the problem is highly non-convex with various local minima, which makes the optimization analysis401

more challenging; (ii) the Bayesian optimal predictor is no longer unique for CNNs. Therefore, we402

measure the quality of the learned features via downstream task instead of making a comparison with403

the Bayesian optimal predictor; (iii) They can only deal with the case where the teacher network404

(pseudo-labeler) is the same as the student network (Frei et al., 2022b) or the case where the teacher405

network (pseudo-labeler) is at least as complex as the student network (Oymak and Gulcu, 2021).406

However, our teacher network (pseudo-labeler) is not specified and can be any structure, such as a407

linear network. Therefore we can handle the case where the student network is more complex than408

the teacher network, one of the most natural settings for semi-supervised learning with pseudo-labeler409

(Xie et al., 2020).410

B Experiment Setting411

In particular, we set the problem dimension d = 10000, labeled training sample size nl = 20 (10412

positive samples and 10 negative samples), pseudo-labeled training sample size nu = 20000 (10000413

positive samples and 10000 negative samples), feature vector v sampled from distribution N (0, I)414

and noise vector sampled from distribution N (0, σ2
pI) where σp = 10d0.01.415

For semi-supervised learning tasks, we have a linear pseudo-labeler with test error 0.196± 0.044.416

Then, we use this classifier to generate pseudo-labels for nu = 20000 unlabeled samples in order417

to help semi-supervised learning. After that, for pre-training, we use these pseudo-labeled samples418

and nl labeled samples together to train a CNN with network width m = 20, activation function419

σ(z) = [z]3+, regularization parameter λ = 0.1 and learning rate η = 1×10−4. Besides, we initialize420

CNN parameters from N (0, σ2
0), where σ0 = 0.1 × d−3/4. After 200 iterations, we can obtain a421

CNN model with a training error close to the error of pseudo-labeler and zero test error, according422

to Table 1. For a downstream task, we use nl labeled samples to train a linear probe. By applying423

learning rate η = 0.1 and after T = 100 iterations, we can obtain a final model with low training and424

test loss as well as 100% training accuracy and test accuracy.425

For supervised learning task, we directly use nl labeled data to train a CNN with network width426

m = 20, activation function σ(z) = [z]3+, learning rate η = 1 × 10−4. After 200 iterations, we427

obtain a CNN with 0 training error and small training loss, about 0.5 test error, and high test loss,428

which indicates supervised learning will give a model that behaves badly and even no better than a429

random guess.430

C Proof for Semi-supervised Learning Setting431

We consider learning K functions fWk
(x), k ∈ [K] based on the pre-training. Since the learning432

process of these K functions can be analyzed in exactly the same way, here we only focus on the433

learning of one of these functions. For simplicity of notation, we drop the subscript k in the following434

proof for Sections C.2, C.3, C.4, C.5, C.6, C.7 and C.8. We start with a condition that is required by435

our analysis.436
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Condition C.1. The strength of the signal is ∥v∥22 = Θ(d), the noise variance is σp = Θ(dϵ),437

where 0 < ϵ < 1/8 is a small constant, and the width of the network satisfies m = polylog(d).438

We also assume that the size of the unlabeled dataset nu = Ω(d4ϵ), and labeled data nl = Θ̃(1).439

For both supervise learning and semi-supervised learning settings, we initialize the weight with440

σ0 = Θ(d−3/4). For semi-supervised learning, we require λ = o(d3/4) and assume that there exists441

a constant C such that for all pseudo-labelers, their test accuracy pk > 1/2 + C.442

Since we generate the noise patch from the Gaussian distribution, the strength of the noise patch is443

∥ξ∥22 ≈ d1+ϵ by standard concentration inequalities, which is larger than the strength of the signal444

patch ∥v∥22 = Θ(d). Therefore, Condition 3.1 defines a setting with large noises. The condition of445

d ≫ nu ≫ nl further ensures that learning is in a sufficiently over-parameterized setting. Here we446

only require the neural network width m to be polylogarithmic in the dimension d and require the447

pseudo-lablers to perform better than a random guess.448

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to449

denote scalars, vectors, and matrices respectively. For a scalar x, we use [x]+ to denote max{x, 0}.450

For a vector v = (v1, · · · , vd)⊤, we denote by ∥v∥2 :=
(∑d

i=1 v
2
i

) 1
2 its ℓ2 norm, and use supp(v) :=451

{j : vj ̸= 0} to denote its support. For two sequences {ak} and {bk}, we denote ak = O(bk) if452

|ak| ≤ C|bk| for some absolute constant C, denote ak = Ω(bk) if bk = O(ak), and denote453

ak = Θ(bk) if |ak| ≤ C|bk| and ak = Ω(bk). We also denote ak = o(bk) if lim |ak/bk| = 0. Finally,454

we use Θ̃(·), Õ(·) and Ω̃(·) to omit logarithmic terms in the notations.455

C.1 Proof Sketch456

In this section, we present the proof sketch for the semi-supervised learning setting.457

Semi-supervised Pre-training. We consider learning K functions fWk
(x), k ∈ [K] based on the458

pre-training. Since the learning process of these K functions can be analyzed in exactly the same459

way, here we only focus on the learning of one of these functions. For simplicity of notation, we drop460

the subscript k in the following proof sketch.461

Our study of the pre-training focuses on two aspects of the training process: feature learning and462

noise memorization. Specifically, we aim to monitor how the filters in the CNN model learn the463

feature vector v and the noise vectors ξi’s. Therefore, we introduce the following notations.464

Λ̂
(t)
1 := max

1≤j≤m
⟨w(t)

j ,v⟩, Λ̄(t)
1 := max

1≤j≤m
−⟨w(t)

j ,v⟩,

Λ̂
(t)
−1 := max

m+1≤j≤2m
−⟨w(t)

j ,v⟩, Λ̄(t)
−1 := max

m+1≤j≤2m
⟨w(t)

j ,v⟩,

Γ
(t)
i := max

1≤j≤2m
⟨w(t)

j , ξi⟩, Γ′(t)
i := max

1≤j≤2m
⟨w(t)

j , ξ′i⟩, Γ(t) = max
{
max
i∈[nu]

Γ
(t)
i ,max

i∈[nl]
Γ
′(t)
i ,

}
.

(C.1)
Based on the above definitions for r ∈ {±1}, a larger Λ̂(t)

r implies better feature learning along the465

positive feature direction v, while a larger Λ̄(t)
r implies better feature learning along the negative466

feature direction −v. Moreover, a larger Γ(t) implies a higher level of noise memorization.467

Based on the update rule of gradient descent, for the inner products ⟨w(t)
j ,v⟩ and ⟨w(t)

j , ξl⟩, for468

j ∈ [2m], l ∈ [nu], we can obtain iterative equations in (C.2).469

With the help of the iterative equations and definitions in (C.1), we can further show the following470

lemma.471

Lemma C.2. Assume we use both unlabeled data with pseudo-labels generated by the pseudo-labeler472

and labeled data for the training of our CNN model. Then for r ∈ {±1}, let Tr be the first iteration473

that rΛ̂(t)
r reaches Θ(1/m), then for t ∈ [0, Tr], we have474

Λ̂(t+1)
r ≥ (1− ηλ) · Λ̂(t)

r + η · C ·Θ(d) · (Λ̂(t)
r )q−1, r ∈ {±1},

Λ̄(t+1)
r ≤ (1− ηλ) · Λ̄(t)

r , r ∈ {±1},

Γ(t+1) ≤ (1− ηλ) · Γ(t) + η · Θ̃(d1−2ϵ) · (Γ(t))q−1,
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where C is defined in Condition 3.1.475

Lemma C.3. Assume we use only labeled data for the training of our CNN model. Then for i ∈ [nl],476

let T ′
i be the first iteration that Γ′(t)

i reaches Θ(1/m), then we have477

Λ̂(t+1)
r ≤ (1− ηλ) · Λ̂(t)

r + η ·Θ(d) ·
(
(Λ̂(t)

r )q−1 + (Λ̄(t)
r )q−1

)
, r ∈ {±1},

Λ̄(t+1)
r ≤ (1− ηλ) · Λ̄(t)

r , r ∈ {±1},

Γ
′(t+1)
i ≥ (1− ηλ) · Γ′(t)

i + η · Θ̃(d1+2ϵ) · (Γ′(t)
i )q−1, i ∈ [nl], for t ∈ [0, T ′

i ].

Based on the results in Lemma C.2, we can observe that if both pseudo-labeled and labeled data are478

used for training, the CNN will learn the positive direction of the feature vector v, while barely tending479

to fit the negative direction of the feature vector or memorize the noise. And if only labeled data are480

used, the CNN will fit noise faster than a feature, which can be seen from Lemma C.3. Leveraging481

Lemmas C.2 and C.3, we can obtain the following Lemmas C.4 and C.5, which characterize the482

magnitude of feature learning and noise memorization.483

Lemma C.4. If both pseudo-labeled and labeled data are used to train CNN, for r ∈ {±1}, let Tr be484

the first iteration that Λ̂(t)
r reaches Θ(1/m) respectively. Let T0 = maxr∈{±1}{Tr}. Then, it holds485

that Λ̂(T0)
r = Θ̃(1), Λ̄(t)

r = Õ(d−
1
4 ) and Γ(t) = Õ(d−

1
4+ϵ) for all t ∈ [0, T0].486

Lemma C.5. If only labeled data are used to train CNN, for i ∈ [nl], let T ′
i be the first iteration that487

Γ
′(t)
i reaches Θ(1/m). Let T ′

0 = maxi∈[nl] T
′
i . Then, it holds that Λ̂r = Õ(d−

1
4 ), Λ̄r = Õ(d−

1
4 ) for488

r ∈ {±1} and Γ
′(t)
i = Θ̃(1) for i ∈ [nl].489

The above results indicate the deviation between the two settings. The reason is that assume we490

consider a sequence {xt} with iterative equation xt+1 = xt + η · Ctx
q−1
t . If we only use labeled491

data, as shown in Lemma C.3, Γ′(t)
i has Ct = Θ̃(d1+2ϵ) while Λ̂

(t)
r has Ct = Θ(d), therefore Γ

′(t)
i492

increases faster than Λ̂
(t)
r . In contrast, if we use both labeled data and pseudo-labeled data, Ct will be493

Θ̃(d1−2ϵ) for Γ′(t)
i and Θ(d) for Λ̂(t)

r , leading to a slower increasing speed of Γ′(t)
i .494

Downstream task. After the pre-training, we have obtained K CNN classifiers
{
f
W

(Tk
0 )

k

}K
k=1

. Now495

we train the second-layer parameters a with the training data whose true labels are available. The496

following lemma shows that the l1-norm of a will increase with a logarithmic order.497

Lemma C.6. For any learning rate η = Θ(1), we have
∥∥a(t)∥∥

1
= log(t)/Θ̃(1). For any labeled data498

(x′
i, y

′
i) ∈ S′, we have with high probability that y′i · fW(t)(x′

i) =
∥∥a(t)∥∥

1
· Θ̃(1). For any newly499

generated data (x, y) ∼ D, we also have with high probability that y · fW(t)(x) =
∥∥a(t)∥∥

1
· Θ̃(1).500

With the help of the above lemma and note that training error and test error are related to y ·fW(T0)(x)501

and test loss is related to ∥a(T0)∥1, we can prove that after T = Θ(d0.1/η) iterations with learning502

rate η = Θ(1), the model can achieve nearly zero training error, test error, training loss and test loss.503

C.2 Gradient Calculation504

Lemma C.7 (Gradient Calculation). The gradient of loss function LS(W) with respect to weight505

parameters wj is506

∇wjLS∪S′(W) = − q

nl + nu

( nu∑
i=1

ciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

))
+ λ ·wj ,

for 1 ≤ j ≤ m; and507

∇wjLS∪S′(W) =
q

nl + nu

( nu∑
i=1

ciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
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+

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

))
+ λ ·wj ,

for m+ 1 ≤ j ≤ 2m, where −ℓ′
(
ŷi · fW(xi)

)
= exp [−ŷi · fW(xi)]/(1 + exp [−ŷi · fW(xi)]) is508

denoted by ci and −ℓ′(y′i · fW(x′
i)) = exp[−y′i · fW(x′

i)]/(1+ exp[−y′i · fW(x′
i)]) is denoted by bi.509

Proof of Lemma C.7. When 1 ≤ j ≤ m,510

∇wj
ℓ
(
ŷi · fW(xi)

)
= ℓ′

(
ŷi · fW(xi)

)
· ŷi · ∇wj

fW(xi)

= −ci · ŷi · ∇wj
fW(xi)

= −ciŷi ·
(
σ′(⟨wj , yi · v⟩

)
· yi · v + σ′(⟨wj , ξi⟩

)
· ξi
)

= −qciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
511

∇wj
ℓ
(
y′i · fW(x′

i)
)
= ℓ′

(
y′i · fW(x′

i)
)
· y′i · ∇wj

fW(x′
i)

= −bi · y′i · ∇wjfW(x′
i)

= −biy
′
i ·
(
σ′(⟨wj , y

′
i · v⟩) · y′i · v + σ′(⟨wj , ξ

′
i⟩) · ξ′i

)
= −qbiy

′
i ·
(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
and when m+ 1 ≤ j ≤ 2m,512

∇wj
ℓ
(
ŷi · fW(xi)

)
= qciŷi

(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
∇wj

ℓ
(
y′i · fW(x′

i)
)
= qbiy

′
i ·
(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

)
Note that ∇wj

LS∪S′(W) =
(∑nu

i=1 ∇wj
ℓ
(
ŷi · fW(xi)

)
+
∑nl

i=1 ∇wj
ℓ
(
y′i · fW(x′

i)
))
/(nl+nu)+513

λ ·wj , we have proved the lemma.514

C.3 Inner Product Update Rule Calculation515

When the model is trained by gradient descent, the update rule can be formulated by516

w
(t+1)
j = w

(t)
j − η · ∇wj

LS(W
(t)), j ∈ [2m]. (C.2)

We study the performance of entire training process from two perspective: feature learning and noise517

memorization. Mathematically, we will focus on two quantities: ⟨w(t)
j ,v⟩ and ⟨w(t)

j , ξl⟩. And then518

we have following lemma for the inner product update rule.519

Lemma C.8 (Inner Product Update Rule). The feature learning and noise memorization performance520

of gradient descent can be formulated by521

⟨w(t+1)
j ,v⟩ = (1− ηλ) · ⟨w(t)

j ,v⟩+ qηuj

nl + nu

( nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j , yi · v⟩]q−1
+ ∥v∥22

+

nl∑
i=1

b
(t)
i [⟨w(t)

j , y′i · v⟩]
q−1
+ ∥v∥22

)
,

522

⟨w(t+1)
j , ξl⟩ = (1− ηλ) · ⟨w(t)

j , ξl⟩+
qηuj

nl + nu

( nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξl⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξl⟩

)
,

523

⟨w(t+1)
j , ξ′l⟩ = (1− ηλ) · ⟨w(t)

j , ξ′l⟩+
qηuj

nl + nu

( nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξ′l⟩
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+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξ′l⟩

)
,

where j ∈ [2m], l ∈ [nu] and uj := 1[1≤j≤m] −1[m+1≤j≤2m].524

Proof of Lemma C.8. According to Lemma C.7 and gradient descent update rule (C.2), we have525

w
(t+1)
j = (1− ηλ) ·w(t)

j +
qηuj

nl + nu
·
( nu∑

i=1

ciŷi
(
[⟨wj , yi · v⟩]q−1

+ · yi · v + [⟨wj , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨wj , y

′
i · v⟩]

q−1
+ · y′i · v + [⟨wj , ξ

′
i⟩]

q−1
+ · ξ′i

))
Taking inner product with feature vector v and noise patch ξl and note that v is orthogonal to ξl526

according to the data model, we have527

⟨w(t+1)
j ,v⟩ = (1− ηλ) · ⟨w(t)

j ,v⟩+ qηuj

nl + nu

( nu∑
i=1

c
(t)
i ŷi

(
[⟨wj , yi · v⟩]q−1

+ yi∥v∥22 + [⟨wj , ξi⟩]q−1
+ ⟨ξi,v⟩

)
+

nl∑
i=1

b
(t)
i y′i

(
[⟨wj , y

′
i · v⟩]

q−1
+ y′i∥v∥22 + [⟨wj , ξ

′
i⟩]

q−1
+ ⟨ξ′i,v⟩

))

= (1− ηλ) · ⟨w(t)
j ,v⟩+ qηuj

nl + nu

( nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j , yi · v⟩]q−1
+ ∥v∥22

+

nl∑
i=1

b
(t)
i [⟨w(t)

j , y′i · v⟩]
q−1
+ ∥v∥22

)
,

528

⟨w(t+1)
j , ξl⟩ = (1− ηλ) · ⟨w(t)

j , ξl⟩+
qηuj

nl + nu

( nu∑
i=1

c
(t)
i ŷi

(
[⟨wj , yi · v⟩]q−1

+ yi⟨v, ξl⟩+ [⟨wj , ξi⟩]q−1
+ ⟨ξi, ξl⟩

)
+

nl∑
i=1

b
(t)
i y′i

(
[⟨wj , y

′
i · v⟩]

q−1
+ y′i⟨v, ξl⟩+ [⟨wj , ξ

′
i⟩]

q−1
+ ⟨ξ′i, ξl⟩

))

= (1− ηλ) · ⟨w(t)
j , ξl⟩+

qηuj

nl + nu

( nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξl⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξl⟩

)
,

and529

⟨w(t+1)
j , ξ′l⟩ = (1− ηλ) · ⟨w(t)

j , ξ′l⟩+
qηuj

nl + nu

( nu∑
i=1

ŷic
(t)
i [⟨w(t)

j , ξi⟩]q−1
+ ⟨ξi, ξ′l⟩

+

nl∑
i=1

y′ib
(t)
i [⟨w(t)

j , ξ′i⟩]
q−1
+ ⟨ξ′i, ξ′l⟩

)
,

which completes the proof.530

C.4 Estimate Λ̂
(0)
r , Λ̄

(0)
r ,Γ

(0)
i ,Γ

′(0)
i531

Let Λ̂
(t)
1 = max1≤j≤m⟨w(t)

j ,v⟩, Λ̂
(t)
−1 = maxm+1≤j≤2m −⟨w(t)

j ,v⟩, Λ̄
(t)
1 =532

maxm+1≤j≤2m⟨w(t)
j ,v⟩, Λ̄

(t)
−1 = max1≤j≤m −⟨w(t)

j ,v⟩, which characterize the feature533

learning aspect of training process. An easy way to distinguish between Λ̂
(t)
r and Λ̄

(t)
r is that Λ̂(t)

r534

should be large while Λ̄
(t)
r should be small.535
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Let Γ(t)
i = max1≤j≤2m⟨wj , ξi⟩, i ∈ [nu], Γ

′(t)
i = max1≤j≤2m⟨wj , ξ

′
i⟩, i ∈ [nl], which characterize536

the noise memorization aspect of training process with respect to a particular sample.537

Let Γ(t) = max
{
maxi∈[nu] Γ

(t)
i ,maxi∈[nl] Γ

′(t)
i

}
, which characterize the noise memorization aspect538

of training process regardless of the sample index.539

We first provide the concentration inequality for Λ̂(0)
r and Λ̄

(0)
r in the following lemma.540

Lemma C.9. With probability at least 1− 4δ with respect to the randomness of initialization of w,541

we have542 ∣∣Λ̂(0)
r − E[Λ̂(0)

r ]
∣∣ <√8 log

(1
δ

)
σ0∥v∥2,

543 ∣∣Λ̄(0)
r − E[Λ̄(0)

r ]
∣∣ <√8 log

(1
δ

)
σ0∥v∥2,

and544

E[Λ̂(0)
r ] ≍

√
log(m)σ0∥v∥2,E[Λ̄(0)

r ] ≍
√
log(m)σ0∥v∥2, r ∈ {±1}.

Proof of Lemma C.9. Note that Λ̂(0)
1 = max1≤j≤m⟨w(0)

j ,v⟩, Λ̂(0)
−1 = maxm+1≤j≤2m −⟨w(0)

j ,v⟩,545

Λ̄
(0)
1 = maxm+1≤j≤2m⟨w(0)

j ,v⟩ and Λ̄
(0)
−1 = maxm+1≤j≤2m −⟨w(0)

j ,v⟩, w(0)
j ∼ N (0, σ2

0I) and546

v is a fixed vector. Therefore, ⟨w(0)
j ,v⟩ ∼ N (0, σ2

0∥v∥22), −⟨w(0)
j ,v⟩ ∼ N (0, σ2

0∥v∥22) for all547

1 ≤ j ≤ 2m and Λ̂
(0)
r , Λ̄

(0)
r , r ∈ {±1} are identically distributed. Therefore, without loss of548

generality, we only need to discuss the concentration of Λ̂(0)
1 . By applying Lemma E.1, we have549

P
(∣∣Λ̂(0)

1 − E[Λ̂(0)
1 ]
∣∣ > t

)
≤ 2e

− t2

2σ2
0∥v∥22 .

By applying Lemma E.2, we have550

E[Λ̂(0)
1 ] ≍

√
log(m)σ0∥v∥2,

which completes the proof.551

Then we provide concentration inequality for Γ(0)
i in the following lemma.552

Lemma C.10. Suppose that d ≥ Ω(log(m(nu + nl)/δ)), m = Ω(log(1/δ)). Then with probability553

at least 1− δ,554

σ0σp

√
d

4
≤ Γ

(0)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d, for all i ∈ [nu],

σ0σp

√
d

4
≤ Γ

′(0)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d, for all i ∈ [nl].

Proof of Lemma C.10. By Lemma E.3, with probability at least 1− δ/4,555

σp

√
d/

√
2 ≤ ∥ξi∥2 ≤

√
3/2 · σp

√
d, for i ∈ [nu],

σp

√
d/

√
2 ≤ ∥ξ′i∥2 ≤

√
3/2 · σp

√
d, for i ∈ [nl].

(C.3)

Therefore, by Gaussian tail bound and union bound, with probability at least 1− δ/4,556

⟨w(0)
j , ξi⟩ ≤ |⟨w(0)

j , ξi⟩| ≤
√

2 log(8m/δ) · σ0∥ξi∥2, for i ∈ [nu],

⟨w(0)
j , ξ′i⟩ ≤ |⟨w(0)

j , ξ′i⟩| ≤
√

2 log(8m/δ) · σ0∥ξ′i∥2, for i ∈ [nl].
(C.4)

Note that P
(
σ0σp

√
d/4 > ⟨w(0)

j , ξi⟩
)

is an absolute constant and therefore by the condition on m,557

we have558

P
(
σ0σp

√
d

4
≤ Γ

(t)
i

)
= P

(
σ0σp

√
d

4
≤ max

j∈[2m]
⟨w(0)

j , ξi⟩
)

= 1− P
(
σ0σp

√
d

4
> max

j∈[2m]
⟨w(0)

j , ξi⟩
)
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= 1−

(
P
(
σ0σp

√
d

4
> ⟨w(0)

j , ξi⟩
))2m

≥ 1− δ

4
,

and559

P
(
σ0σp

√
d

4
≤ Γ

′(t)
i

)
≥ 1− δ

4
.

On the other hand, according to (C.3) and (C.4), we have560

P
(
Γ
(t)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d
)

= P
(

max
j∈[2m]

⟨w(0)
j , ξi⟩ ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d
)

≥ 1− δ

4
,

and561

P
(
Γ
′(t)
i ≤ 2

√
log(16m(nu + nl)/δ) · σ0σp

√
d
)
≥ 1− δ

4
,

which completes the proof.562

C.5 Stage I of GD: On-diagonal feature learning563

In this stage, Λ̂(t)
1 and Λ̂

(t)
−1 respectively increase to magnitude Θ(1/m) and Λ̄

(t)
1 , Λ̄(t)

−1 and Γ
(t)
j564

remain small, the same magnitude as initialization. In order to characterize the behaviour of feature565

learning and noise memorization during Stage I, we decompose the analysis into following three566

parts:567

1. First, in Lemma C.15, we provide a lower bound of the update rules of on-diagonal feature learning568

term of Λ̂(t)
1 , Λ̂

(t)
−1 to lower-bound their increasing speed, and an upper bound of off-diagonal569

feature learning term Λ̄
(t)
1 , Λ̄

(t)
−1 to indicate their decrease.570

2. Second, in Lemma C.17, we provide a upper bound of the update rules of noise memorization571

term Γ(t) to upper-bound its increasing speed.572

3. Third, we provide a useful lemma, which is a derivation of Claim C.20 in Allen-Zhu and Li573

(2020b), which is called tensor power method. By applying tensor power method, we will prove574

that:575

• When Λ̂
(t)
1 reaches Θ(1/m) at T1, Λ̄(t)

1 and Γ(t) remain a magnitude no more than initialization.576

• When Λ̂
(t)
−1 reaches Θ(1/m) at T−1, Λ̄−1 and Γ(t) remain a magnitude no more than initializa-577

tion.578

C.5.1 Upper bound and lower bound for Λ̂
(t)
1 , Λ̂

(t)
−1 and Λ̄

(t)
1 , Λ̄

(t)
−1579

We first consider Stage I of GD when maxr∈{±1}
{
Λ̂
(t)
r , Λ̄

(t)
r

}
≤ Θ(m−1).580

In this stage, we first prove following lemma:581

Lemma C.11. As long as maxr∈{±1}
{
Λ̂
(t)
r , Λ̄

(t)
r

}
≤ Θ(m−1), we have c(t)i := −ℓ′

(
ŷi ·fW(t)(xi)

)
582

and b
(t)
i := −ℓ′

(
y′i · fW(t)(x′

i)
)

remains 1/2± o(1).583

Proof of Lemma C.11. Note that ℓ(z) = log(1+exp (−z)) and −ℓ′(z) = exp (−z)/
(
1+exp (−z)

)
,584

and without loss of generality assuming ŷi = yi = 1, we can express c(t)i as follow:585

c
(t)
i = −ℓ′(fW(t)(xi)) =

e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]

e
∑m

j=1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)] + e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]
,
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Since σ(⟨w(t)
j ,v⟩) dominates σ(⟨w(t)

j , ξ⟩) for j ∈ [m], which will be proved later by using tensor586

power method, we have587

c
(t)
i =

e
∑2m

j=m+1[σ(⟨w
(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + e

∑2m
j=m+1[σ(⟨w

(t)
j ,v⟩)+σ(⟨w(t)

j ,ξi⟩)]
.

On the one side,588

c
(t)
i ≥ 1

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + 1

≥ 1

em(Λ̂
(t)
1 )q−1

+ 1
≥ 1

eΘ(m−(q−1)) + 1
=

1

2 + o(1)
=

1

2
−o(1).

On the other side, according to Lemma C.4, we have Λ̄
(t)
1 = Õ(d−

1
4 ) and Γ(t) = Õ(d−

1
4+ϵ), it589

follows that590

c
(t)
i ≤ em(Λ̄

(t)
1 )q−1+m(Γ(t))q−1

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + em(Λ̄

(t)
1 )q−1+m(Γ(t))q−1

=
1 + o(1)

e
∑m

j=1 σ(⟨w(t)
j ,v⟩)+{lower order term} + 1 + o(1)

≤ 1 + o(1)

1 + 1 + o(1)
=

1

2
+ o(1).

Therefore, we have c
(t)
i = 1/2± o(1) if ŷi = yi = 1 and other cases (ŷi = yi = 1, ŷi = −yi, b

(t)
i )591

can be proved in a similar way.592

By applying above lemma, we can obtain following lemma:593

Lemma C.12. For any δ < 1/2, with probability at least 1− 2δ over pseudo-labels generated by the594

pseudo-labeler, we have595 ∣∣∣∣ 1nu

nu∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ <√ 1

8nu
log

1

δ
+ o(1),

where o(1) is with respect to d.596

If we denote {(xi, yi)|yi = 1, i ∈ [nu]} as S1, {(xi, yi)|yi = −1, i ∈ [nu]} as S−1, |S1| as n1 and597

|S−1| as n−1, we have with probability at least 1− 4δ that598 ∣∣∣∣ 1n1

n1∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ <√ 1

8n1
log

1

δ
+ o(1),

and599 ∣∣∣∣ 1

n−1

n−1∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ <
√

1

8n−1
log

1

δ
+ o(1).

Proof of Lemma C.12. First, according to Lemma C.11, we have600

1

nu

nu∑
i=1

ŷiyic
(t)
i =

1

nu

nu∑
i=1

ŷiyi

(
c
(t)
i − 1

2

)
+

1

2nu

nu∑
i=1

ŷiyi =
1

2nu

nu∑
i=1

ŷiyi ± o(1) (C.5)

Then, according to Hoeffding’s inequality when ai = −1, bi = 1, we have601

P
(∣∣∣∣ 1nu

nu∑
i=1

ŷiyi − E
[ 1

nu

nu∑
i=1

ŷiyi

]∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2n2

ut
2∑nu

i=1(ai − bi)2

)
= 2 exp (−2nut

2).
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Note that the pseudo-label ŷi generated by the pseudo-labeler takes yi with probability p and −yi602

with probability 1− p, we have E
[

1
nu

∑nu

i=1 ŷiyi
]
= 1

nu

∑nu

i=1 E
[
ŷiyi

]
= 2p− 1. It follows that603

P
(∣∣∣∣ 1

2nu

nu∑
i=1

ŷiyi −
(
p− 1

2

)∣∣∣∣ ≥ t

)
≤ 2 exp (−8nut

2),

and therefore604 ∣∣∣∣ 1

2nu

nu∑
i=1

ŷiyi −
(
p− 1

2

)∣∣∣∣ <√ 1

8nu
log

1

δ
(C.6)

holds with probability at least 1− 2δ. According to (C.5) and (C.6), we have605 ∣∣∣∣ 1

2nu

nu∑
i=1

ŷiyi −
(
p− 1

2

)∣∣∣∣ <√ 1

8nu
log

1

δ
+ o(1),

which verifies the first statement of the lemma. And the other part of the lemma can be proved in a606

similar way.607

According to above lemma and note that nu, n1, n−1 = ω(1), we have further that608 ∣∣∣∣ 1nu

nu∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ = o(1),

∣∣∣∣ 1nr

nr∑
i=1

ŷiyic
(t)
i −

(
p− 1

2

)∣∣∣∣ = o(1), r ∈ {±1}, (C.7)

with high probability.609

Besides, we also need an approximation about n1 and n−1, which is given as the following lemma:610

Lemma C.13. For r ∈ {±1}, it holds with probability at least 1− 2δ that611 ∣∣∣nr −
nu

2

∣∣∣ <√nu

2
log

1

δ
,

where nr := |{(xi, yi)|yi = r, i ∈ [nu]}|.612

Proof of Lemma C.13. Note that nr =
∑nu

i=1 1[Xi = r], r ∈ {±1} where Xi takes label +1 or −1613

with equal probability 1/2, according to Hoeffding’s inequality, we have614

P
(∣∣∣∣ nu∑

i=1

1[Xi = r]− E
[ nu∑

i=1

1[Xi = r]
]∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

nu

)
, r ∈ {±1},

and it follows that615

P
(∣∣∣nr −

nu

2

∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2

nu

)
, r ∈ {±1},

leading to616 ∣∣∣nr −
nu

2

∣∣∣ <√nu

2
log

1

δ
,

with probability at least 1− 2δ.617

For labeled dataset S′ = {(x′
i, y

′
i)}

nl
i=1, we also have618

Lemma C.14. For r ∈ {±1}, it holds with probability at least 1− 2δ that619 ∣∣∣n′
r −

nl

2

∣∣∣ <√nl

2
log

1

δ
,

where n′
r := |{(x′

i, y
′
i)|y′i = r, i ∈ [nl]}|.620

Then we are prepared to estimate a lower bound of increasing speed of Λ̂(t) and an upper bound of621

decreasing speed of Λ̄(t) in the following lemma.622
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Lemma C.15. For Λ̂(t)
1 := max1≤j≤m⟨w(t)

j ,v⟩ and Λ̂
(t)
−1 := maxm+1≤j≤2m⟨w(t)

j ,−v⟩, we have623

with high probability that624

Λ̂(t+1)
r ≥ (1− ηλ) · Λ̂(t)

r + η ·
(
p− 1

2

)
·Θ(d) · (Λ̂(t)

r )q−1, r ∈ {±1}.

For Λ̄(t)
1 := maxm+1≤j≤2m⟨w(t)

j ,v⟩ and Λ̄
(t)
1 := max1≤j≤m⟨w(t)

j ,−v⟩, we have with high proba-625

bility that626

Λ̄(t+1)
r ≤ (1− ηλ) · Λ̄(t)

r , r ∈ {±1}.

Proof of Lemma C.15. We first prove the former inequality. Let j∗ = argmax1≤j≤m⟨w(t)
j ,v⟩ and627

note that uj∗ = 1[1≤j≤m] −1[m+1≤j≤2m] = 1, then we have628

Λ̂
(t+1)
1 ≥ ⟨w(t+1)

j∗ ,v⟩

= (1− ηλ) · ⟨w(t)
j∗ ,v⟩+

qη

nl + nu

( nu∑
i=1

yiŷic
(t)
i [⟨w(t)

j∗ , yi · v⟩]
q−1
+ ∥v∥22︸ ︷︷ ︸

♣

+

nl∑
i=1

b
(t)
i [⟨w(t)

j∗ , y
′
i · v⟩]

q−1
+ ∥v∥22︸ ︷︷ ︸

⋆

)

Then we respectively estimate terms ♣ and ⋆.629

For ♣, note the definition of j∗ that Λ̂(t)
1 = ⟨w(t)

j∗ ,v⟩ and note the increasing property of Λ̂(t)
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yiŷic
(t)
i

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= n1 ·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
, (C.8)

where S1 := {(xi, yi)|yi = 1, i ∈ [nu]}, S−1 := {(xi, yi)|yi = −1, i ∈ [nu]}, n1 = |S1| and the632

last equality is due to (C.7).633

For ⋆, similarly we have634
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where S′
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equality is due to Lemma C.11.636

According to (C.8) and (C.9), we have637
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(C.10)

According to Lemma C.13 and Lemma C.14, and note that nl = Θ̃(1), nu = ω(d4ϵ), we have for ♠638

that with probability at least 1− 4δ639 ∣∣∣∣ n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

− nu

2(nl + nu)
·
(
p− 1

2

)
− nl

2(nl + nu)
· 1
2

∣∣∣∣
≤

|n1 − nu

2 |
nl + nu

·
(
p− 1

2

)
+

|n′
1 − nl

2 |
nl + nu

· 1
2

≤

√
nu

2 log 1
δ

nl + nu
·
(
p− 1

2

)
+

√
nl

2 log 1
δ

nl + nu
· 1
2

= Θ
( 1
√
nu

)
= o(1)
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Plugging (C.11) into (C.10), we have641
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which verifies the first inequality of case r = 1 in the lemma.642

Let j∗∗ = argmaxm+1≤j≤2m⟨w(t)
j ,−v⟩ and note that uj∗∗ = 1[1≤j≤m] −1[m+1≤j≤2m] = −1, we643

have644
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For ♣, note the definition of j∗∗ that Λ̂(t)
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where S−1 := {(xi, yi)|yi = −1, i ∈ [nu]}, n−1 = |S−1|.647

For ⋆, according to Lemma C.11, similarly we have648
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where S′
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(C.15)
According to Lemma C.13 and Lemma C.14, and note that nl = Θ̃(1), nu = ω(d4ϵ), we have for ♠651
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Plugging (C.16) into (C.15), we have654
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which verifies the first inequality of case r = −1 in the lemma.655
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Next, we prove the latter part of the lemma. Let j♮ = argmaxm+1≤j≤2m⟨w(t+1)
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For ♣, according to (C.7), we have657
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yiŷic
(t)
i [⟨w(t)

j♮
,v⟩]q−1

+ ∥v∥22 +
∑

i∈S−1

yiŷic
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and for ⋆ it’s obvious that658
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Therefore, it follows that659
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Let j♮♮ = argmax1≤j≤m⟨w(t+1)
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which verifies the second part of the lemma.661

Although the accuracy of pseudo-labeler is larger than 1/2, which is used as an assumption in the662

previous proof, we can also analyse the model with high label flipping probability and the accuracy of663

pseudo-labeler p is smaller than 1/2. In this case, the neural network for pre-training will turn to fit664

the opposite direction of feature vector, Λ̄(t)
r will increase and Λ̂

(t)
r will decrease, which is formulated665

as the following lemma.666
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Lemma C.16. For Λ̂(t)
1 := max1≤j≤m⟨w(t)
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Proof of Lemma C.16. First, we prove the former part of this lemma. Let j∗ =671

argmax1≤j≤m⟨w(t+1)
j ,v⟩ and note that uj∗ = 1[1≤j≤m] −1[m+1≤j≤2m] = 1, then we have672
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For ♣, according to (C.7), we have673
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For ⋆, according to (C.7), we have674
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It follows that675
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According to Lemma C.13 and note that nu = ω(nl), it holds with probability at least 1− 8δ that676
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leading to ♣+⋆ ≤ 0. Therefore,678
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Next, we prove the second part of the lemma. Let j♮ = argmaxm+1≤j≤2m⟨w(t)
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, (C.18)

For ⋆, similarly we have684
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. (C.19)

According to Lemma C.13, (C.18) and (C.19), we have n′
1 = o(n1) with high probability, therefore685

♣+⋆ = n1 ·
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2
± o(1)

)
· ∥v∥22 ·

(
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(t)
1

)q−1
,

leading to686
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And we can prove in a similar way that687
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− p
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·Θ(d) ·

(
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.

688

In this case (p < 1/2), given a small amount of labeled data, downstream task parameter a will learn689

the negative direction and the main theorems still hold.690

C.5.2 Uniform upper bound for Γ(t)691

The following lemma provides an upper bound for the increasing rate of Γ(t).692

Lemma C.17. For Γ
(t)
i := maxj∈[2m]⟨wj , ξi⟩, i ∈ [nu], Γ

′(t)
i := maxj∈[2m]⟨wj , ξ

′
i⟩, i ∈ [nl],693

Γ(t) := max{maxi∈[nu] Γ
(t)
i ,maxi∈[nl] Γ

′(t)
i }, we have with high probability that694
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and696
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,

where ϵ < 1/8.697

Proof of Lemma C.17. We first prove the former inequality. Let j⋆ = argmax1≤j≤2m⟨w(t+1)
j , ξl⟩,698

where l ∈ [nu] is fixed. According to Lemma C.8, we have699

Γ
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(C.20)
where the last inequality is due to triangle inequality.700
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For ♣, note that l ∈ [nu] and there exists an i ∈ [nu] equivalent to l, it follows that701
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(C.21)

where the inequality is due to Lemma C.11, ∥ξl∥22 = Θ̃(dσ2
p) = Θ̃(d1+2ϵ), |⟨ξi, ξl⟩| = Θ̃(d

1
2σ2

p) =702

Θ̃(d
1
2+2ϵ) according to Lemma E.3 and the definition of Γ(t).703

For ⋆, we have704
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(C.22)
Plugging (C.21) and (C.22) into (C.20), we have705
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which is the first part of this lemma.706

Let j⋆ = argmax1≤j≤2m⟨w(t+1)
j , ξ′l⟩, where l ∈ [nl] is fixed. According to Lemma C.8, we have707
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(C.23)
For ♣, we have708
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(C.24)
where the inequality is due to Lemma C.11, |⟨ξi, ξl⟩| = Θ̃(d

1
2σ2

p) = Θ̃(d
1
2+2ϵ) and the definition of709

Γ(t).710
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For ⋆, note that l ∈ [nl] and there exists an i ∈ [nl] equivalent to l, it follows that711
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(C.25)

Plugging (C.24) and (C.25) into (C.23), we have712
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which verifies the second inequality in this lemma.713

Note that Γ(t) = max{maxl∈[nu] Γ
(t)
l ,maxl∈[nl] Γ

′(t)
l }, without loss of generality, we assume Γ(t) =714

maxl∈[nu] Γ
(t)
l and assume l∗ = argmaxl∈[nu] Γ

(t+1)
l , we have715
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which verifies the third inequality in this lemma.716

717

C.5.3 Tensor Power Method: Proving Γ(t) = O(Γ(0)) during [0, Tr] and computing the718

magnitude of Tr719

In this section, we first show that off-diagonal correlation (Λ̄(t)
r for p > 1/2 and Λ̂

(t)
r for p < 1/2)720

remains initialization magnitude during [0, Tr]. If the accuracy of pseudo-labeler p > 1/2, we have721

off-diagonal correlation Λ̄
(t+1)
r ≤ (1−ηλ)·Λ̄(t)

r for r ∈ {±1}, therefore, Λ̄(t)
r = O(Λ̄

(0)
r ) = Õ(d−

1
4 ).722

If p < 1/2, we have off-diagonal correlation Λ̂
(t+1)
r ≤ (1 − ηλ) · Λ̂(t)

r for r ∈ {±1}, therefore,723

Λ̂
(t)
r = O(Λ̂

(0)
r ) = Õ(d−

1
4 ). In this paper, we mainly focus on p > 1/2.724

According to Sections C.5.1 and C.5.2, we have obtained following upper bounds and lower bounds725

for feature learning term Λ̂
(t)
r , Λ̄

(t)
r , r ∈ {±1} and noise memorization term Γ(t): When t ∈ [0, Tr],726

we have727
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r , for r ∈ {±1};

Γ(t+1) ≤ (1− ηλ) · Γ(t) + η ·max

{
Θ̃(d

1
2+2ϵ), Θ̃

(d1+2ϵ

nu

)}
· (Γ(t))q−1.

(C.26)
According to Condition 3.1, assume nu = Ω(d4ϵ) and note that ϵ < 1/8, we have728
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{
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1
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)}
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Θ̃(d

1
2+2ϵ), Õ(d1−2ϵ)

}
= Õ(d1−2ϵ),

leading to729

Γ(t+1) ≤ (1− ηλ) · Γ(t) + η · Θ̃(d1−2ϵ) · (Γ(t))q−1.
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By leveraging tensor power method introduced in Lemma E.4, we can prove following lemma about730

the magnitude of Γ(t):731

Lemma C.18. Γ(t) remains initialization magnitude during [0,maxr∈{±1}{Tr}].732

Proof of Lemma C.18. Let T ∗
r be the first iteration t in which Λ̂

(t)
r ≥ A for r ∈ {±1}, let T ∗ be the733

first iteration t in which Γ(t) ≥ A′, then according to Lemma E.4, we know734 ∑
t≥0,xt≤A
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(1− (1 + δ)−(q−2))x0C1
+ η · C2

C1
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And it follows that736
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737

η · T ∗ ≥
δ′
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)
,

where C1, C2 = (2p− 1) · Θ̃(d) and C ′
1, C

′
2 = Θ̃(d1−2ϵ) according to (C.26).738

Taking A = Θ(1/m), A′ = C · Γ(t) where C is a large constant and C = Θ(1), δ = δ′ = 1
2 and739

note that Λ̂(0)
r = Θ̃(σ0d

1
2 ) = Θ̃(d−

1
4 ),Γ(0) = Θ̃(σ0σpd

1
2 ) = Θ̃(d−

1
4+ϵ), we have740

η · T ∗
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3
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3
4 ), (C.27)

and741

η · T ∗ ≥ Θ̃(d−
3
4+ϵ)− η · Θ̃(1) = Θ̃(d−

3
4+ϵ). (C.28)

Therefore, combining (C.27) and (C.28), we have η · T ∗ ≥ Θ̃(d−
3
4+ϵ) > Θ̃(d−

3
4 ) ≥ η · T ∗

r , leading742

to T ∗ > T ∗
r for both r ∈ {−1.+ 1}. This indicates that when Λ̂

(t)
1 , Λ̂

(t)
−1 reach Θ(1/m), Γ(t) remain743

the same magnitude as initialization.744

By leveraging tensor power method, we can also estimate the length of Stage I, i.e. T1, T−1, by745

applying tensor power method. To use tensor power method, we need to upper-bound the increasing746

speed of Λ̂(t)
r . We have the following lemma:747
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Proof of Lemma C.19. Let j∗ = argmax1≤j≤m⟨w(t+1)
j ,v⟩ and note that uj∗ = 1[1≤j≤m] =750

1[m+1≤j≤2m] = 1, then we have751
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(C.29)
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For ♣, according to Lemma C.12, we have752 ∑
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(C.30)
where the last equality is due to Λ̂

(t)
1 = ω(Λ̄

(t)
−1).753

For ⋆, according to Lemma C.11, we have754 ∑
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(C.31)

where the last equality is due to Λ̂
(t)
1 = ω(Λ̄

(t)
−1).755

Plugging (C.30) and (C.31) into (C.29), we have756

Λ̂
(t+1)
1

≤ (1− ηλ) · Λ̂(t)
1 +

qη

nl + nu

(
n1 ·

(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+ n′

1 ·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
)

= (1− ηλ) · Λ̂(t)
1 +

qηn1

nl + nu
·
(
p− 1

2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
+

qηn′
1

nl + nu
·
(1
2
± o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + qη ·

(
n1

nl + nu
·
(
p− 1

2
± o(1)

)
+

n′
1

nl + nu
·
(1
2
± o(1)

))
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1

= (1− ηλ) · Λ̂(t)
1 + qη ·

(
n1

nl + nu
·
(
p− 1

2

)
+

n′
1

nl + nu
· 1
2︸ ︷︷ ︸

♠

±o(1)

)
· ∥v∥22 ·

(
Λ̂
(t)
1

)q−1
.

(C.32)

Note that we have already proved in (C.10) that757
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(C.33)
Note we have already prove in (C.11) that758
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Therefore, we have759
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In a similar way, we can prove that761
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which completes the proof of this lemma.763

Lemma C.20 (Length of pre-training). For r ∈ {±1}, let Tr be the first iteration that Λ̂(t)
r reaches764

Θ(1/m) respectively. Then Tr = Θ̃(d
q
4−

3
2 )/η for all r ∈ {±1}.765

Proof of Lemma C.20. By leveraging tensor power method given in Lemma E.4,766 ∑
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we have for r ∈ {±1} that768
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where C1 is taken as q
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)
· ∥v∥22 and C2 is taken as q

(
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)
· ∥v∥22 according to769

Lemma C.19. Taking δ = 1
k , A = Θ(1/m) and note that terms (ii), (iv) are respectively dominated770

by terms (i), (iii) when η is sufficiently small and letting k → ∞, we have771
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And by Lemma C.9, we have η ·T ∗
r = Θ(1/q

(
p− 1

2

)
∥v∥22 · (

√
log(m)σ0∥v∥2)q−2) = Θ̃(dq/4−3/2),773

which completes the proof.774

The discussion in this section verifies Lemma C.4 and provides a clear understanding about how775

Λ̂
(t)
r , Λ̄

(t)
r varies within the iteration range [0, Tr] for r ∈ {±1}. Note that the iteration numbers776

when Λ̂
(t)
1 and Λ̂

(t)
−1 reaches Θ(1/m) (T1 and T−1) are different, however, since T−1 and T1 have the777

same magnitude, it remains clear that although T1 ̸= T−1 (wlog, assume T1 < T−1), we still have778

Λ̂
(t)
1 = Θ̃(1) and Λ̄

(t)
1 = Õ(d−

1
4 ) within the iteration range [T1, T−1], since off-diagonal feature779

learning also costs time no less than order Θ(1/ησ0∥v∥q2(logm)(q−2)/2), which is higher order than780
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|T1 − T−1| = Θ(1/ησ0∥v∥q2(logm)(q−1)/2), according to (C.34) and Lemma C.9. Therefore, at781

time T0 := max{T1, T−1}, off-diagonal Λ̄(t)
1 , Λ̄

(t)
−1 still remain initialization magnitude Õ(d−

1
4 ),782

Γ
(t)
1 ,Γ

(t)
−1 remain initialization magnitude Õ(d−

1
4+ϵ), while on-diagonal Λ̂(t)

1 , Λ̂
(t)
−1 reach and then783

remain Θ̃(1).784

C.6 Proof of Lemma C.3785

If we only use labeled data S′ for the optimization of CNN, according to Lemma D.1, we have786
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i be the first iteration that Γ′(t)

i reaches Θ(1/m), then we have following lemma:790

Lemma C.21. As long as Γ′(t)
i ≤ Θ(1/m), b(t)i := −ℓ′(y′i · fW(t)(x′

i)) will remain 1/2± o(1).791

Proof of Lemma C.21. Note that ℓ(z) = log(1+exp (−z)) and −ℓ′(z) = exp (−z)/
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)
,792

and without loss of generality assuming y′i = 1, we can express b(t)i as follow:793
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method, we have795
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On the one side,796
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On the other side, according to Lemma C.5, we have Λ̄
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≤ 1 + o(1)

1 + 1 + o(1)
=

1

2
+ o(1).

Therefore, we have b
(t)
i = 1/2 ± o(1) and the other case of yi = −1 can be proved in a similar798

way.799

With the help of above lemma, we are now ready to prove Lemma C.3.800

Proof of Lemma C.3. Let j∗ = argmax1≤j≤m⟨w(t+1)
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For ⋆, we have804 ∑
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By plugging (C.36) and (C.37) in (C.35), and according to Lemma C.14, we have with probability at805
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And we can prove in the same way that with probability at least 1− 4δ we have807
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And we can prove in the same way that Λ̄(t+1)
−1 ≤ (1− ηλ) · Λ̄(t)

−1.809

Next, we consider the increasing rate of Γ
′(t)
l where l ∈ [nl] is fixed. If yl = 1, let j♮ =810

argmax1≤j≤m⟨w(t)
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where the third equality holds if we properly choose the order of λ.812

If yl = −1, let j♯ = argmaxm+1≤j≤2m⟨w(t)
j , ξ′l⟩ and note that uj = −1, we have813
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where the third equality holds if we properly choose the order of λ.814

According to (C.39) and (C.40), we always have815
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C.7 Proof of Lemma C.5817

By applying Lemma E.4 to Γ
(t)
i and taking C1 = Θ̃(d1+2ϵ), δ = 1/2, A = Θ(1/m), we have818 ∑
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And note the definition of T ′
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In Lemma C.3, we have already prove that820
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Define Λ(t) := maxr∈{±1}{Λ̂
(t)
r , Λ̄

(t)
r }, according to (C.42), we have821

Λ(t+1) ≤ (1− ηλ) · Λ(t) + η ·Θ(d) · (Λ(t))q−1.

By applying Lemma E.4 to Λ(t), and taking C1 = Θ(d), δ = 1/2, A = C · Λ(0), where A is a large822

constant, we have823 ∑
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Let T ′ be the first iteration that Λ(t) reaches C · Λ(0), then we have824
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q
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3
2 ). (C.43)

According to (C.41) and (C.43), we have T ′ = ω(T ′
i ), which indicates that when Γ

(t)
i reaches825

Θ(1/m), Λ(t) remains initialization magnitude Θ̃(d−
1
4 ).826

C.8 Empirical, test error and loss for early stopped classifier827

Assume the accuracy of pseudo-labeler p is larger than 1/2. We first estimate the empirical loss828

for early stopped classifier fW(T0) , where T0 = maxr∈{±1}{Tr} and Tr is defined as the first829

iteration that Λ̂(t)
r reaches Θ(1/m). According to Section C.5.3 and Lemma C.18, we have Λ̂

(T0)
r =830

Θ̃(1), Λ̄
(T0)
r = Õ(d−

1
4 ),Γ(t) = Õ(d−

1
4+ϵ), for r ∈ {±1}. We have the following lemma:831

Lemma C.22. Early stopped classifier fW(T0)(x) possesses following properties:832

1. Training error of early stopped classifier fW(T0)(x) is asymptotically 1− p: 1
nu+nl

(∑nu

i=1 1[ŷi ·833

fW(T0)(xi) ≤ 0] +
∑nl

i=1 1[y
′
i · fW(T0)(x′

i) ≤ 0]
)
= 1− p± o(1).834

2. Test error is nearly 1 − p, if we use pseudo-label ŷ generated by pseudo-labeler as target:835

P(x,y)∼D,ŷ∼y·B(p)[ŷ · fW(T0)(x) ≤ 0] = 1− p± o(1).836

3. Test error is nearly 0, if we use true label y as target: P(x,y)∼D[y · fW(T0)(x) ≤ 0] = o(1) and837

hence sign fW(T0)(x) = sign(y) with high probability,838

where p is the accuracy of the pseudo-labeler. We can regard p as the probability that xi is paired839

with true label yi, 1− p is the probability that xi is paired with wrong label −yi.840

Proof of Lemma C.22. Recall the definition of fW in (2.1) that841

fW(T0)(xi) =

m∑
j=1

[
σ
(
⟨w(T0)

j , yi · v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
⟨w(T0)

j , yi · v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]
.
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According to Section C.5.3 and Lemma C.18, we have Λ̂
(T0)
r = Θ̃(1), Λ̄

(T0)
r = Õ(d−

1
4 ),Γ(t) =842

max
{
maxi∈[nu] Γ

(t)
i ,maxi∈[nl] Γ

′(t)
i

}
= Õ(d−

1
4+ϵ), for r ∈ {±1}. If yi = 1, we have following843

lower bound for fW(T0)(xi)844

fW(T0)(xi) =

m∑
j=1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≥
(
Λ̂
(T0)
1

)q
+
(
Γ
(T0)
i

)q −m
(
Λ̄
(T0)
1

)q −m
(
Γ
(T0)
i

)q
≥
(
Λ̂
(T0)
1

)q{− lower order terms},

and following upper bound for fW(T0)(xi):845

fW(T0)(xi) =

m∑
j=1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≤ m(Λ̂
(T0)
1 )q +m(Γ

(T0)
i )q −

(
Λ̄
(T0)
1

)q − (Γ(T0)
i

)q
≤ (Λ̂

(T0)
1 )q{+ lower order terms}.

If yi = −1, we have following upper bound for fW(T0)(xi):846

fW(T0)(xi) =

m∑
j=1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≤ m
(
Λ̄
(T0)
−1

)q
+m

(
Γ
(T0)
i

)q − (Λ̂(T0)
−1

)q − (Γ(T0)
i

)q
≤ −

(
Λ̂
(T0)
−1

)q{+ lower order terms},

and following lower bound for fW(T0)(xi):847

fW(T0)(xi) =

m∑
j=1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

−
2m∑

j=m+1

[
σ
(
− ⟨w(T0)

j ,v⟩
)
+ σ

(
⟨w(T0)

j , ξi⟩
)]

≥
(
Λ̄
(T0)
−1

)q
+
(
Γ
(T0)
i

)q −m
(
Λ̂
(T0)
−1

)q −m
(
Γ
(T0)
i

)q
≥ −m

(
Λ̄
(T0)
−1

)q{− lower order terms}.

Therefore, for unlabeled data, we have yi ·fW(T0)(xi) ∈
[(
1−o(1)

)
·(Λ̂(T0)

yi )q,
(
m+o(1)

)
·(Λ̂(T0)

yi )q
]

848

and hence sign
(
fW(T0)(xi)

)
= sign(yi) holds with high probability. We can also prove for labeled849

data (x′
i, y

′
i) that y′i·fW(T0)(x′

i) ∈
[(
1−o(1)

)
·(Λ̂(T0)

y′
i

)q,
(
m+o(1)

)
·(Λ̂(T0)

y′
i

)q
]
, sign

(
fW(T0)(x′

i)
)
=850

sign(y′i) in the same way.851

Note that ŷi takes yi with probability p, −yi with probability p and nl = o(nu), the first statement in852

this lemma follows obviously.853

To prove the other two statement, we need to give an upper bound for the norm of wj . According to854

the update rule of w(t)
j , we have855

w
(t+1)
j = (1− ηλ) ·w(t)

j +
qηuj

nl + nu
·
( nu∑

i=1

ciŷi
(
[⟨w(t)

j , yi · v⟩]q−1
+ · yi · v + [⟨w(t)

j , ξi⟩]q−1
+ · ξi

)
+

nl∑
i=1

biy
′
i

(
[⟨w(t)

j , y′i · v⟩]
q−1
+ · y′i · v + [⟨w(t)

j , ξ′i⟩]
q−1
+ · ξ′i

))
,

leading to856
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∥w(t+1)
j ∥2 ≤ (1− ηλ) · ∥w(t)

j ∥2 +
qη

nl + nu
·
( nu∑

i=1

(
[⟨w(t)

j , yi · v⟩]q−1
+ · ∥v∥2 + [⟨w(t)

j , ξi⟩]q−1
+ · ∥ξi∥2

)
+

nl∑
i=1

(
[⟨w(t)

j , y′i · v⟩]
q−1
+ · ∥v∥2 + [⟨w(t)

j , ξ′i⟩]
q−1
+ · ∥ξ′i∥2

))
≤ (1− ηλ) · ∥w(t)

j ∥2 +
qη

nl + nu
·
(
(nl + nu) · ∥v∥2 ·

(
max

r∈{±1}
{Λ̂(t)

r , Λ̄(t)
r }
)q−1

+
( ∑

i∈[nu]

∥ξi∥2 +
∑
i∈[nl]

∥ξ′i∥2
)
·
(
Γ(t)

)q−1
)

≤ ∥w(t)
j ∥2 + η ·

(
Θ(d

1
2 ) · Θ̃(1) + Θ(d

1
2+ϵ) · Õ(d(q−1)(− 1

4+ϵ))
)

= ∥w(t)
j ∥2 + η · Θ̃(d

1
2 ),

(C.44)
where the first inequality is by triangle inequality; the second inequality is due to the definition of857

Λ̂
(t)
r , Λ̄

(t)
r ,Γ(t), the last inequality is due to Lemma C.4.858

According to Lemma C.20, we know that Tr · η = Θ̃(d−
3
4 ), r ∈ {±1} and T0 · η = maxr∈{±1}{Tr ·859

η} = Θ̃(d−
3
4 ). Note that w(0)

j ∼ N (0, σ2
0Id), σ0 = Θ(d−

3
4 ) and hence ∥w(0)

j ∥2 = Θ̃(d−
1
4 ), we860

know that861

∥w(T0)
j ∥2 ≤ ∥w(0)

j ∥2 + η · T0 · Θ̃(d−
1
4 ) = Θ̃(d−

1
4 ) + Θ̃(d−

1
4 ) = Θ̃(d−

1
4 ).

Therefore, for any (x, y) sampled from distribution D where x = [y · v⊤, ξ⊤]⊤ and ξ ∼ N (0, σ2
p),862

we have863

⟨w(T0)
j , ξ⟩ ∼ N (0, σ2

p∥w
(T0)
j ∥22), |⟨w

(T0)
j , ξ⟩| = Θ(σp∥w(T0)

j ∥2) = Õ(d−
1
4+ϵ). (C.45)

And this indicates that ⟨w(T0)
j , ξ⟩ will still be dominated by ⟨w(T0)

j ,v⟩, therefore it holds for newly864

sampled (x, y) that865

y · fW(T0)(x) ∈
[(
1− o(1)

)
· (Λ̂(T0)

yi
)q,
(
m+ o(1)

)
· (Λ̂(T0)

yi
)q
]
,

which means that866

P(x,y)∼D[y · fW(T0)(x) ≤ 0] = o(1).

This verifies the third statement that test error is nearly zero.867

For the second statement, note that868

P(x,y)∼D,ŷ∼y·B(p)[ŷ · fW(T0)(x) ≤ 0]

= P(x,y)∼D[ŷ · fW(T0)(x) ≤ 0|ŷ = y] · Pŷ∼y·B(p)(ŷ = y)

+ P(x,y)∼D[ŷ · fW(T0)(x) ≤ 0|ŷ = −y] · Pŷ∼y·B(p)(ŷ = −y)

= p · P(x,y)∼D[y · fW(T0)(x) ≤ 0] + (1− p) · P(x,y)∼D[y · fW(T0)(x) ≥ 0]

= p · o(1) + (1− p) · (1− o(1))

= 1− p± o(1),

which verifies the second statement.869

C.9 Downstream task870

For downstream tasks, we use early stopped classifiers, which are stopped when on-diagonal feature871

Λ̂
(t)
r are learned while off-diagonal feature Λ̄

(t)
r and noise Γ(t) are not memorized. Assume we have872

learned K early stopped classifiers f
W

(T1
0 )

1

(x), · · · , f
W

(TK
0 )

K

(x) by using nu pseudo-labeled data873

generated by pseudo-labeler fw
1 , · · · , fw

K and nl labeled data.874
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Then, we want to design a classifier on the learned representation f
W

(T1
0 )

1

(x), · · · , f
W

(TK
0 )

K

(x) to fit875

y. Here we consider training a downstream linear model876

ga(x) =

K∑
k=1

akf
W

(Tk
0 )

k

(x),

where ak ∈ R denotes the weight as the k-th pre-trained model. Given labeled training data877

S′ = {(x′
i, y

′
i)}

nl
i=1, we want to optimize the empirical loss function878

LS′(a) =
1

nl

nl∑
i=1

ℓ
(
y′i · ga(x′

i)
)
,

where ℓ(z) = log(1 + exp(−z)) denotes the cross entropy loss. We initialize a as zero and optimize879

empirical loss function by gradient descent, i.e.880

a(t+1) = a(t) − η · ∇aLS′(a(t)),a(0) = 0.

In order to estimate the training error and test error for downstream task, we first introduce following881

lemma about the increasing rate of
∥∥a(t)∥∥

1
.882

Lemma C.23 (Logarithmic increasing rate). For any learning rate η > 0, a(t)k will always increase883

for any k ∈ [K] and hence
∥∥a(t)∥∥

1
=
∑K

k=1 a
(t)
k . And it holds that

∥∥a(t)∥∥
1
= Θ(log(t)).884

In order to give the increasing rate of
∥∥a(t)∥∥

1
, we introduce and prove the following lemma:885

Lemma C.24. Consider following sequence {xt}∞t=1 with886

xt+1 = xt + C · a−xt , x0 = 0,

where a > 1 and C > 0 are constants, and it follows that887

loga
(
ln a · C · t+ 1

)
≤ xt ≤ loga

(
ln a · C · t+ 1

)
+ C,

and888

xt+1 − xt ≤
C

C · ln a · t+ 1
.

Proof of Lemma C.24. Note that889

xi+1 − xi = C · a−xi ⇐⇒ axi(xi+1 − xi) = C,

by adding up above equation from i = 0 to i = t− 1, we have890

t−1∑
i=0

axi(xi+1 − xi) = C · t (C.46)

=⇒
∫ xt

x0

axdx ≥ C · t

=⇒ axt − ax0

ln a
≥ C · t

=⇒ axt ≥ C · ln a · t+ 1

=⇒
{

xt ≥ loga
(
C · ln a · t+ 1

)
,

xt+1 − xt = C · a−xt ≤ C
C·ln a·t+1 ,

where the first arrow is due to ax is monotone increasing.891

On the other hand,892

axi+1 = axi+C·a−xi
= axi · aC·a−xi ≤ axi · aC/(C·ln a·i+1) ≤ axi · aC ,
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which implies893

t−1∑
i=0

axi+1 · (xi+1 − xt) ≤ aC
t−1∑
i=0

axi · (xi+1 − xi)

=⇒
t−1∑
i=0

axi+1 · (xi+1 − xi) ≤ aC · Ct

=⇒
∫ xt

x0

axdx ≤ aC · Ct,

where the first arrow is due to (C.46) and the last arrow is due to ax is monotone increasing.894

This leads to895

xt ≤ loga
(
ln a · C · aC · n+ 1

)
≤ loga

(
ln a · C · aC · n+ aC

)
= loga

(
ln a · C · t+ 1

)
+ C

Therefore, we have896

loga
(
ln a · C · t+ 1

)
≤ xt ≤ loga

(
ln a · C · t+ 1

)
+ C,

and897

xt+1 − xt ≤
C

ln a · C · t+ 1
.

898

Now we are ready to prove Lemma C.23.899

Proof of Lemma C.23. Note that we take downstream task linear model ga(x) as900

ga(x) =

d∑
k=1

ak

{
m∑
j=1

[
σ
(
⟨w(Tk

0 )
k,j , y · v⟩

)
+ σ

(
⟨w(Tk

0 )
k,j , ξ⟩

)]

−
2m∑

j=m+1

[
σ
(
⟨w(Tk

0 )
k,j , y · v⟩

)
+ σ

(
⟨w(Tk

0 )
k,j , ξ⟩

)]}

=

d∑
k=1

akf
W

(Tk
0 )

k

(x).

Then, we have following update rule for model parameter a:901

a
(t+1)
k = a

(t)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)
· y′if

W
(Tk

0 )

k

(x′
i),

where we initialize a
(0)
k as zero for all k ∈ [K].902

Next, we prove following statement by using induction method: when t ≥ 1,903

• a
(t)
k ,∀k ∈ [K] is non-negative and increasing.904

•
∥∥a(t)∥∥

1
=
∑K

i=1 a
(t)
k .905

• a
(t+1)
k = a

(t)
k + η · Θ̃(1) ·

(
exp

(
− ∥a(1)∥1 · Θ̃(1)

))
,∀k ∈ [K].906

Note that a(0)k = 0 for all k ∈ [d] and therefore ga(0)(x′
i) = 0, ℓ′

(
y′i · ga(0)(x′

i)
)
= ℓ′(0) = −1/2,907

a
(1)
k = a

(0)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(0)(x′

i)
)
· y′if

W
(Tk

0 )

k

(x′
i)
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= a
(0)
k + η · 1

2nl

nl∑
i=1

y′if
W

(Tk
0 )

k

(x′
i) = η · 1

2nl

nl∑
i=1

y′if
W

(Tk
0 )

k

(x′
i) for all k ∈ [K].

Note that the accuracy of the k-th pseudo-labeler pk > 1/2, accoring to the proof of Lemma C.22,908

we have909

f
W

(Tk
0 )

k

(x′
i) =

m∑
j=1

[
σ
(
⟨w(Tk

0 )
k,j , y′i · v⟩

)
+ σ

(
⟨w(Tk

0 )
k,j , ξ′i⟩

)]

−
2m∑

j=m+1

[
σ
(
⟨w(Tk

0 )
k,j , y′i · v⟩

)
+ σ

(
⟨w(Tk

0 )
k,j , ξ′i⟩

)]
= y′i · Θ̃

(
(Λ̂

(Tk
0 )

y′
i

)q
)
,

for all k ∈ [K]. Therefore910

a
(1)
k = η · 1

2nl

nl∑
i=1

y′if
W

(Tk
0 )

k

(x′
i) ≥

η

2
· Θ̃
(
(Λ̂

(Tk
0 )

y′
i

)q
)
> 0,∀k ∈ [K].

It follows that911 ∥∥a(t)∥∥
1
=

K∑
i=1

|a(t)k | =
K∑
i=1

a
(t)
k .

Note that912

y′i · ga(1)(x′
i) = y′i ·

K∑
k=1

a
(1)
k f

W
(Tk

0 )

k

(x′
i)

=

K∑
k=1

a
(1)
k ·

(
y′i · f

W
(Tk

0 )

k

(x′
i)
)

=

K∑
k=1

a
(1)
k · Θ̃

(
(Λ̂

(Tk
0 )

y′
i

)q
)

=

K∑
k=1

a
(1)
k · Θ̃(1)

= ∥a(1)∥1 · Θ̃(1).

(C.47)

This leads to913

ℓ′
(
y′i · ga(1)(x′

i)
)
= − exp (−y′i · ga(1)(x′

i))

1 + exp (−y′i · ga(1)(x′
i))

= −c ·
(
exp

(
− y′i · ga(1)(x′

i)
))

= −c ·
(
exp

(
− ∥a(1)∥1 · Θ̃(1)

))
,

where the second equality is due to y′i · ga(1)(x′
i) > 0, exp (−y′i · ga(1)(x′

i)) < 1 and c ∈ (1/2, 1);914

the last equality is due to (C.47). It follows that915

a
(2)
k = a

(1)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(1)(x′

i)
)
· y′ifW(T0)

k

(x′
i)

= a
(1)
k + η · c · Θ̃(1) ·

(
exp

(
− ∥a(1)∥1 · Θ̃(1)

))
,∀k ∈ [K]

where c ∈ (1/2, 1). By then, we have already proved the induction hypothesis of t = 1.916
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Next, assume the induction hypotheses hold for t. For t+ 1, we have917

a
(t+1)
k = a

(t)
k − η · 1

nl

nl∑
i=1

ℓ′
(
y′i · ga(t)(x′

i)
)︸ ︷︷ ︸

<0

· y′if
W

(Tk
0 )

k

(x′
i)︸ ︷︷ ︸

>0

> a
(t)
k > 0.

And it follows that918

∥a(t+1)∥1 =

K∑
i=1

a
(t+1)
k and y′i · ga(t+1)(x′

i) = ∥a(t+1)∥1 · Θ̃(1), (C.48)

leading to919

ℓ′
(
y′i · ga(t+1)(x′

i)
)
= −c ·

(
exp

(
− ∥a(t+1)∥1 · Θ̃(1)

))
, c ∈ (1/2, 1),

and920

a
(t+2)
k = a

(t+1)
k + η · Θ̃(1) ·

(
exp

(
− ∥a(t+1)∥1 · Θ̃(1)

))
,∀k ∈ [K].

This indicates that if induction hypotheses hold for t, then they holds for t+ 1.921

Adding up k ∈ [K], we can obtain922

∥a(t+1)∥1 =
∥∥a(t)∥∥

1
+ η · Θ̃(1) · exp

(
− Θ̃(1) ·

∥∥a(t)∥∥
1

)
(C.49)

According to Lemma C.24, we know that
∥∥a(t)∥∥

1
= log t/Θ̃(1){± lower order terms w.r.t. t}.923

The following lemma gives the convergence guarantee of downstream task:924

Lemma C.25. (Convergence Guarantee) For any learning rate η > 0,925

∥∇aLS′(a(t))∥1 ≤ Θ̃(1)

η · Θ̃(1) · t+ 1
and ∇2

aLS(a) ⪰ 0 for any a ∈ Rd,

which means within polynomial steps, gradient descent is guaranteed to find a point with small926

gradient.927

Proof of Lemma C.25. Note that928

∥∇aLS′(a(t))∥1 =

K∑
k=1

|∂ak
LS′(a(t))|

= −
K∑

k=1

∂ak
LS′(a(t))

=

K∑
k=1

a
(t+1)
k − a

(t)
k

η

=
∥a(t+1)∥1 − ∥a(t)∥1

η
,

then according to Lemma C.24 and (C.49), we know929

∥a(t+1)∥1 − ∥a(t)∥1 ≤ η · Θ̃(1)

η · Θ̃(1) · t+ 1
. (C.50)

And it follows that930

∥∇aLS′(a(t))∥1 ≤ Θ̃(1)

η · Θ̃(1) · t+ 1
,

which shows that within polynomial steps, gradient descent is guaranteed to find a point with small931

gradient.932
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Note that933
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934
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i)
)
·
(
f
W

(Tk
0 )
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(xi) · f
W

(T
j
0 )

j

(xi)
)

for all k, j ∈ [K],

Denote
[
f
W

(T1
0 )

1

(x′
i), · · · , f

W
(TK

0 )

K

(x′
i)
]⊤

as fW∗(x′
i), then935
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(
y′i · ga(t)(x′

i)
)
·
(
fW∗(x′

i) · fW∗(x′
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⊤
)
.

Note that fW∗(x′
i) · fW∗(x′

i)
⊤ is a non-negative definite matrix, ℓ′′(z) = exp (−z)/

(
1 +936

exp (−z)
)2

> 0 and the fact that sum of non-negative definite matrices is still a non-negative937

definite matrix, it follows that ∇2
aLS(a) ⪰ 0.938

Theorem C.26 (Restatement of Theorem 3.3). Under semi-supervised learning setting, for down-939

stream task, suppose K early stopped classifiers {fW∗
k
}Kk=1 are obtained after the pre-training of940

KK CNN models finished, and after Tdt = Θ(d0.1/η) iterations with learning rate η = Θ(1),941

then we can find a linear model a(Tdt), which satisfies: Both test error and loss are nearly 0, i.e.942

P(x,y)∼D[y · ga(Tdt)(x) ≤ 0] = o(1), LD(ℓ(y · ga(Tdt)(x))) = o(1).943

Proof of Theorem C.26. For test error, we have944

P(x,y)∼D[y · ga(Tdt)(x) ≤ 0] = P(x,y)∼D

[ K∑
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a
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k ·
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k
(x)
)
≤ 0

]
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[ K∑
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a
(Tdt)
k · Θ̃(1) ≤ 0

]
= o(1)

where the last equality is due to a
(Tdt)
k > 0 according to Lemma C.23.945

For test loss, we have946

LD(ℓ(y · ga(Tdt)(x))) = E(x,y)∼D[ℓ(y · ga(Tdt)(x))],

i.e., we estimate for newly generated data (x, y) the magnitude of ℓ(y · ga(t)(x)). In order to do so,947

we will first estimate ℓ(y′i · ga(t)(xi)). Then, we will show that ℓ(y · ga(t)(x)) and ℓ(y′i · ga(t)(xi))948

nearly equal to each other.949

According to the update rule of a(t)k , we have950

a
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(
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i)
)
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0 )
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(x′
i).

Adding up the above equation for k ∈ [K], we obtain951

∥a(t+1)∥1 = ∥a(t)∥1 − η · 1

nl

nl∑
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ℓ′
(
y′i · ga(t)(x′

i)
)
· y′i

K∑
k=1

f
W

(Tk
0 )

k

(x′
i).

And according to (C.50), we have952

∥a(t+1)∥1 − ∥a(t)∥1 ≤ η · Θ̃(1)

η · Θ̃(1) · t+ 1
,
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therefore it follows that953

− 1
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nl∑
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y′i · ga(t)(x′

i)
)
· y′i
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f
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0 )
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(x′
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Θ̃(1)

η · Θ̃(1) · t+ 1
.

Note that K = Θ(1) and for all k ∈ [K] we have y′i · f
W

(Tk
0 )

k

(x′
i) = Θ̃(1), it follows that954

− 1
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nl∑
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ℓ′
(
y′i · ga(t)(x′

i)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
.

Note that nl = Θ̃(1) and according to Lemma C.14, there exists a positive sample (xi1 , yi1) and a955

negative sample (xi2 , yi2) with the property that956

−ℓ′
(
y′i1 · ga(t)(x′

i1)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
, −ℓ′

(
y′i2 · ga(t)(x′

i2)
)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
.

Note that ℓ(z) = log(1 + exp(−z)) and ℓ′(z) = − exp(−z)/
(
1 + exp(−z)

)
, we know that for957

z > 0,958

−ℓ′(z) = c · exp(−z),

ℓ(z) < exp(−z) = −ℓ′(z)/c, c ∈ (1/2, 1).

It follows that959

ℓ
(
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i1)
)
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, ℓ
(
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i2)
)
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.

Note that ℓ(z) is 1-Lipschitz, we have960 ∣∣ℓ(y · ga(t)(x)
)
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(
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If y = 1, we have961 ∣∣y · ga(t)(x)− y′i1 · ga(t)(x′
i1)
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(C.52)
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and962
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(C.53)

where the last equality is due to (C.45) and Lemma C.4.963

Plugging (C.53) into (C.52), we have964 ∣∣y · ga(t)(x)− y′i1 · ga(t)(x′
i1)
∣∣ = Õ(d−

1
4+ϵ) · ∥a(t)∥1. (C.54)

If y = −1, we can prove in a similar way that965 ∣∣y · ga(t)(x)− y′i2 · ga(t)(x′
i2)
∣∣ = Õ(d−

1
4+ϵ) · ∥a(t)∥1. (C.55)

Plugging (C.54) and (C.55) into (C.51), we have966
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1
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According to Lemma C.24 and (C.49), we have ∥a(t)∥1 = log t/Θ̃(1){± lower order terms w.r.t. t},967

therefore968

ℓ
(
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)
≤ Θ̃(1)

η · Θ̃(1) · t+ 1
+ Õ(d−

1
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Taking η = Θ(1) and Tdt = Θ(dα/η) where α > 0 is a sufficiently small constant, we know that969

LD(ℓ(y · ga(Tdt)(x)))

=E(x,y)∼D[ℓ(y · ga(Tdt)(x))]

≤ Θ̃(1)

η · Θ̃(1) · Tdt + 1
+ Õ(d−

1
4+ϵ) · log Tdt {± lower order terms w.r.t. Tdt}+ o(1)

=o(1),

which completes the proof.970

D Proof of supervised learning setting971

Here we prove Theorem 3.4. First, we give following lemma to facilitate the proof.972
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Lemma D.1 (Gradient Calculation). The gradient of loss function LS(W) with respect to weight973

parameter wj is974
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981

Proof of Theorem 3.4. Recall the definition of fW in (2.1) that982
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Since the standard deviation of Gaussian initialization of wj is σ0 and note that w̃j := m1/q ·wj ,984

the standard deviation of Gaussian initialization of w̃j is m1/qσ0 := σ̃0.985
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On the other hand, note that the update rule of w(t)
j is w(t+1)

j = w
(t)
j − η · ∇wj

LS′(W(t)), and in986

Lemma D.1, we have987
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It follows that988
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By plugging wj = m−1/q · w̃j into (D.1), we have989
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Assume η̃ = m− 1

q η, we have w̃
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LS′(W̃(t)). Therefore, our data model and990

training algorithm is equivalent to the model and algorithm below:991
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W̃+1(x)− f
W̃−1(x),

and we use gradient decent with learning rate η̃ and cross-entropy loss to optimize such a data model,992

i.e.993

w̃
(t)
0 ∼ N (0, σ̃2

0Id), w̃
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j = w̃
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j − η̃ · ∇w̃j

LS′(W̃(t)), LS′(W̃(t)) =

nl∑
i=1

ℓ(y′i · fW̃(x′
i)),

where ℓ(z) = log(1 + exp(−z)), σ̃0 = m1/qσ0. Note that the new model meets the one used in Cao994

et al. (2022). To leverage their result, we introduce condition 4.3 from Cao et al. (2022) and verify995

that the new model meets the new condition.996

Condition D.2 (Condition 4.2 in Cao et al. (2022)). Dimension d is sufficiently large that997

d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]). Training sample size n and neural network width m998

satisfy n,m = Ω(polylog(d)). Learning rate η satisfies η ≤ Õ(min{∥v∥−2
2 , σ−2

p d−1}). The999

standard deviation of Gaussian initialization σ0 is approximately chosen such that Õ(nd−
1
2 ) ·1000
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√
d)−1, ∥v∥−1

2 } ≤ σ0 ≤ Õ(m−2/(q−2)n−[1/(q−2)]∨1) ·min{(σp

√
d)−1, ∥v∥−1

2 }.1001

Theorem D.3 (Theorem 4.4 in Cao et al. (2022)). For any ϵ > 0, let T = Θ̃(η−1m · n(σp

√
d)−q ·1002

σ
−(q−2)
0 + η−1ϵ−1nm3d−1σ−2

p ). Under Condition D.2, if n−1 · SNR−q = Ω̃(1),SNR =1003

∥v∥2/σp

√
d, then with probability at least 1− d−1, there exists 0 ≤ t ≤ T such that:1004

1. The training loss converges to δ, i.e., LS(W
(t)) ≤ δ.1005

2. The trained CNN has a constant order test loss: LD(W
(t)) = Θ(1).1006

Note that in our setting, m = Θ(polylog(d)), nl = Θ̃(1), ∥v∥2 = Θ(d
1
2 ), σ̃0 = m1/qσ0, σ0 =1007

Θ(d−
3
4 ) σp = Θ(d0.01), η̃ = m− 1

q η and η = O(d−1−2ϵ), it’s not difficult to verify that Condition1008

D.2 holds. Besides, SNR = d−0.01, n−1 · SNR−q = Θ̃(dqϵ) = Ω̃(1). Therefore, the conclusion of1009

Theorem D.3 holds for1010

T = Θ̃(η̃−1m · n(σp

√
d)−q · σ−(q−2)
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= Θ̃(η̃−1 · (d1/2+ϵ)−q · (d−3/4)−(q−2) + η̃−1ϵ−1d−1d−2ϵ)
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= Θ̃(η̃−1 · d(1/4−ϵ)q−3/2 + η̃−1ϵ−1d−1−2ϵ)

= Θ̃(η−1 · d(1/4−ϵ)q−3/2).

1011

E Auxiliary Lemmas1012

For the estimation of Λ̄(0) and Λ̂(0), we introduce the following lemma.1013

Lemma E.1 (Borell-TIS inequality). Let X be a centered Gaussian on Rm and set σ2
X :=1014

maxi∈[m] E(X2
i ). Then for each t > 0,1015

P
(∣∣∣max

i∈[m]
Xi − E

(
max
i∈[m]

Xi

)∣∣∣ > t

)
≤ 2e

− t2

2σ2
X .

For the expectation of Λ̂(0)
r and Λ̄

(0)
r , we give the following lemma.1016

Lemma E.2. Let Y = max1≤i≤m Xi, where Xi ∼ N (0, σ2) are i.i.d. random variables. Then1017

1√
π log 2

σ
√

logm ≤ E[Y ] ≤
√
2σ
√

logm.

For the estimation of ∥ξi∥22 and ⟨ξi, ξl⟩, we introduce following lemma.1018

Lemma E.3 (Lemma B.2 in Cao et al. (2022)). Suppose that δ > 0 and d = Ω(log(4n/δ)). Then1019

with probability at least 1− δ,1020

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξl⟩| ≤ 2σ2
p ·
√

d log(4n2/δ),

for all i, l ∈ [n], i ̸= l.1021

Besides, we introduce the following lemma about the tensor power method.1022

Lemma E.4. Consider an increasing sequence xt ≥ 0 defined as xt+1 = xt + η · Ctx
q−1
t , and1023

C1 ≤ Ct ≤ C2 for all t > 0, then we have for A > x0, every δ > 0, and every η > 0:1024 ∑
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)
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)
.

Proof of Lemma E.4. For every g = 0, 1, 2, · · · , let τg be the first iteration such that xt ≥ (1+ δ)gx0.1026

Let b be the smallest integer such that (1 + δ)bx0 ≥ A. By the definition of τg, we have xt ∈1027

[(1 + δ)gx0, (1 + δ)g+1x0) for all t ∈ [τg, τg+1) and xτg+1
≥ (1 + δ)g+1x0, xτg−1 < (1 + δ)gx0,1028

leading to1029 ∑
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t∈[τg,τg+1)

η · Ct[(1 + δ)g+1x0]
q−1,

following lower bound for xτg+1 − xτg :1030

xτg+1
− xτg = xτg+1

− xτg−1 − η · Cτg−1x
q−1
τg−1

≥ (1 + δ)g+1x0 − (1 + δ)gx0 − η · Cτg−1[(1 + δ)gx0]
q−1

= δ(1 + δ)gx0 − η · Cτg−1(1 + δ)(q−1)gxq−1
0 ,
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and following upper bound for xτg+1 − xτg :1031

xτg+1 − xτg = xτg+1−1 + η · Cτg+1−1x
q−1
τg+1−1 − xτg

≤ (1 + δ)g+1x0 + η · Cτg+1−1[(1 + δ)(g+1)x0]
q−1 − (1 + δ)gx0

= δ(1 + δ)gx0 + η · Cτg+1−1(1 + δ)(q−1)(g+1)xq−1
0 .

Therefore,1032 ∑
t∈[τg,τg+1)

η · Ct[(1 + δ)gx0]
q−1 ≤ δ(1 + δ)gx0 + η · Cτg+1−1(1 + δ)(q−1)(g+1)xq−1

0 ,

1033 ∑
t∈[τg,τg+1)

η · Ct[(1 + δ)g+1x0]
q−1 ≥ δ(1 + δ)gx0 − η · Cτg−1(1 + δ)(q−1)gxq−1

0 .

These imply that1034 ∑
t∈[τg,τg+1)

η·Ct ≤
δ

(1 + δ)(q−2)gxq−2
0

+η·Cτg+1−1(1+δ)q−1 ≤ δ

(1 + δ)(q−2)gxq−2
0

+η·C2(1+δ)q−1,

1035 ∑
t∈[τg,τg+1)

η · Ct ≥
δ

(1 + δ)(q−2)g+(q−1)xq−2
0

− η · Cτg−1(1 + δ)−(q−1)

≥ δ

(1 + δ)(q−2)g+(q−1)xq−2
0

− η · C2(1 + δ)−(q−1).

Recall b is the smallest integer such that (1 + δ)bx0 ≥ A, so we can calculate that1036

∑
t≥0,xt≤A

η · Ct ≤
b−1∑
g=0

δ

(1 + δ)(q−2)gxq−2
0

+ η · C2(1 + δ)q−1b

=
δ
(
1− (1 + δ)−(q−2)b

)(
1− (1 + δ)−(q−2)

)
xq−2
0

+ η · C2(1 + δ)q−1b

≤ δ

(1− (1 + δ)−(q−2))xq−2
0

+ η · C2(1 + δ)q−1b,

and1037 ∑
t≥0,xt≤A

η · Ct ≥
b−1∑
g=0

δ

(1 + δ)(q−2)g+(q−1)xq−2
0

− η · C2(1 + δ)−(q−1)b

=
δ
(
1− (1 + δ)−(q−2)b

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
xq−2
0

− η · C2(1 + δ)−(q−1)b

≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
xq−2
0

− η · C2(1 + δ)−(q−1)b,

where the last inequality is due to (1 + δ)bx0 ≥ A.1038

Note that (1 + δ)b−1x0 < A, i.e. b ≤ 1 + log (A/x0)
log (1+δ) , therefore1039 ∑

t≥0,xt≤A

η · Ct ≤
δ

(1− (1 + δ)−(q−2))xq−2
0

+ η · C2(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

1040 ∑
t≥0,xt≤A

η ·Ct ≥
δ
(
1− x0/A

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
xq−2
0

− η ·C2(1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
,
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Note that C1 ≤ Ct ≤ C2, we have1041 ∑
t≥0,xt≤A

η ≤ δ

(1− (1 + δ)−(q−2))xq−2
0 C1

+ η · C2

C1
(1 + δ)q−1

(
1 +

log (A/x0)

log (1 + δ)

)
,

1042 ∑
t≥0,xt≤A

η ≥
δ
(
1− (x0/A)q−2

)
(1 + δ)q−1

(
1− (1 + δ)−(q−2)

)
xq−2
0 C2

− η · (1 + δ)−(q−1)

(
1 +

log (A/x0)

log (1 + δ)

)
.

1043
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