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Abstract

Semi-supervised learning is a popular machine learning paradigm that utilizes
a large amount of unlabeled data as well as a small amount of labeled data to
facilitate learning tasks. While semi-supervised learning has achieved great success
in training neural networks, its theoretical understanding remains largely open. In
this paper, we aim to theoretically understand a semi-supervised learning approach
based on pre-training and linear probing. We prove that, under a certain data
generation model and two-layer convolutional neural network, the semi-supervised
learning approach can achieve nearly zero test loss, while a neural network directly
trained by supervised learning on the same amount of labeled data can only achieve
constant test loss. Through this case study, we demonstrate a separation between
semi-supervised learning and supervised learning in terms of test loss provided the
same amount of labeled data.

1 Introduction

Semi-supervised learning (Scudder, 1965} |[Fralick, [1967; |Agrawala, [1970), which leverages both a
small amount of labeled data and a large amount of unlabeled data to improve learning performance,
is one of the most widely used approaches. It has been shown to achieve promising performance
for a wide variety of tasks, including image classification (Rasmus et al.,[2015} Springenberg, 2015
Laine and Aila}|2016), image generation (Kingma et al.,[2014;|Odenal |2016; Salimans et al., 2016),
domain adaptation (Saito et al., 2017 [Shu et al., 2018} |Lee et al.,|2019)), and word embedding (Turian
et al.| 2010; [Peters et al.l 2017). One of the popular semi-supervised learning approaches is pseudo-
labeling (Lee et al.|[2013} Xie et al.,|2020; |[Pham et al.,|2021b; |Rizve et al.,[2021)), which generates
pseudo-labels of unlabeled data for pre-training. This approach has been remarkably successful in
improving performance on many tasks. In this paper, we attempt to theoretically explain the success
of semi-supervised learning with pseudo-labelers in training neural networks. The contributions of
our work are summarized as follows.

* We theoretically show that with the help of pseudo-labelers, CNN can learn the feature representa-
tion during the pre-training stage. Moreover, the learned feature is highly correlated with the true
labels of the data, even though the true labels are not used during the pre-training stage.

* Based on our analysis of the pre-training process, we further show that when linear-probing the
pre-trained model in the downstream task, the final classifier can achieve near-zero test loss and
test error. Notably, these guarantees of small test loss and error only require a very small number
of labeled training data.

* As a comparison, we show that standard supervised learning cannot learn a good classifier under
the same setting. Specifically, we show that, even when the training process converges to a global
minimum of the training loss, the learned two-layer CNN can only achieve constant level test
loss. This, together with the aforementioned results for semi-supervised learning, demonstrates the
advantage of semi-supervised learning over standard supervised learning.
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2 Problem Setup and Preliminaries

In this section, we will introduce our data model, the convolutional neural network, and the details of
the training algorithms considered in this paper. Inspired by recent work (Allen-Zhu and Li, [2020b;
Zou et al.,[2021}; [Shen et al.| [2022;|Cao et al.| [2022), we consider a data model where each data input
x consists of two patches x1) and x(®), where each patch has d dimensions. We focus on the binary
classification task and present our data distribution D as follows.

Data distribution. Each data point (x,y) with x = [x()T x@T]T € R? and y € {—1,+1} is
generated as follows: the label y is generated as a Rademacher random variable; one of x(), x(2) is
given by the feature vector y - v, the other is given by a noise vector £ that is generated from a dd-
dimensional Gaussian distribution A"(0,o2(I — vv' /[[v[|3)). We denote by D the joint distribution
of (x,y), and denote by Dy the marginal distribution of x.

2.1 Supervised Learning Models

For supervised learning, we consider a two-layer CNN whose filters are applied to the patches x(!)
and x(? respectively and parameters in the second layers are set to be &=1. Then the CNN can be
written as fw(x) = fy (X) — fw (X) where fw (x)™, fw(x) ! are formulated as

m 2m
Z [ wj,x(1 )—i—a((wj,x@)))},f;vl(x) = Z {0’(<Wj,X(1)>)+U(<Wj,x(2)>)].
j=1 j=m+1
@2.1)
Here o is activation function ReLU(:) = [-]% (¢ > 2), m is the width of the network, w; € R?

denotes the j-th filter, and W is the collection of all filters {w }2"’ Given labeled training dataset
S = {(x},y;)}:,, we train the CNN model by minimizing the emp1rical cross-entropy loss

Lo (W)= L3 riow)
=1

where L;(W) = ((y} - fw(x})) with £(z) = log(1 + exp(—z)) denotes the individual loss for the
training example (x;, y;). We minimize the empirical function Lg (W) with gradient descent as
follows

wiT =w .V Lo (W®), wi® ~ N(0,021), j e [2m],
where 1 > 0 is the learning rate and o defines the scale of random initialization.

2.2 Semi-supervised Learning Models

For semi-supervised pre-training, we assume that we have access to K pseudo-labelers { f; }sz1
The accuracy of k-th pseudo-labeler is px, € (1/2,1). Then we use K pseudo-labelers to generate K
pseudo-labeled dataset {.S k}i(:l’ where S, := {(xi, Uk.i) | ki = [ (xz)} . Next we solve K pre-
training tasks with two-layer CNN models { fw, }1< | defined in (Z:I) using {Sk} =, respectively.
We consider learning the model parameter Wk by optimizing the empirical loss of both pseudo-
labeled dataset Sy, and labeled dataset S" = {(x},y})};, with weight decay regularization

1 A
Lsyus (Wy) = (ZL W) +ZL (W) ) + 51wl

nu+nl 1

where A > 0 is the regularization parameter, L; (W) = £ @k i fwe (xz)) denotes the individual loss
for the pseudo-labeled data L, (W) = £(y} - fw, (x})) denotes the individual loss for the labeled
data (x}, y}). We also use gradlent descent to minimize the regularized loss function Lg, ys/ (W)

starting from wk ~ N(0,081,).

Downstream Task: Linear Model. The semi-supervised pre-training gives us X CNN models
with parameters { W}, . Based on them, for the downstream task, we consider a linear model

K
x) = Z ar fw; (x)
k=1
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where aj, € R denotes the trainable weight for the k-th pre-trained model. Then, given { Jw: [
and labeled training data S” = {(x},y.)}" ,, we consider learning the downstream linear model
parameter a by optimizing the following empirical loss

Lg (a) = %Zﬁ(y; 'ga(X;’»'

We initialize a as an all-zero vector and optimize the empirical loss by gradient descent with learning
rate 7, i.e.,
altt) =a® _ . v, Lg (a(t)), al® — 0.

3 Main Results

In this section, we start with a condition that is required by our analysis.

Condition 3.1. The strength of the signal is ||v||3 = ©(d), the noise variance is o, = O(d°),
where 0 < ¢ < 1/8 is a small constant, and the width of the network satisfies m = polylog(d).
We also assume that the size of the unlabeled dataset n,, = €2(d*¢), and labeled data n; = ©(1).
For both supervised learning and semi-supervised learning settings, we initialize the weight with
oo = ©(d=3/*). For semi-supervised learning, we require A = o(d>/*) and assume that there exists
a constant C such that for all pseudo-labelers, their test accuracy py > 1/2 + C.

Next, we present the main theoretical results in this paper.
Theorem 3.2 (Semi-supervised Learning: Pre-training). Let £ € [K] and consider the semi-
supervised pre-training of fw, (x). For any test data point (x,y), denote ¥ = f}'(x). Then

under Condition after Ty = ©(d?/4~3/2;)1) training iterations with learning rate ) = O(d 1),
the trained neural network [ o) (x) can achieve nearly O test error on the distribution D.
k

Theorem [3.2] characterizes the prediction power of the feature representation learned in the pre-trained
models using unlabeled data. For any test data point (x, y), the sign of y can be predicted based on
fwo) (x) with high probability.

Theorem 3.3 (Semi-supervised Learning: Downstream). Let { fW(TéC) }Z:1 be the neural networks
k

trained according to the K pre-training tasks, and consider the learning of the downstream task based
in { fW<TL'f> }Z=1' Under Condition after T" = ©(d"! /n) iterations with learning rate = O(1),
k

with probability 1 — o(1), the obtained a(”") satisfies:
* Training erroris 0: 2 37" | 1[y; - g, (x;) < 0] = 0.
» Test error and loss are nearly 0: P(x )~p[y - gacrr) (x) < 0] = o(1), Lp(a™)) = o(1).

Theorem 3.3 shows that the feature representation learned based on the semi-supervised pre-training
can ensure small training and test errors for the supervised downstream task. Notably, this result
holds even though we assume that there are only a constant number of labeled data. This shows
that semi-supervised learning can significantly reduce the need for a large labeled training dataset.
For comparison, we also have the following guarantees on the performance of standard supervised
learning of CNNs.

Theorem 3.4 (Supervised Learning). Under supervised learning setting, after gradient descent for
T = O(d/4=99=3/2)=1) jterations with learning rate n = O(d~'~2¢), then there exists t < T
such that with probability 1 — o(1) the CNNs defined in (2.1)) with parameter W (*) satisfies:

« Training loss is nearly zero: Ls/ (W) = o(1).
e Test loss is high: Lp (W®) = ©(1).

Theorem 3.4]shows that although standard supervised learning can train a CNN model with nearly
zero training loss, the obtained CNN model generalizes poorly to test data. Comparing Theorem 3.4]
with Theorem [3.3] shows that the generalization of semi-supervised learning and supervised learning
are largely different. The reason behind this difference is that the pre-training, with a relatively large
number of unlabeled training data, helps learn a feature representation that captures the feature in



116
17

118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137

138
139
140
141
142
143
144

Table 1: Training error and loss, test error and loss for semi-supervised and supervised learning.

Semi-supervised

; Supervised
Pre-train Downstream
Training error  0.1753 + 0.0259 0 0
Test error 0 0 0.4982 4+ 0.0208
Training loss ~ 0.4155 £0.0418  0.0150 £ 0.0022 (6.473 £ 5.031) x 1077
Test loss 0.2200 + 0.0886  0.0182 £ 0.0021 0.6931 4+ 0.0005

3 —— Feature Learning: m/ax w;, v)

v
E]
s Noise Memorization: Max max (w, &)

0.50
1
0.25 —— Feature Learning: MaX (w, v)
Noise Memorization: Max Max (w;, &)

0 200 400 600 800 1000 0 20 40 60 80 100
Iterations Iterations

Figure 1: Visualization of the feature learning and noise memorization in the training process. (Left:
Semi-supervised, Right: Supervised)

our data model, while direct application of supervised learning can only memorize the noises in the
training dataset, which is independent of the labels of the data.

4 Experiments

In this section, we perform numerical experiments on synthetic datasets, generated according to the
data distribution in Section 2] to verify our main theoretical results. The detailed experiment setting
can be seen from Appendix

For semi-supervised learning, we first use a plain classifier to generate n,, pseudo-labels for unlabeled
samples in order to help semi-supervised learning. After that, for pre-training, we use these pseudo-
labeled samples and n; labeled samples together to train a CNN. After 200 iterations, we can obtain a
CNN model with a training error close to the error of pseudo-labeler and zero test error, according
to Table[I] For the downstream task, we use n; labeled samples to train a linear probe. After 100
iterations, we can obtain a final model with low training and test loss as well as 100% training
accuracy and test accuracy. For supervised learning, we directly use n) labeled data to train the same
CNN model. After 200 iterations, we obtain a CNN with O training error and small training loss,
about 0.5 test error, and high test loss, which indicates supervised learning will give a model that
behaves badly and even no better than a random guess.

Moreover, we also calculate the inner products representing feature learning and noise memorization
respectively, to verify our key lemmas. The results are reported in Figure[T] It can be seen from Figure
[T]that under semi-supervised learning setting the algorithm will the feature learning will dominate the
noise memorization though the noise patch has a larger norm than the signal patch, while under the
supervised learning setting, the algorithm will entirely forget the feature but fit noise.

5 Conclusion

In this paper, we study semi-supervised learning with pseudo-labelers and provide a theoretical
understanding of the success of semi-supervised learning. We show the advantage of semi-supervised
learning over supervised learning through a case study. By considering a simple data model and
two-layer CNN, we present a comprehensive analysis of the training procedure from a beyond-NTK
feature learning perspective. We prove that the final classifier of a semi-supervised learning scenario
can achieve near-zero test loss and error with only a small number of labeled training data, while its
supervised-learned counterpart fails to achieve the same performance with the same data complexity.



145

146
147

148
149

150
151

152
153

154
155

157
158

159
160

161
162

163
164

165
166
167

168
169
170

171
172

173

174
175
176

177
178

179
180

181
182
183

184
185
186

187
188

References

AGRAWALA, A. (1970). Learning with a probabilistic teacher. IEEE Transactions on Information
Theory 16 373-379.

ALLEN-ZHU, Z. and LI, Y. (2020a). Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190 .

ALLEN-ZHU, Z. and LI, Y. (2020b). Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816 .

BALCAN, M.-F. and BLUM, A. (2010). A discriminative model for semi-supervised learning.
Journal of the ACM (JACM) 57 1-46.

BELKIN, M., N1YOGI, P. and SINDHWANI, V. (2006). Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples. Journal of machine learning
research 7.

BENNETT, K. and DEMIRIZ, A. (1998). Semi-supervised support vector machines. Advances in
Neural Information processing systems 11.

BLUM, A. and MITCHELL, T. (1998). Combining labeled and unlabeled data with co-training. In
Proceedings of the eleventh annual conference on Computational learning theory.

BROCK, A., DONAHUE, J. and SIMONYAN, K. (2018). Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096 .

Cao0, Y., CHEN, Z., BELKIN, M. and GU, Q. (2022). Benign overfitting in two-layer convolutional
neural networks. arXiv preprint arXiv:2202.06526 .

CARON, M., MISRA, 1., MAIRAL, J., GOYAL, P., BOJANOWSKI, P. and JOULIN, A. (2020).
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems 33 9912-9924.

CASTELLI, V. and COVER, T. (1996). The relative value of labeled and unlabeled samples in pattern

recognition with an unknown mixing parameter. /[EEE Transactions on Information Theory 42
2102-2117.

CASTELLI, V. and COVER, T. M. (1995). On the exponential value of labeled samples. Pattern
Recognition Letters 16 105-111.

CHAPELLE, O., SCHOLKOPF, B. and ZIEN, A. (2010). Semi-supervised learning. The MIT Press.

CHEN, T., KORNBLITH, S., NOROUZI, M. and HINTON, G. (2020). A simple framework for
contrastive learning of visual representations. In International conference on machine learning.
PMLR.

DARNSTADT, M. (2015). An investigation on the power of unlabeled data. Ph.D. thesis, Bochum,
Ruhr-Universitdt Bochum, Diss., 2015.

FRALICK, S. (1967). Learning to recognize patterns without a teacher. IEEE Transactions on
Information Theory 13 57-64.

FREI, S., CHATTERJI, N. S. and BARTLETT, P. L. (2022a). Benign overfitting without linearity:

Neural network classifiers trained by gradient descent for noisy linear data. arXiv preprint
arXiv:2202.05928 .

FREL, S., Zou, D., CHEN, Z. and GU, Q. (2022b). Self-training converts weak learners to strong
learners in mixture models. In International Conference on Artificial Intelligence and Statistics.
PMLR.

GIDARIS, S., SINGH, P. and KOMODAKIS, N. (2018). Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728 .



189

191
192
193

194
195
196

197
198
199

200
201

202
203
204

206
207

208
209

210
211

212
213
214

215
216

217
218
219

220
221

222
223
224

225
226

227
228

229
230

231
232

GLOBERSON, A., LIVNI, R. and SHALEV-SHWARTZ, S. (2017). Effective semisupervised learning
on manifolds. In Conference on Learning Theory. PMLR.

GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR,
S., COURVILLE, A. and BENGIO, Y. (2014). Generative adversarial nets. Advances in neural
information processing systems 27.

HAOCHEN, J. Z., WEI, C., GAIDON, A. and MA, T. (2021). Provable guarantees for self-supervised
deep learning with spectral contrastive loss. Advances in Neural Information Processing Systems
34.

HE, K., FAN, H., WU, Y., XIE, S. and GIRSHICK, R. (2020). Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition.

JING, L., YANG, X., L1U, J. and TIAN, Y. (2018). Self-supervised spatiotemporal feature learning
via video rotation prediction. arXiv preprint arXiv:1811.11387 .

KARRAS, T., LAINE, S. and AILA, T. (2019). A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

KINGMA, D. P.,, MOHAMED, S., JIMENEZ REZENDE, D. and WELLING, M. (2014). Semi-
supervised learning with deep generative models. Advances in neural information processing
systems 27.

LAINE, S. and AILA, T. (2016). Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242 .

LEE, D.-H. ET AL. (2013). Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML, vol. 3.

LEE, H.-Y., HUANG, J.-B., SINGH, M. and YANG, M.-H. (2017). Unsupervised representation
learning by sorting sequences. In Proceedings of the IEEE International Conference on Computer
Vision.

LEE, J. D, LE1, Q., SAUNSHI, N. and ZHUO, J. (2020). Predicting what you already know helps:
Provable self-supervised learning. arXiv preprint arXiv:2008.01064 .

LEE, S., KiM, D., KM, N. and JEONG, S.-G. (2019). Drop to adapt: Learning discriminative
features for unsupervised domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision.

L1, Y., PAN, Q., WANG, S., PENG, H., YANG, T. and CAMBRIA, E. (2019). Disentangled variational
auto-encoder for semi-supervised learning. Information Sciences 482 73-85.

MILLER, D. J. and UYAR, H. (1996). A mixture of experts classifier with learning based on both
labelled and unlabelled data. In Advances in Neural Information Processing Systems (M. Mozer,
M. Jordan and T. Petsche, eds.), vol. 9. MIT Press.

MISRA, 1., ZITNICK, C. L. and HEBERT, M. (2016). Shuffle and learn: unsupervised learning using
temporal order verification. In European Conference on Computer Vision. Springer.

MITROVIC, J., MCWILLIAMS, B., WALKER, J., BUESING, L. and BLUNDELL, C. (2020). Repre-
sentation learning via invariant causal mechanisms. arXiv preprint arXiv:2010.07922 .

NIGAM, K., McCALLUM, A. K., THRUN, S. and MITCHELL, T. (2000). Text classification from
labeled and unlabeled documents using em. Machine learning 39 103—134.

N1YOGI, P. (2013). Manifold regularization and semi-supervised learning: Some theoretical analyses.
Journal of Machine Learning Research 14.



233
234

235
236

237
238
239

240
241
242

243
244

245
246

247
248

249
250
251

252
253
254

255
256

257
258
259

260
261
262

263
264
265

266
267
268

269
270

271
272

273
274

275
276
277

NORO0OZI, M. and FAVARO, P. (2016). Unsupervised learning of visual representations by solving
jigsaw puzzles. In European conference on computer vision. Springer.

ODENA, A. (2016). Semi-supervised learning with generative adversarial networks. arXiv preprint
arXiv:1606.01583 .

OYMAK, S. and GULCU, T. C. (2021). Statistical and algorithmic insights for semi-supervised
learning with self-training. In International Conference on Artificial Intelligence and Statistics
(AISTATS).

PATHAK, D., KRAHENBUHL, P., DONAHUE, J., DARRELL, T. and EFROS, A. A. (2016). Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

PETERS, M. E., AMMAR, W., BHAGAVATULA, C. and POWER, R. (2017). Semi-supervised
sequence tagging with bidirectional language models. arXiv preprint arXiv:1705.00108 .

PHAM, H., DAL, Z., XIE, Q. and LE, Q. V. (2021a). Meta pseudo labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Puawm, H., DAL, Z., XIE, Q., LUONG, M.-T. and LE, Q. V. (2021b). Meta pseudo labels. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

RAsSMUS, A., BERGLUND, M., HONKALA, M., VALPOLA, H. and RAIKO, T. (2015). Semi-
supervised learning with ladder networks. Advances in neural information processing systems
28.

R1ZVE, M. N., DUARTE, K., RAWAT, Y. S. and SHAH, M. (2021). In defense of pseudo-labeling: An
uncertainty-aware pseudo-label selection framework for semi-supervised learning. In International
Conference on Learning Representations (ICLR).

SAITO, K., USHIKU, Y. and HARADA, T. (2017). Asymmetric tri-training for unsupervised domain
adaptation. In International Conference on Machine Learning. PMLR.

SAJIADI, M., JAVANMARDI, M. and TASDIZEN, T. (2016). Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. Advances in neural information
processing systems 29.

SALIMANS, T., GOODFELLOW, 1., ZAREMBA, W., CHEUNG, V., RADFORD, A. and CHEN, X.
(2016). Improved techniques for training gans. Advances in neural information processing systems
29.

SAUNSHI, N., ASH, J., GOEL, S., MISRA, D., ZHANG, C., ARORA, S., KAKADE, S. and
KRISHNAMURTHY, A. (2022). Understanding contrastive learning requires incorporating inductive
biases. arXiv preprint arXiv:2202.14037 .

SAUNSHI, N., PLEVRAKIS, O., ARORA, S., KHODAK, M. and KHANDEPARKAR, H. (2019). A the-
oretical analysis of contrastive unsupervised representation learning. In International Conference
on Machine Learning. PMLR.

SCUDDER, H. (1965). Probability of error of some adaptive pattern-recognition machines. /IEEE
Transactions on Information Theory 11 363-371.

SHEN, R., BUBECK, S. and GUNASEKAR, S. (2022). Data augmentation as feature manipulation.
In International Conference on Machine Learning. PMLR.

SHU, R., Bul, H. H., NARUI, H. and ERMON, S. (2018). A dirt-t approach to unsupervised domain
adaptation. arXiv preprint arXiv:1802.08735 .

SINGH, A., NOWAK, R. and ZHU, J. (2008). Unlabeled data: Now it helps, now it doesn't. In
Advances in Neural Information Processing Systems (D. Koller, D. Schuurmans, Y. Bengio and
L. Bottou, eds.), vol. 21. Curran Associates, Inc.



278
279

280
281
282

283
284

285
286

287
288

289
290
291

294

300
301
302

303
304

305
306

307
308

309
310
311

312
313

314
315

316
317

319
320

321
322

SPRINGENBERG, J. T. (2015). Unsupervised and semi-supervised learning with categorical genera-
tive adversarial networks. arXiv preprint arXiv:1511.06390 .

TARVAINEN, A. and VALPOLA, H. (2017). Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems 30.

TIAN, Y., YU, L., CHEN, X. and GANGULI, S. (2020). Understanding self-supervised learning with
dual deep networks. arXiv preprint arXiv:2010.00578 .

TosH, C., KRISHNAMURTHY, A. and HsU, D. (2021a). Contrastive estimation reveals topic
posterior information to linear models. Journal of Machine Learning Research 22 1-31.

TosH, C., KRISHNAMURTHY, A. and HsU, D. (2021b). Contrastive estimation reveals topic
posterior information to linear models. Journal of Machine Learning Research 22 1-31.

TsaAl, Y.-H. H., WU, Y., SALAKHUTDINOV, R. and MORENCY, L.-P. (2020). Demystifying
self-supervised learning: An information-theoretical framework. arXiv preprint arXiv:2006.05576

TULYAKOV, S., L1U, M.-Y., YANG, X. and KAUTZ, J. (2018). Mocogan: Decomposing motion
and content for video generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition.

TURIAN, J., RATINOV, L. and BENGIO, Y. (2010). Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th annual meeting of the association
for computational linguistics.

VONDRICK, C., PIRSTAVASH, H. and TORRALBA, A. (2016). Generating videos with scene
dynamics. Advances in neural information processing systems 29 613-621.

WANG, T. and ISOLA, P. (2020). Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning.
PMLR.

WEI, C., SHEN, K., CHEN, Y. and MA, T. (2020). Theoretical analysis of self-training with deep
networks on unlabeled data. arXiv preprint arXiv:2010.03622 .

WEI, D., LM, J. J., ZISSERMAN, A. and FREEMAN, W. T. (2018). Learning and using the arrow
of time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

WEN, Z. and L1, Y. (2021). Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning. PMLR.

XIE, Q., LUONG, M.-T., HoVy, E. and LE, Q. V. (2020). Self-training with noisy student improves
imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition.

XU, Z.,JIN, R., ZHU, J., KING, I. and LYu, M. (2007). Efficient convex relaxation for transductive
support vector machine. Advances in neural information processing systems 20.

Xu, Z., JIN, R., ZHU, J., KING, L., LYU, M. and YANG, Z. (2009). Adaptive regularization for
transductive support vector machine. Advances in Neural Information Processing Systems 22.

ZHAI, X., OLIVER, A., KOLESNIKOV, A. and BEYER, L. (2019). S41: Self-supervised semi-
supervised learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision.

ZHANG, R., IsOLA, P. and EFROS, A. A. (2016). Colorful image colorization. In European
conference on computer vision. Springer.

ZHOU, D., BOUSQUET, O., LAL, T., WESTON, J. and SCHOLKOPF, B. (2003). Learning with local
and global consistency. Advances in neural information processing systems 16.



323

328
329

ZHU, X., GHAHRAMANI, Z. and LAFFERTY, J. D. (2003). Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03).

ZHu, X. and GOLDBERG, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning 3 1-130.

Zou, D., Cao0, Y., L1, Y. and GU, Q. (2021). Understanding the generalization of adam in learning
neural networks with proper regularization. arXiv preprint arXiv:2108.11371 .



330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

353
354
355
356
357
358
359
360

362
363
364
365
366
367
368
369

371
372
373
374
375
376
377
378
379
380

382
383
384

A Related Work

Semi-supervised learning methods in practice. Since the invention of semi-supervised learning
in Scudder (1965); [Fralick| (1967); |/Agrawala (1970), a wide range of semi-supervised learning
approaches have been proposed, including generative models (Miller and Uyar, [1996; |Nigam et al.,
2000), semi-supervised support vector machines (Bennett and Demiriz, |1998}; |Xu et al., 2007, [2009),
graph-based methods (Zhu et al.l 2003} |[Belkin et al., 2006} |Zhou et al., 2003)), and co-training (Blum
and Mitchelll [1998), etc. For a comprehensive review of classical semi-supervised learning methods,
please refer to [Chapelle et al.| (2010); [Zhu and Goldberg| (2009). In the past years, a number of
deep semi-supervised learning approaches have been proposed, such as generative methods (Odenal
2016; Li et al.,2019), consistency regularization methods (Sajjadi et al., 2016; [Laine and Aila, 2016;
Rasmus et al., 2015} [Tarvainen and Valpola, 2017) and pseudo-labeling methods (Lee et al., [2013;
Zhai et al., 2019} Xie et al., 2020; [Pham et al.,[2021a). In this work, we will focus on pseudo-labeling
methods.

Theory of semi-supervised learning. To understand semi-supervised learning, Castelli and Cover
(1995} [1996)) studied the relative value of labeled data over unlabeled data under a parametric
assumption on the marginal distribution of input features. Later, a series of works proved that
semi-supervised learning can possess better sample complexity or generalization performance than
supervised learning under certain assumptions on the marginal distribution (Niyogi, 2013} Globerson
et al., 2017) or the ratio of labeled and unlabeled samples (Singh et al.,|2008; Darnstidt, [2015), while
Balcan and Blum|(2010) provided a unified PAC framework able to analyze both sample-complexity
and algorithmic issues. |Oymak and Gulcu|(2021); [Frei et al.| (2022b)) considered semi-supervised
learning with pseudo-labers by learning a linear classifier for mixture models and convergence to
Bayes-optimal predictor.

Self-supervised learning in practice. A closely related learning paradigm to semi-supervised
learning is called self-supervised learning, which creates human-designed supervised learning prob-
lems to leverage natural structures and learn representations from unlabeled data. Representative
self-supervised learning approaches include contrastive learning and pretext-based self-supervised
learning. Contrastive learning (Caron et al., [2020; [He et al., |2020; |Chen et al.,2020) aims to group
similar examples closer and dissimilar examples far from each other by utilizing a similarity metric,
while pretext-based self-supervised tries to learn a good representation from pretext tasks generated
from the unlabeled data to facilitate downstream learning tasks. In practice, various pretext tasks
have been proposed, which include (1) generation-based ones such as colorizing grayscale images
(Zhang et al.||2016)), image inpainting (Pathak et al.,[2016)), image and video generation with GAN
(Goodfellow et al., 2014} Brock et al.|[2018; [Karras et al.,|2019; Vondrick et al.,[2016; [Tulyakov et al.}
2018); and (2) context-based ones such as image jigsaw puzzle (Noroozi and Favarol |2016), geometric
transformation (Gidaris et al., 2018 Jing et al.l 2018)), frame order verification and recognition (Lee
et al., 2017; Misra et al., 2016} [Wei et al., [2018)). The semi-supervised learning approach with
pseudo-labelers studied in this paper is related to pretext-based self-supervised learning because the
unlabeled data with pseudo-labels can be seen as a particular pretext task.

Theory of self-supervised learning. In order to understand self-supervised learning, there is a line
of work towards understanding contrastive learning (Saunshi et al., ) 2019; Tsai et al., [2020; Mitrovic
et al.| 20205 [Tian et al., 2020; Wang and Isolal [2020; |Tosh et al.| 2021alb; [HaoChen et al., 2021}
Wen and Li, [2021}; |[Saunshi et al., 2022)), which is one of the most used self-supervised learning
approaches based on data augmentation. Unlike contrastive learning, the theoretical understanding
of pretext-based self-supervised learning is still rather limited. The only notable works are |[Lee
et al.| (2020) and [Wei et al. (2020). [Lee et al.| (2020) proved generalization guarantees for self-
supervised algorithms using empirical risk minimization on the pretext task under certain conditional
independence assumptions. Wei et al.| (2020)) proved that under an “expansion” assumption, the
minimizer of the population loss based on self-training and input-consistency regularization will
achieve high prediction accuracy. Since semi-supervised learning with pseudo-labelers can be seen
as a special case of pretext-based self-supervised learning (the pretext task is generated by the
pseudo-labelers), we believe the case study in the current paper and its theoretical understanding can
shed light on pretext-based self-supervised learning as well.

Feature learning by neural networks. Our work is also closely related to several recent works that
study how neural networks learn the features. |Allen-Zhu and Li| (2020a) showed that adversarial
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training purifies the learned features by removing certain “dense mixtures” in the hidden layer weights
of the network. |Allen-Zhu and Li| (2020b) studied how ensemble and knowledge distillation work in
deep learning when the data have “multi-view” features. [Zou et al.|(2021) studied an aspect of feature
learning by Adam and GD and showed that GD can learn the sparse features while Adam may fail even
with proper regularization. Notably, there are two concurrent works studying the benign overfitting
phenomenon in learning neural networks: [Frei et al.|(2022a)) established theoretical guarantees for
benign overfitting of two-layer fully connected neural networks with zero training error and test error
close to the Bayes-optimal error, while [Cao et al.|(2022) studied the benign overfitting phenomenon
in training a two-layer convolutional neural network (CNN), achieving arbitrarily small training and
test loss. Our work studies a different aspect of feature learning afforded by semi-supervised learning
versus supervised learning: given a small amount of labeled data, semi-supervised learning can learn
the features with the help of pseudo-labelers, while supervised learning fails to learn the features and
tends to overfit the noise in the training data.

Comparison with related work. A recent line of work (Oymak and Gulcu, 2021} |Frei et al., 2022b)
studies the semi-supervised learning methods with pseudo-labelers. Our results are different from
theirs in several aspects: (i) we are considering learning with CNNs rather than a linear model, so
the problem is highly non-convex with various local minima, which makes the optimization analysis
more challenging; (ii) the Bayesian optimal predictor is no longer unique for CNNs. Therefore, we
measure the quality of the learned features via downstream task instead of making a comparison with
the Bayesian optimal predictor; (iii) They can only deal with the case where the teacher network
(pseudo-labeler) is the same as the student network (Frei et al.l 2022b)) or the case where the teacher
network (pseudo-labeler) is at least as complex as the student network (Oymak and Gulcul 2021]).
However, our teacher network (pseudo-labeler) is not specified and can be any structure, such as a
linear network. Therefore we can handle the case where the student network is more complex than
the teacher network, one of the most natural settings for semi-supervised learning with pseudo-labeler
(Xi1e et al.| 2020).

B Experiment Setting

In particular, we set the problem dimension d = 10000, labeled training sample size n; = 20 (10
positive samples and 10 negative samples), pseudo-labeled training sample size n,, = 20000 (10000
positive samples and 10000 negative samples), feature vector v sampled from distribution (0, I')
and noise vector sampled from distribution A/ (0, O'gI ) where o, = 10d°-°L.

For semi-supervised learning tasks, we have a linear pseudo-labeler with test error 0.196 + 0.044.
Then, we use this classifier to generate pseudo-labels for n,, = 20000 unlabeled samples in order
to help semi-supervised learning. After that, for pre-training, we use these pseudo-labeled samples
and n; labeled samples together to train a CNN with network width m = 20, activation function
o(z) = [2]3., regularization parameter A = 0.1 and learning rate n = 1 x 10~ Besides, we initialize
CNN parameters from N (0, 03 ), where g = 0.1 x d—3/4. After 200 iterations, we can obtain a
CNN model with a training error close to the error of pseudo-labeler and zero test error, according
to Table[I] For a downstream task, we use n; labeled samples to train a linear probe. By applying
learning rate = 0.1 and after 7" = 100 iterations, we can obtain a final model with low training and
test loss as well as 100% training accuracy and test accuracy.

For supervised learning task, we directly use n; labeled data to train a CNN with network width
m = 20, activation function o(z) = [z]i, learning rate n = 1 X 10~%. After 200 iterations, we
obtain a CNN with 0 training error and small training loss, about 0.5 test error, and high test loss,
which indicates supervised learning will give a model that behaves badly and even no better than a
random guess.

C Proof for Semi-supervised Learning Setting

We consider learning K functions fw, (x),k € [K] based on the pre-training. Since the learning
process of these K functions can be analyzed in exactly the same way, here we only focus on the
learning of one of these functions. For simplicity of notation, we drop the subscript k in the following

proof for Sections[C.2} [C.3} [C.4] [C.3] [C.6] [C.7]and [C.8] We start with a condition that is required by

our analysis.

11
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Condition C.1. The strength of the signal is ||v||3 = ©(d), the noise variance is o, = O(d°),
where 0 < ¢ < 1/8 is a small constant, and the width of the network satisfies m = polylog(d).
We also assume that the size of the unlabeled dataset n, = Q(d*¢), and labeled data n; = O(1).
For both supervise learning and semi-supervised learning settings, we initialize the weight with
o9 = O(d~3/*). For semi-supervised learning, we require A = o(d®/*) and assume that there exists
a constant C' such that for all pseudo-labelers, their test accuracy py, > 1/2 4+ C.

Since we generate the noise patch from the Gaussian distribution, the strength of the noise patch is
||€]|2 = d* ¢ by standard concentration inequalities, which is larger than the strength of the signal
patch ||v||3 = ©(d). Therefore, Conditiondeﬁnes a setting with large noises. The condition of
d > n, > ny further ensures that learning is in a sufficiently over-parameterized setting. Here we
only require the neural network width m to be polylogarithmic in the dimension d and require the
pseudo-lablers to perform better than a random guess.

Notation. We use lower case letters, lower case bold face letters, and upper case bold face letters to
denote scalars, vectors, and matrices respectively. For a scalar x, we use [z]; to denote max{x, 0}.

1
Foravector v = (vi,--- ,v4) |, we denote by [|v|2 := (3¢, v2)? its £ norm, and use supp(v) :=

{j : vj # 0} to denote its support. For two sequences {ay} and {b;}, we denote a;, = O(by) if
lar| < C|bg| for some absolute constant C, denote ar, = Q(by) if by = O(ag). and denote
ar, = O(by,) if |ag| < C|bk| and a, = Q(by). We also denote ay, = o(by,) if lim |ag /bx| = 0. Finally,
we use O(-), O(+) and Q(-) to omit logarithmic terms in the notations.

C.1 Proof Sketch
In this section, we present the proof sketch for the semi-supervised learning setting.

Semi-supervised Pre-training. We consider learning K functions fw, (x), k € [K] based on the
pre-training. Since the learning process of these K functions can be analyzed in exactly the same
way, here we only focus on the learning of one of these functions. For simplicity of notation, we drop
the subscript k& in the following proof sketch.

Our study of the pre-training focuses on two aspects of the training process: feature learning and
noise memorization. Specifically, we aim to monitor how the filters in the CNN model learn the
feature vector v and the noise vectors &;’s. Therefore, we introduce the following notations.

[A\g) = max <W( ),v>, /—\gt) = max — w(t),v>,
1<j<m 1<j<m
) Cw® oy A0 (®)
Aly= | jmax (w7, v), Al mglrgfémwj V)
) ._ ) ¢y IO . () gy () — { () /(t) }
r,”: 1£2§m<wj &), I 1%?2}2<m<wj €D, T max iren[%ﬁf ,ilg[zz}lc]f‘z -

(C.1
Based on the above definitions for r € {1}, a larger Aff) implies better feature learning along the

positive feature direction v, while a larger ]\?) implies better feature learning along the negative
feature direction —v. Moreover, a larger I'(¥) implies a higher level of noise memorization.

Based on the update rule of gradient descent, for the inner products (wy), v) and <W§vt), &), for
J € [2m], | € [ny], we can obtain iterative equations in (C.2).

With the help of the iterative equations and definitions in (C.I]), we can further show the following
lemma.

Lemma C.2. Assume we use both unlabeled data with pseudo-labels generated by the pseudo-labeler
and labeled data for the training of our CNN model. Then for r € {£1}, let T be the first iteration

that rAL" reaches O(1/m), then for ¢t € [0,T,], we have
MY > (1= - AP - C-0(d) - (AT r € {213,
/_th+1) < (1 - 77)\) ' /_\s‘t)ﬂa € {il}v
rOHD < (1—pA)-TO 4+ 5. (d"~2¢) - (DML,

12
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where C' is defined in Condition 3.1]

Lemma C.3. Assume we use only labeled data for the training of our CNN model. Then for i € [n],
let T/ be the first iteration that T', ") reaches ©(1/m), then we have

ALY < (1 =nA) - A 40 0(d) - (ALY + (ALY, € {1},

AUD < (1 =) - AWD 7 e {£1},

Y > (1= A T 4 - O(d 2 - (T )a L i e ], for t € [0, T7].
Based on the results in Lemma|C.2] we can observe that if both pseudo-labeled and labeled data are
used for training, the CNN will learn the positive direction of the feature vector v, while barely tending
to fit the negative direction of the feature vector or memorize the noise. And if only labeled data are
used, the CNN will fit noise faster than a feature, which can be seen from Lemma@ Leveraging
Lemmas [C.2] and [C.3] we can obtain the following Lemmas [C.4] and [C.5] which characterize the
magnitude of feature learning and noise memorization.
Lemma C.4. If both pseudo-labeled and labeled data are used to train CNN, for r € {£1}, let T;. be
the first iteration that A\") reaches O(1/m) respectively. Let Ty = max,¢(+1}{7:}. Then, it holds
that AL = ©(1), ALY = O(d=%) and T®) = O(d—+) for all ¢ € [0, T].
Lemma C.5. If only labeled data are used to train CNN, for i € [m] let T/ be the first 1terat10n that
F/( ) reaches O(1/m). Let Ty = max;e[y,) T;. Then, it holds that A, =0(d3), A, = O(d~ %) for
r € {+1}and T} ® = O(1) fori € [ny].

The above results indicate the deviation between the two settings. The reason is that assume we
consider a sequence {x;} with iterative equation x; 1 = x; + 7 - Ctngl. If we only use labeled

data, as shown in Lemma F/(t) has C; = ©(d'+2¢) while AP has €, = O(d), therefore F;(t)
increases faster than A£ ). In contrast, if we use both labeled data and pseudo-labeled data, C; will be
é(dl_z") for F;(t) and O(d) for AY, leading to a slower increasing speed of F;(t).

Downstream task. After the pre-training, we have obtained K’ CNN classifiers { fW(Tée) }le. Now
we train the second-layer parameters a with the training data whose true labels arekavailable. The
following lemma shows that the /;-norm of a will increase with a logarithmic order.

Lemma C.6. For any learning rate 7 = ©(1), we have Ha(t) H log (t)/6(1 ) For any labeled data
(x5,yl) € S, we have with high probability that ¥} - fiwwe (x}) = Ha(t) H . For any newly
generated data (x,y) ~ D, we also have with high probability that Y- fwo (x Ha(t) H

With the help of the above lemma and note that training error and test error are related to y - fyy (o) (X)
and test loss is related to ||a("®)||;, we can prove that after T' = ©(d’! /n) iterations with learning
rate 7 = ©(1), the model can achieve nearly zero training error, test error, training loss and test loss.

C.2 Gradient Calculation
Lemma C.7 (Gradient Calculation). The gradient of loss function Lg(W) with respect to weight

parameters W 1S

VWJLSUS’(W) = 7711 _z n <ch§z([<wj,yz 'V”?;l YVt [<ij€i>]z-71 ’57)
U N i=1

ny

Y b ([(wi - VL gy w01 's;)) AW,
1=1
for 1 < j <m;and

Ty

ijLSUS’ (W) = n _z n (Zczyz Wjayz . >]3~71 YV + [<ij£i>}?[1 El)
u i=1

13



© 3 bt ((wgot VT4 v o+ [, €010 ~e;>) AW,

=1

0 form +1 < j < 2m, where —(fi - fu (x1)) = exp |7 frw (x)]/(1 +exp [ - frw ()] s
s09  denoted by ¢; and —¢'(y} - fw(x})) = exp[—y; - fw (x5)]/(1 +exp[—y. - fw(x})]) is denoted by b;.

5

o Proof of Lemma[C.7} When 1 < j < m,
Vw, UG - fw(xi)) =€ (i - fw (X)) - Ui - Vw, fw (%3)
—¢i - Ui - Vw, fw (%4)
= —cigi - (0" (Wi, yi - V) -y - v+ 0" ((w), &) - &)

= —qeiGi ([(wj,yi - V)T oy v+ [(wi, €] &)
511

Ve, £(yi - fw(x})) = € (y; - fw(x})) - i - Vi, fw (x])
= by, Ve, fw(x)
= —bwyi - (o' (W), 5; V) y V+U’(<Wj»£'->)~€£)
= —abiy; - ((wj,yf - VT f v+ [(wy, €015 - &)
si2 and whenm + 1 < j < 2m,
Vi, (Ui - fw(x:)) = gy ([(wy,y: - V)T Loy v+ [(wy, &)1 ! fl)
Vo, (; - fw (x1)) = abiy; - (W wi - )yl v+ [fwy, D)5 - €1)
)+

513 Note that Vi, Lsus (W) = (X0 Vi, (Ui - fw (%)) + 30 Vi, £(yh - fw (x0))) /(n1 + ) +
514 A - w;, we have proved the lemma. O

515 C.3 Inner Product Update Rule Calculation

st When the model is trained by gradient descent, the update rule can be formulated by
wi ) =wl vy, Ls(W®), e [2m]. (C2)

517 We study the performance of entire training process from two perspective: feature learning and noise

518 memorization. Mathematically, we will focus on two quantities: <w§»t)7 v) and <w§-t), &;). And then
519 we have following lemma for the inner product update rule.

s20 Lemma C.8 (Inner Product Update Rule). The feature learning and noise memorization performance
s21  of gradient descent can be formulated by

qgnu _
(Wl vy = (1) (w v+ LT (Zyzyz O tw®, ;)T ]2

n1+nu

n
3 OUw .y -] ‘1||v||§>,
=1

) = 1) 0 (S 1
+Zygbgﬂuwy),£;>1‘f1<s;,a>),
=1
523

(w1 = (=) - )+ (35l €011 el

ny + Ny Pl

14



+3 b [wi €ne 1<el,£l>)
i=1

sea where j € 2m], [ € [ny] and uj 1= Tp1<j<m) — Lpmg1<j<om]-

525 Proof of Lemma[C.8] According to Lemma|[C.7]and gradient descent update rule (C.2)), we have

qnu _ _
wi ) = (1) wl o T (Zy (Wi g v (W, €))7 &)

ny + Ny

3 byl I+ o T €))

i=1

s26 Taking inner product with feature vector v and noise patch &; and note that v is orthogonal to §;
527 according to the data model, we have

(wi Vv = (1= ) (wi) nfj“;u(zc% (Wi il IE + w019 (€6 v)

+Zb(t) ([tw. - VI VI + [(wy €019 1<swv>))

qnu _
— (1) - (wl,v) + 21 (Zyzyz“ O g VIR

nH—nu

+Zb(“ 0 4 ) —1||v|§),

528

(Wi gy = (1 —nA) - (wi ) + T (Zc“yz (Wi VT (v, &) + [(wy, €017 1€ &)

m+nu ]

+Zb() (o3 0,0 + ooy €017 0)

=<1—nA>-<w§”,sl>+q”“j(Z@c“’u €T 6 &)

et \

¥ Zyzb“ I E6) ).

529 and
1 gy (xS
(Wi gy = (1 =) - (wi )+ (Y e [(wl €011 (& D)
e \
+Zyz 0w, D11 €60 ).
530 which completes the proof. O
51 C.4 Estimate A\” A" 1(® 1/®
532 Let th) = maxlgjgn<wj(.t),v>, K(_t)l = maX7,L+1§j§2m—<W§t),V>, ]\gt) =
533 maxm+1Sj§2m<W](-t),V>, A@l = maxlgjgmf<w§t),v>, which characterize the feature

534 learning aspect of training process. An easy way to distinguish between 7\5.” and ]_\5-’5) is that /AXS-t)
535 should be large while M«t) should be small.
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Let I‘Et) = maxi<;j<om(W;, &), € [Ny, I‘;(t) = maxi<;<om(Wj, &), € [n], which characterize
the noise memorization aspect of training process with respect to a particular sample.

LetT®) = max { max;e n,] FZ(-t), MaX;e ] F;(t) } which characterize the noise memorization aspect
of training process regardless of the sample index.

We first provide the concentration inequality for Kﬁo) and ASO) in the following lemma.

Lemma C.9. With probability at least 1 — 46 with respect to the randomness of initialization of w,

we have
R . 1
‘Aﬁo) —E[ATO)H < \/@UOWH%
- B 1
|A© —E[AO)]| < madvﬂm
and

E[Kﬁo)] = log(m)ao\|v||2,E[1_X£0)] = +/log(m)ao||v||2, 7 € {£1}.
A0 ) (0) A0 ) A
Proof of Lemma[C9] Note that A} = max<j<m (W, , V), AT] = maxg,y1<j<om —(W; 7, V),
7\50) = maxm+1§j§2m<w;0),v> and ASO% = MaX;41<<2m —<W;O),V>, w§0) ~ N(0,021) and

v is a fixed vector. Therefore, <w§.0)7v> ~ N(0,02|v||3), —<W§-0),V> ~ N(0,02||v||3) for all

1 <7 < 2m and 7\5‘”,1‘\50), r € {£1} are identically distributed. Therefore, without loss of
generality, we only need to discuss the concentration of Ago). By applying Lemma we have

f,2
P(|A” ~ ERL]| > 1) < 2¢ =3P,
By applying Lemma[E.2} we have
EAY"] = VViog(m)oo| v,
which completes the proof. O

Then we provide concentration inequality for FEO) in the following lemma.
Lemma C.10. Suppose that d > Q(log(m(n, + n1)/d)), m = Q(log(1/6)). Then with probability
at least 1 — 6,
ooopVd
4
Uoo'p\/a
4

< I‘,EO) < 24/log(16m(ny +n1)/9) - oo,V d, foralli € [n,],

< F;(O) < 2¢/log(16m(ny +ny)/9) ~(700p\/a, forall ¢ € [ny].

Proof of Lemma[C.10} By Lemma|E.3| with probability at least 1 — §/4,
opVd/V2 < ||€illa < V/3/2 - 0,Vd, fori € [ny],

(C.3)
o Vd/V2 < €2 < V/3/2- 0pVd, fori € [m].
Therefore, by Gaussian tail bound and union bound, with probability at least 1 — ¢/4,
(wi”. &) < |(w” &)] < /21og(8m/D) - oo |&i]2, fori € ], c

<
(wi® gy < (Wi, )| < /21og(8m/3) - 30 |&]l|2, fori € [m].

Note that P(ooap Vdj4 > <w§0) , £z>) is an absolute constant and therefore by the condition on m,

we have
P(W < FE”) = P(W S max <W(‘0)’£i>>

4 ~ jelgm]

:1_P<WZ\/3
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On the other hand, according to (C.3) and (C.4), we have

S

P(I'" < 2/log(16m(ny + m)/9) - oo, Vd)
= }P’( max <w§0),£i> < 2y/log(16m(ny 4 n1)/9) ~aoap\/8)

JE[2m]
)
>1—-
- 4’
and 5
P(1" < 21/log(16m (1, + m1)/3) - goopVd) > 1 — T
which completes the proof. O

C.5 Stage I of GD: On-diagonal feature learning

In this stage, 7\5” and /A\(_t)l respectively increase to magnitude ©(1/m) and I\ﬁ“, /7\(_“1 and I‘;t)
remain small, the same magnitude as initialization. In order to characterize the behaviour of feature
learning and noise memorization during Stage I, we decompose the analysis into following three
parts:

1. First, in Lemmal[C.T5] we provide a lower bound of the update rules of on-diagonal feature learning
term of A(lt)7 A(_t)1 to lower-bound their increasing speed, and an upper bound of off-diagonal

feature learning term Agt), ]\(_t)l to indicate their decrease.

2. Second, in Lemma|[C.T7] we provide a upper bound of the update rules of noise memorization
term I'®) to upper-bound its increasing speed.

3. Third, we provide a useful lemma, which is a derivation of Claim C.20 in |Allen-Zhu and Li
(2020b)), which is called tensor power method. By applying tensor power method, we will prove
that:

e When th) reaches ©(1/m) at 11, Agt) and T'*) remain a magnitude no more than initialization.

e When /A\(f)l reaches ©(1/m) at T_;, A_; and T() remain a magnitude no more than initializa-
tion.

C.5.1 Upper bound and lower bound for A(", A"} and A" A"

We first consider Stage I of GD when max;.¢ (41} {K&t), 1_\?)} <O(m™t).
In this stage, we first prove following lemma:

Lemma C.11. Aslong as max,cf41} {7\?),]\9)} < O(m™!), we have cgt) = =i fweo (x1))
and bgt) = —l'(y, - fw (x})) remains 1/2 % o(1).

Proof of Lemma[C.11} Note that £(z) = log(1+exp (—z)) and —'(z) = exp (—2)/(1+exp (—z)),
(®)

and without loss of generality assuming ; = y; = 1, we can express ¢; ~ as follow:

e i lo (Wi V) +o(w €0))]

(t) /
C: = —é ) (X5 = 7 n 7 n s
! (o (i) e o (WS V) o (Wi )] | (37 [o((wi v))+o((wi £:))]
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Since a((wg-t), v)) dominates <7(<w§-t)7 &)) for j € [m], which will be proved later by using tensor

power method, we have

® e X g lo (Wi ) +o((wit )]

c,’ = .
! ey o ((wi? v))+{lowerorderterm} 4 523, L [o ((w” ) o (Wi £:))]

On the one side,

® 1 1 1 1 1
¢z ) Z—5 Z D = = 5—o(1).
e JL1 o({w;",v))+{lower order term} +1 em(Ay)a—t 41 e®(m~la=1) +1 24 0(1) 2

On the other side, according to Lemma we have Agt) = O(d~%) and T® = O(d~5+°), it
follows that

em@ )T pm (D)

(®)
C:
i a'((w;_‘) ,v))+{lower order term} + em([\(lt) Ya=14m(T(#))a—1

1+ 0(1)
e ja a((wﬁf),v>)+{]owerorderterm} +1 +0(1)

1+o(1) 1
_m—i—ko(l).

m

e2ei=1

Therefore, we have cz(-t) =1/240(1) if y; = y; = 1 and other cases (y; = y; = 1, U; = —v;, bgt))
can be proved in a similar way. O

By applying above lemma, we can obtain following lemma:
Lemma C.12. For any § < 1/2, with probability at least 1 — 29 over pseudo-labels generated by the
pseudo-labeler, we have

Ty

1 N 1 1 1
— E yiyicgt) - (p - )‘ < log — + o(1),
Ny 1)

i=1

where o(1) is with respect to d.
If we denote {(x;,y;)|y; = 1,7 € [ny]} as S1, {(xi,9:)|yi = —1,% € [ny]} as S_1, |S1| as ny and
|S_1| as n_1, we have with probability at least 1 — 44 that

ii“ -c(t)—( 71> <1/i10 1+0(1)
ny & YiYic; p B 81 g(5 )

1 <= o 1 1 1
e iYiC: T — — = 1 —= 1).
- ;yyc (r—3) < g log 5 +o(1)

and

Proof of Lemma[C_12] First, according to Lemmal[C.IT} we have

1 Ny 1 Ty 1 1 Ny 1 Ty
o B = -3 ’(('t)_*) s— D Uivi=5—) Yyito(l ok}
Ny ;yzyzcz Ty ;yzyz C; B + 2 ;yzyz 2 ;y,yl O( ) (C.5)

Then, according to Hoeffding’s inequality when a; = —1,b; = 1, we have

Ty

P(‘liﬂ-y-—E[IZﬂy-]
nui:l iYi nui:l i Yi

2n2t2

> t) < 2exp ( — W) = 2exp (—Znut2).
i=1\%1q 7
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Note that the pseudo-label 7; generated by the pseudo-labeler takes y; with probability p and —y;
with probability 1 — p, we have E[-L- >~ 7iy;] = L D E[giy:] = 2p — 1. It follows that

1 Nu )
P(’%Zyzyz (p_)‘ Zt) SQeXp(_Snut )a

and therefore

1 1 1
— § wi— (p—= log ~ 6
‘Qn g (v >‘< 8ny 00 (€0
holds with probability at least 1 — 2(5. According to (C.3) and (C.6), we have

2nu Zyzyz - (p— )‘ < \/Sjllulog% +o(1),

which verifies the first statement of the lemma. And the other part of the lemma can be proved in a
similar way. O

According to above lemma and note that n,,, ny,n_1 = w(1), we have further that

LZ”" gisicl? - ( _1)‘_
YiYiC; p =
Ny = 2

with high probability.
Besides, we also need an approximation about n; and n_1, which is given as the following lemma:

Lemma C.13. For r € {£1}, it holds with probability at least 1 — 24 that

R Pt | _
E;yzy,ci —( —2)‘ =o(1),r € {1}, (C.7)

Mg 1
9 0g5,

Ny
n, — —| <

2

where n,. := [{(xi, i) |yi = 7,4 € [ny]}].

Proof of Lemma[C13} Note that n, = > " 1[X; = r],r € {£1} where X takes label +1 or —1
with equal probability 1/2, according to Hoeffding’s inequality, we have

IP’( n_l —]E[ii_u:l]l[Xi—r]H>t)<Qexp(—

and it follows that

2

2
=), r e {£1),
£)retan

22
ny — %( 21&) < 2exp(— —),7‘ e {+1},
T

P(

leading to
ny — 22| < \/ Do !
™ 2 2 g 5 )
with probability at least 1 — 2J. O
For labeled dataset S” = {(x}, y;)}:L,, we also have

Lemma C.14. For r € {+1}, it holds with probability at least 1 — 2 that

n < ml 1
n, — — —log =
2 2 85

where n!. .= |{(x},y})|y; =r,i € [m]}.

Then we are prepared to estimate a lower bound of increasing speed of A® and an upper bound of
decreasing speed of A in the following lemma.
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623 Lemma C.15. For Kg) = max1<J<m<W( ) > and A( ) = maxm+1§j§2m<w
624 with high probability that

J(-t), —v), we have

~

R0 > (1) RO 4 (p = 5 ) - 0(@) - (RO)7, 1 € (1),

625 For A( = MaX;4+1<;j<2m(W; (t ),v> and Agt) = max1§j§m<w(t),

;»—V), we have with high proba-
626 bility that

ALY < (1=nA) - A, r € {1},

627 Proof of Lemma[C.13] We first prove the former inequality. Let j* = arg max; < j§m<W(-t), v) and

J
628 note that uj+ = Lj1<j<m] — Lmi1<j<2m] = 1, then we have

N 1 1
APTY > (Wit vy

t (t t _
= (1= (w “7v>+m+n(zylyz“< Uy “||v|\2+2b) wit yl - vl 1v||3)

i=1

* *
620 Then we respectively estimate terms o and .
630 For &, note the definition of j* that ]A\(t) = (w(i), v) and note the increasing property of th) and
631 A(O) > 0 with high probability, we have (w (t 9, v) > 0. It follows that

1 t 1 t -1
Zyzyz * 7yz q ‘V”Q - Z yzyz ( ) ”q ‘V”Q + Z yzyz ( ) V>]i

€851 €S
&
=3y (w4 v I3
1€S1
-1
(Zyzyl“) Ivi3 - (A7)
€S
1
=n1- (p— 3 £0(0) - IvI3- (AF)", (€8)

ez where S1 1= {(x;,v:)|yi = 1,7 € [nu]}, S—1 = {(x4, yi)lyi = —1,i € [ny]}, n1 = |S1] and the
633 last equality is due to (C.7).
634 For %, similarly we have

niy
t t — t t — t t _
SToP w2y T VIR = S0 P w D ws ivIE - ST o w D v Ivil

i=1 ics] i€s’

*
=3 0w v

1€S]
(o) Ivig- G)
s
1 PN
= (5 %o) - IvIE- (AP, (€9)

s where S} = {(x,y)ly! = L,i € [m]}, S', = {(xoyl) g = —1, € ]}, nh = |54 and the last
636 equality is due to Lemma
637 According to (C:8) and (C.9), we have

A (t+1
Al

20

Vi3



~ 1 1 ~
zu—nA»A%Mq”(nl-(p—io( )) - IvIg - (& “>> et (G2 o() - IvI3 - (A

n; + Ny 2

—(1_ AW gnna (1 NG gy (1
= (=) AP+ T (p— 5 o)) v (RE) mn (Qio ) IvI3- &
~ 1 n/
—(1—nA)- AP " (p—Z+o01 L (A1)
(1) R g (2 (p= g o) + =T (5 VI3 - (
~ 1 nj 1 _
=(1— LA . Mmoo (2 L 2 4o1)) - Ivi2 . (Ayet
=) RO a2 (0= 5) o 5 o)) IV )
L)

(C.10)

638 According to Lemma and Lemma|C.14} and note that n; = O(1), n, = w(d**), we have for é
633 that with probability at least 1 — 49

ni ( 1)+ ny 1 Ny ( 1) n] 1
ny + ny P 2 nmtng 2 2(n+ny) P 2 2(m +ny) 2

=o(1)

s40 Therefore, note that n, = w(n;) and n, = w(1), we have

n1 ( 1) ny 1 Ny ( 1) n) 1
. — = + P . — = + - .= :l: o 1
ny + Ny 2 mtng 2 2(n+ny) p 2 2(m 4+ ny) 2 (1)
)

641 Plugging (C.I1) into (C10), we have

~ ~ 1 1 -~ -1
A > (@ =m0 A0 + - (2 (r-3) io(l)) I3 - (A7)

2
~ 1 ~ -1
= (=) -2 45 (p-3) 0@ (AP, (C.12)
e42 which verifies the first inequality of case » = 1 in the lemma.
643 Let j** = argmameSjSQm(wy), —v) and note that uj«+ = Tj1<j<m] — Ljmg1<j<om) = —1, we
644 have
S(t+1 1
AU > (Wit —v)
== 1 - )\ * (i)* - 14 ** (2 _1 5
(1—=nA) - (wje, m+nu ;yy i IV
)

+Zb” 0 gy —1|v||§)

*
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645 For &, note the definition of j** that K(t) (w yi) , —v) and note the increasing property of JAX(_t)l
)

e46  and A(0 > 0 with high probability, we have (w (**, —v) > 0. According to (C.7), it follows that

t 1 t t —
Zyzy,“ Oy v IVIB = Y wide (W, =) Iv3

1€S_1

L)

1 ~ _
=ni(p-g o) IvIE- A, @13

647 where S_1 1= {(x;,¥i)|ys = —1,4 € [ny]}. n_1 = |S_1].
ss8  For ¥, according to Lemma [C.11] similarly we have

n]

t t t t _ 1 ~ 1
> oWy I VI = Y bW, ) V1B = - (5Ee()))- VIR (RY) "
i=1

€S’

*
(C.14)

sse where S | = {(x},y))|y. = —1,i € [m]} andn’_; = |S",].
es0  According to (C.I3)) and (C.14), we have

~ ~ n_ 1 n' 1 ~ 1
A > @ —pn)  AY g (m ;n : (p — 7) - i0(1)> i3 - (A9

(C.15)

651 According to Lemma and Lemma [C.14] and note that n; = O(1), n, = w(d*), we have for #
es2 that with probability at least 1 — 44

n_q ( 71)+ 4 17 Ny ( 1) ny 1
ny + Ny P35 nm+ng 2 2(n+ny) 2 2(m +ny) 2

nu

|n 1— ( 1) In" ;=% 1
n1+nu 2 n+n, 2

\/”“log U Jog
< s ( 1) 2 5_1

ny+ ny

-6l

= o(1).
653 Therefore, note that n, = w(n;) and n,, = w(1), we have
n_q ( 1) n ., 1 Ny ( 1) n 1
Ap—= o= (p—)+ —"M 4
1+ ny ) Tk 2 3many P 2) T am ey 2 oW
DS
1 1
=5 ( - 5) +o(1) (C.16)

es4  Plugging (C.16) into ( , we have
~ -~ 1 1 -~ -1
A(tTl)Z(lnA)'A(t)ﬁrqn'(Q (v-3) £o) - IvIE- (39"
—(1— ). A® 1 NG
=1 -=nA)- A +n- 5 -O(d) - (AL, (C.17)

655 which verifies the first inequality of case 7 = —1 in the lemma.
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656 Next, we prove the latter part of the lemma. Let j% = arg MAaXy,41<5<2m (w;Hl), v), then we have:

AT = (wii )

—(1— Aw® _an O ® a—1)1,112
= ) ) = T (S B

1=1
&
n
t t q—1
£ Yo VI VIR ).
i=1
*
657 For &, according to (C.7), we have
Ny
a—1
Zyzyz h 7yl >} HV”§
t t t ¢ q-1
=3 " [( ;3, v+ Y v (w1 v
i€S €S _1
ot t -1 ~ (¢ t —1
—<Zy1y¢c§ >>~ (wi, vig |v||§+( > yidic) ’>~ (W, = v
1€ST 1€S_q

Wi~

= (p— g +o(0) - [twl WL VB o1 (p— 5 % o) - [, 1 VI3 > 0,

658 and for ¥ it’s obvious that

ny
> o w1 vl > 0.

i=1

*

659 Therefore, it follows that

AV <@ =) (wi vy < (1 =AY,

(t+1)

s0 Let ji1 = arg Inax1<]<m<wj

—v), then we have:

n 1 1
AU = (wii, —v)

_ 0 M (5 - O ® 1
—<1—77A>-<Wjum—v>—M(;myz«ci [(witd i - )15 VI3

n Zb“ O 4w —1|v||§)

< (L=md) - (Wi —v)
t
< (1-nn)- A,
661 which verifies the second part of the lemma. O
e62 Although the accuracy of pseudo-labeler is larger than 1/2, which is used as an assumption in the

663 previous proof, we can also analyse the model with high label flipping probability and the accuracy of
ee4+ pseudo-labeler p is smaller than 1/2. In this case, the neural network for pre-training will turn to fit

665 the opposite direction of feature vector, 7\5,” will increase and KE“ will decrease, which is formulated
666 as the following lemma.
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669
670

671

672

673

Lemma C.16. For Kg) = max1<3<m<w( ) v) and A( ) = MaX;,41<;<2m (W

J(-t), —v), we have

with high probability that

AGD < (1—pA) - AD e {1}

For A( = MaX+1<;<2m (W §t) v) and ]\gt) = maxlijéfﬂwg‘t)’ —V), we have with high proba-
bility that

_ 1 7

A > (1) AY g (5 —p> -0(d) - (AD)IHr e {1},

Proof of Lemma[C.16] First, we prove the former part of this lemma. Let j* =

arg maxi<j<m (W,

Ny

(+)

; v) and note that u;- = Lji<j<m) — Lmt1<j<2m) = 1, then we have

thﬂ) _ <w§.tf1)

’V>

— () (t) =112
= () T (Zyzyz R L N

&
ny
t t —
£SO [w gl v 1||v||%).
=1

*

For &, according to (C.7)), we have

qg—1
Zyzyz() g VI3

t t — ~ (t t —
=3 vl “ VITHIVIZ+ Y widie” (WD, )] v

1€S, 1€S_1

(S wned?) 1wt v+ (3 wdel? ) ol 0l g

1€S1 €S

m(p— g o) - I VI nos - (p— 5 £ 0(1) - (w2, v v,

674 For %, according to (C.7)), we have

675

Zb(” oy VI3

*
=S 0w VB + Y o w4 v

i€s] i€s’ |

= (5 £ o) - Ui VI VI + - (5 £ o) - [, )12 v,

It follows that

t 1 t t q—1
Zyzyl“ D g4 ||v\|2+2b“ w4 v
*

= (m- (p= 5 o) 4t (5 200) ) - (w2 IVIE
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676

677

678

679

680
681

682

683

684

# (1 (= o) o (5 0) ) LI v

According to Lemma [C.13]and note that n,, = w(n), it holds with probability at least 1 — 84 that

na-(;iou))s@ \/logfs) (5 0(1) = O(m) = o(m)

< <n2u+ n;log6> . (§—p:|:0(1)> gnl-(%—pio(l)),

leading to & + % < 0. Therefore,
AT <@ = )wi?v) < (1 —pa) A

And we can prove in a similar way that NG tH) <(1—n\)- /AXQL

Next, we prove the second part of the lemma. Let j b= arg MaX,, +1<;<2m <W(t)

;> V) and note that
ujn = Lp<j<m) — Lpm41<j<am] = —1, then we have

A§t+1) > <W‘§E+1),V>

=(1— (w® 20 (t) (t) =112
= ) ) = e (S B

=1

&
¥ Zb“) Wil VI VIR )

*

For &, note the definition of 5 that M ) = (w(h), v) and note the increasing property of 7\?) in this
case and [\§°> > 0 with high probability, we have (wﬁ), v) > 0. It follows that

1 t t t t q—1
Zyyﬁ) Oy T IR = D v (W T VB + Y vl - (wl v

1€S1 1€ES_
&
= Z yzyl ]u ; ”3-_1“‘/”3
1€S1
~ n —1
-(x yy“) vl (A)?
1€ST
1
=ni- (p—5 o)) - IvI3- (AF)"", (C.18)

For %, similarly we have

n

Db Uw oyt vl VI = D o [ IR+ D b [ wi vl v
i=1

i€S] i€5”

*
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t -1
= > 0w v IvIE

1€S]
(X bE”) VI ()"
ies)
1
=i+ (5 Eo(1)) - IV (A7) (C.19)

e85 According to Lemma|C.13] (C.18) and (C.19), we have n) = o(n;) with high probability, therefore

< -1
bk =n-(p— 5 o(1)) VI3 (A)",
686 leading to

AlD ® qnm 1 2 (Rya-t
A > (1) - (wiov) = S (= S o()) v (A)

- 1 = -1
= (1= -AY 4+ (5 - p) -0(d) - (A1)
687 And we can prove in a similar way that
- - 1 = -1
A > (=) AP 40 (5 -p) -0 (A"
688 O

eso In this case (p < 1/2), given a small amount of labeled data, downstream task parameter a will learn
690 the negative direction and the main theorems still hold.

eot C.5.2 Uniform upper bound for I'*)
ss2  The following lemma provides an upper bound for the increasing rate of T'(*).

"= max;eppm (wy, €),i € [,

soa '™ := max{max;c[,, th), MaX;¢n,] Fg(t) }, we have with high probability that

)} (T € ),
1+2e

- )} ()i e )

ses Lemma C.17. For I‘Z(.t) = MaXje[2m] (W, &)1 € [ng], T

d1+2e

FEH_I) <(1—n\)- th) + 7 - max {é(d%+26), é(
Ny
695

I < (=) T + - max {é(dé”e)v o

696 and
d1+2€

P < (1 —pA) - T® 4+ 5 - max {é(d%“f), é(—) } L (rya!
Ny
697 where e < 1/8.

s98 Proof of Lemma|C.17] We first prove the former inequality. Let j* = arg maxi<j<om (wﬁ”l)7 &),
sss  where [ € [n,] is fixed. According to Lemma C.8] we have

I = (wlt g)

j*

= (1) - (wl?, g+ T (2 (w0 e ) + 3 b (w, ‘>]i_1<€§»51>)

n+ Ny ,
i=1 =1

<O (Wil + 1L (Z sz,sl|+zb Wit “|<£Z,£l>|)
" 1

L) *

(C.20)
700 where the last inequality is due to triangle inequality.
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705

706

707

708

709

710

For &, note that [ € [n,] and there exists an ¢ € [n,] equivalent to [, it follows that

Zc” N (&, &)

&
= O Nw D, e (€ €]+ e [(w €] €13 21

i1€[ny],i#l
(ny —1) - (% + 0(1)) . O(dzt%). (F(“)”_1 + (% + o(l)) - O(d' ). (F(t))q_l
= (n,—1)- é(d%+2e) . (F(t))‘I*l + (:j(d1+25) . (F(t))‘I*l

IN

where the inequality is due to Lemma , &3 = é(daﬁ) = O(d"+2), |(&,&)| = O(d2o 2) =
O(dz+2¢) according to Lemmaand the definition of T'(®").
For %, we have

Zb” N €L €] < me (5 +0(D)-B(d ). (D) = m-B(at ). (1)

*

Plugging (C.21)) and (C.22) into (C.20), we have

(C22)

e ((nu F—1)-O(dE ) + é(dme))) L (r®)e?

~ - 1+2€ -~
<(1-nr)-TY +n-max{e(dz+26),@(d )} ()

T
which is the first part of this lemma.
Let j* = argmax; < j<o,,, (W (t“), &), where [ € [ny] is fixed. According to Lemma we have

R

pt
qnu
(1_77)‘) < *)7 l nl —|—Jnu(zyl t) *7 1>]q 1 5175[ +Zz;y1 zt) W >](I 1<£17£l>>
< (=) - (o g+ (Zc &N I €N+ Db lwiY, ;>]?:1|<£;,£z>),
U N i=1 i=1
&
(C.23)
For &, we have
O )]o! S~ (L B2 (PO = o S(db+2e). (P04
Zc e e ) < (F0(1))-B(d3 ) (TO) " = n, B(aE ) (D)
i=1

&
(C.24)

where the inequality is due to Lemma 1l (&, &) = O(d2o 2) = O(d272¢) and the definition of
r®,
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711 For %, note that [ € [n;] and there exists an i € [n] equivalent to /, it follows that

ST w Y e gr €D

=1
*
= Y oPUwl N e €nl + o 1w el e (C.25)
i€[ny)],i#l
1 ~ 1 _ 1 ~ _
<(m—1)- (5 +o(1)) LB ). (D) 4 (5 +o(1)) L O(d*2) . (P1)e!

_ (nl B 1) . é(d%+26) + é(d1+2e) . (F(t))qfl
712 Plugging (C.24)) and (C.23)) into (C.23)), we have

: ((nu +m—1)-0(d7+2) + é(d”%))) (p@yr?

ny + ny

~ 1 . 142e¢ B
< (1 — 77)\) . F;(t-‘rl) + 71 - max {@(d2+26), (__)(d )} ) (F(t))q 1’

Ny
713 which verifies the second inequality in this lemma.

714 Note that T(V) = max{maxe(,,] Fl(t), mMax;ep,] F;(t) }, without loss of generality, we assume I'(*) =

715 MaXjcin,] th) and assume [* = argmax;¢, I we have

Ny

- . - 142¢ _
i+ — Fl(£+1) <(1=n\)-T +77 maX{@(d2+2£),@(d )} . (F(ﬂ)q 1

. . - d1+25 a—1
< (A=) -T® 4q. max{@(d?“e),@( - )} . (F(t))
716 which verifies the third inequality in this lemma.
717 O

718 C.5.3 Tensor Power Method: Proving I') = O(T'(?)) during [0, 7,] and computing the
719 magnitude of 7’

720 In this section, we first show that off-diagonal correlation (Mf) forp > 1/2 and Kﬁt) forp < 1/2)
721 remains initialization magnitude during [0, T;.]. If the accuracy of pseudo-labeler p > 1/2, we have
722 off-diagonal correlation A < (1—nN)- A)-AY forr € {£1}, therefore, A = 0(]\50)) =O0(d%).
723 If p < 1/2, we have off-diagonal correlatlon Agtﬂ) < (1—=nA)- Agt) for r € {£1}, therefore,
720 A = O(K&O)) = O(d~%). In this paper, we mainly focus on p > 1/2.

725 According to Sections @ and we have obtained following upper bounds and lower bounds

726 for feature learning term Krt), AV re {+1} and noise memorization term TY): When t € [0, T}],
727 we have

AED > A 4 2p—1)-0(d) - (AD)9  and AGTD < (1 —nA) - AP, forr € {£1};

Ty

~ - d1+2e
b < (1—nA)- '™ 4+ 5. max {@(dﬁ-?f)’ @( )} ) (F(t))Q—l

(C.26)
728 According to Condition [3.1] assume n,, = Q(d*¢) and note that ¢ < 1/8, we have

dl+2€

max {é<d5+2€>, 6( )} = max {©(d3+%),0(d'">)} = O(d'~>),

Ty

729 leading to
F(t+1) S( 77>‘) F(t +7- @(dl 25) . (I—\(t))qfl
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By leveraging tensor power method introduced in Lemma[E.4] we can prove following lemma about
the magnitude of I'(*):

Lemma C.18. T'® remains initialization magnitude during [0, max,.¢ (1, {7} }]-

Proof of Lemma[@ Let TF be the first iteration ¢ in which AY > Aforr e {£1}, let T* be the
first iteration ¢ in which I'® > A’, then according to Lemma L we know

10,2, <A (1_( +9)~a- 2))95001 e log (1 +9)
0(1 — A)1—2 1 A
IE (1~ (zo/4) >2) g ey (1 BB
t>0,0,<A (1407 (1= (1+0)~2)zoCy log (1 +9)
And it follows that
5 Cy . ( log (A/A )>
I < +n 221 46)T 14 =
! T (1= (1+6)-@2)A ¢y ! Cl( ) log (1+0)
5/( Io/A/ q 2) log (A//F(O))
ST > _ (g—1) we\a /L)
e n- (149 (1+ log (1 +§7) )’

(
(140)7=1(1 = (14 0)~(a=2)r Oy
where Cy,Co = (2p — 1) - ©(d) and C}, €} = ©(d'~2¢) according to (C:26).
Taking A = ©(1/m), A’ = C - T® where C is a large constant and C' = O(1), § = §' = 1 and
note that AL = O(oodz) = O(d—%),T = é(ogapd%) = O(d~37¢), we have
n-TF <O(d 1) +n-6(1) =6(d™1), (C27)
and _ s _ _ s
n-T* > O(d i) — 5. 0(1) = O(d—i+). (C.28)
Therefore, combining and (C28), we have - T* > ©(d~17¢) > ©(d~%) > 1 - T'*, leading

to T* > T* for both 7 € {—1. + 1}. This indicates that when A", A") reach ©(1/m), T'®) remain
the same magnitude as initialization. [

By leveraging tensor power method, we can also estimate the length of Stage I, i.e. 71,71, by
applying tensor power method. To use tensor power method, we need to upper-bound the increasing
speed of IA\Q). We have the following lemma:

Lemma C.19. Forr € {£1}, we have with high probability that

o~

1 ~ 1
D > (1—pA) - AW 49 q(p —5- 0(1)) vl (D),

=)

R < (1—mh) RO +-q(p— 5 +o(1) - Iv]E - (R0)*

Proof of Lemma|C.19) Let j* = arg max1<J<m<W§t+1)’v) and note that uj+ = Lp<j<m) =
Tmy1<j<om) = 1, then we have

T(t+1 t+1
R — ((t+D)

e V)

= (1) (w <i>,v>+m+n(zylyﬁ DLW VIV + D2 widiel [ wi vV

1€S1 1€S_1
&
qn t t t t _
(S I 3wl R ).
! " Nies i€S)
*

(C.29)
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752 For &, according to Lemma|C.12] we have

S wigic (W ITHIVIE+ Y vl - w1V
€51 i€S_4
L]
1 _ 1 _
=1+ (p=520() (W VT VI +no1- (p— 5 £0(1) - [=(wi? VI vl
1 ~ -1 1 - 1
< (p—g o) IvIE- AP 4 (p— 5 o) - VI3 - (AY)?
1 ~ -1
= (p= 5 £o0) - IVI3- (AF)"

(C.30)
753 where the last equality is due to Agt) = w(]X(_t)l)
754  For %, according to Lemma|C.11] we have

ST W T VIR + DT b (w4 v3

i€s] i€s]

*

. /1 _ , 1 _
=i (5 E0())) - (W T IVIE+nly - (5 £ o) - Wi VIS IVIE (€31

1 - 1 . _
<ni- (50 IvI3- (A" +nly- (5 £0() - VI (A"

1 ~ _
=ni- (5 £0(1) - VI3 - (A)",

Q

755 where the last equality is due to A/A\gt) = w(]&(_t)l)
756 Plugging (C.30) and (C.31) into (C.29)), we have
NG|
Al

nyp+ Ny

<= R 2 (- (- g ol) - VI (RI) 4t - (5 00) I+ (R)")

_(1_ NG, gy 1 (t) qnnl 1 (t
= (1 m>m,+m+m @ Qi<0nw2m.) m+% Qio) v - (A"
!/

—(1— .j\(t) 2 :I: ny A(t

(1= R an (M (= g o) + T (5 VI3 -

—~ / 1 _

=(1— AW ) m L vz (At

(- 1+w(n+% (v- ) Do) - VB (AY)

757 Note that we have already proved in (C.I0) that

1 n/ 1 ~ —1
(o) o) VIR (A

L)

AP <@ —pA) - AP 4 gn- (

ny + Ny

758 Note we have already prove in (C.11) that

ny 1) n} 1 1 ( 1)
Ap— = = (p=Z)+0(1
ny + N ( 2 +n1—|—nu 2 2 P 2 o(1)

®
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759 Therefore, we have

~ ~ 1 ~ -1

R > (0= R g (p— 5 —o1) - IVIE- (A1),
760 )

~ ~ ~ 1

A < @=m) R +qn- (p— 5 +o(1) - IVIE- (A1)
761 In a similar way, we can prove that

~ ~ 1 ~ -1

R = (=m0 - A +gn- (p— 5 —o1)) - VI3 - (A",
762 1

~ ~ ~ -1

RUY <@ =m) R +an- (p— 5 +o(0) - VI3 - (R4,
763 which completes the proof of this lemma. O

764 Lemma C.20 (Length of pre- tralnmg) For r € {£1}, let T, be the first iteration that A( ) reaches
765 ©(1/m) respectively. Then T, = ©(di~2)/n forall r € {+1}.

766 Proof of Lemma|C.20} By leveraging tensor power method given in Lemmal[E.4]
J Co log (A
Z n < +7- (1+5) <1+Og(/l‘0)>7

t>0,2,<A (1= (1+8)~@2)z§~*Cy G log (1 +9)
767
D= O = (ao/A)") - (1+8) @D <1 1 el (A/$0)>
20,2, <A (T+6)a1 (1= (146)~ (=) 20, log (149) )’
768 we have for r € {£1} that
g Cy log (A/A)
n-T7 = n< = +n- = (1+0)7 (1+
t>0%t:><A (1= (1+8)~ (@) (A)12¢, Ci log (1 + )
S (4) (#)
5(1 — (z9/A)92 log (A/A®
n-T; = Z n=z= (2= (ao/&)) ~(0) _77'(1+5)_(q_1)(1+0g( / )>7
t>0,A0 <A (L4071 (1 = (1+8)~@=2)(Ar7)172C, log (1 +0)
S (4id) (iv)
760 where C| is takenas ¢(p — 3 — o(1)) - ||[v[|3 and C5 is taken as ¢(p — 1 + o(1)) - [|v||3 according to

770 Lemma|C.19| Taking § = 1, A = ©(1/m) and note that terms (i7), (iv) are respectively dominated
771 by terms (), (¢4¢) when 7 is sufficiently small and letting k — oo, we have

1 1
——————— —{lowerorderterms} <n- T < ——~———
(Ago))q7202 (Ago))q72cl

72 forr € {£1}. It follows that

+ {lower order terms},

1
n-Tr = =+ {lower order terms}. (C.34)

g(p— Y)Iv]I3 - (AL)a—2

73 And by Lemma|C.9} we have - T = ©(1/q(p— 3)[v[3- (v/log(m)oo||v]|2)?~2) = ©(d/4=3/2),
774 which completes the proof. O

775 The discussion in this section verifies Lemma [C.4] and provides a clear understanding about how
776 A ALY varies within the iteration range [0,T}] for r € {£1}. Note that the iteration numbers

777 when JA\(lt) and /AX(_t)l reaches ©(1/m) (T} and T_;) are different, however, since T_; and T} have the
778 same magnitude, it remains clear that although 77 # T, (wlog, assume 77 < T__1), we still have

779 JA\(lt) = O(1) and fth) = O(d~1%) within the iteration range [T}, T_1], since off-diagonal feature
780 learning also costs time no less than order ©(1 /10| v||2(logm)(9=2)/2), which is higher order than
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797

Ty — T-1| = ©(1/no|[v[|4(logm)@=1/2), according to (C:34) and Lemmal|C.9} Therefore, at
time Ty := max{T,T_1}, off-diagonal ]\gt), ]X(_t)l still remain initialization magnitude O(d~ %),
th), F(_t)l remain initialization magnitude O(d~3+¢), while on-diagonal th), /A\(_t)l reach and then
remain O(1).

C.6 Proof of Lemma
If we only use labeled data S’ for the optimization of CNN, according to Lemma we have

wit = wl — v, Le(W)

—(1—n\)- ‘“+"’”‘sz vl (wyy s - VISl v+ [(wy, €0]970 - €)),

i=1

where u; := 1< j<m] — Lpmp1<amps 0 = =€ (4} fw () = exp[—y, - fw (x)]/(1+exp[—y] -
Fw (%))

Notice that v and 5; are orthogonal to each other, we have
1 qnu —
(Wit V) = (1= nA) - (wl” sz” wi g v,
qnu; — .
(w0 g = (=) - w0 + Tlﬂzbg”yz w1 (€060 € )
i=1

Let 77 be the first iteration that I‘g(t) reaches ©(1/m), then we have following lemma:

Lemma C.21. As long as F;(t) < 0(1/m), bgt) =0y} - fww (x5)) will remain 1/2 £ o(1).

Proof of Lemma[C.21] Note that £(z) = log(1+exp (—z)) and —'(z) = exp (—z)/(1+exp (—2)),
and without loss of generality assuming y; = 1, we can express b(-t) as follow:

2m

e X i lo (Wi V) o ((wit €0))]

b = —0 (fwa :
(fwen (1)) = i oW ) o (W €] | (2 o (W ) o (D €0))]

Since a((wét), &)) will dominate a(<w§t), v)) , which will be proved later by using tensor power
method, we have

2 lo(w? v o (Wi g))]
m-+1 i
b = 0 (faweo (x)) = — : :

ey o (Wi ED) {Hower orderterm} 573 (o (Wi v)) o ((wi £0))

On the one side,

®) 1
bi" = o)
ezm g'((WJ N3 }){+Iower0rderterm}+1
1
- em(F;“’))‘l{-l-lowerorderlerm} +1
1 ! 1

> - — — —o(1).
- e@(m—(q—l)) +1 2+0(1) 2 0( )

On the other side, according to Lemma we have ]\?) = 6(d_ ¥ ), it follows that

(A1) 40(1)

t
bE ) S m (t) s T (t
1 o((w; " &;))+{lower order term} + em(A(l ))q+o(1)

e~—~i=1
1+ 0(1)
et U(<w§")’€:>)+{lowerordertel’m} +14 0(1)
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Therefore, we have bgt) = 1/2 + o(1) and the other case of yy; = —1 can be proved in a similar
way. O
With the help of above lemma, we are now ready to prove Lemma[C.3]
Proof of Lemma[C3] Let j* = arg max1§j§m<w§-t+1),v) and note that u; = 1, according to
Lemmal|C.21] we have
AgtH) = <w§i+1),v>
L _
= (1=nA) - (wi v }j#” wit )4 v
qn 1 qan t -1
= (L =) - (w] }jb WAV + 0 > w4 v
zGS/ ™ €S’
qn t -1
= (=) v+ 2 (5 o) (I
zES’
*
qn 1 t _
LN (5 + o) 1wl =V IvI3
ny . 2
i€8’ |
*
(C.3%)
For &, we have
1 t -1 1 t -1
> (5 +0) 1w VI VIE =) - (5 o)) - [(wi? WL vIB
1€S5]
M (C.36)
1 ~ _
<np- (3 £0() - [vI3 - AP
For %, we have
1 t -1 1 t _
> (5 o)Wl I IVIE = nly - (5 o)) - [(wi?, —v)I4IvI3
ieS’
(C.37)

*

1 = _
<nly- (5 20(1) - IVIE- A

By plugging (C36) and (C.37) in (C:33)), and according to Lemma|[C.14] we have with probability at

least 1 — 46 that

AP < (1-n))

AP ¢ ZZ( ( ) vl - (A7) -ty - (% io(l)) V- (/_\(-t)l)"‘l)
AW D (( \/7) VI - (ROt
< \/7> ||V||§ : (A(_t)l)q1>

-M>+m((iidn)ww@«ﬁ@w*+(iidn)-w%wﬂﬂv*)
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809
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8
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2

813

814
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816

= (1= A - 0@ - (A2 + (A1),

And we can prove in the same way that with probability at least 1 — 49 we have

RO < 1= R - 0(a) - (AUt + APy ).

Let j* = arg maxm4+1<;<2m <w§t+1),v> and note that u; = —1, we have
< (t+1 t+1
AP = (Wit vy
== (wid v - L Zb“ (wit I VI
n xyV * 7y1, V||2

IN

IN

(1)) (wi,v)
(1—nA) - A,

And we can prove in the same way that A"'7" < (1 —nA) - A%

Next, we consider the increasing rate of Fz(t) where [ € [ny] is fixed. If y;

argmax1<j<m<w§t), £]) and note that u; = 1, we have

I AR )

ny
t qn
= (=) (wi o &)+ S 0w €01 (€ )
=1

qan
bz(t)KW(Ea i g3+ = Z b(t)

= (1 -\ (W + D
ny

Wit

1 i€[n], il

Jeo

—(1—n\) - (w' &)+ q’l’bl“’u M €))7 |1/ ]13{= lower order terms}

1— ’(t (2
> (1) T+ (

1
2

—o(1)) - gl - (r®)r
=(1—n\)- F;(t) +7- é(d1+26) . (Fz(t))qfl,

where the third equality holds if we properly choose the order of A.

Ify, = —1,let j* = argmax,,, 1 < j<om (W; (*) ,&;) and note that u; = —1, we have

I AR )

=(1-nN) - (w'? g - q”Zb““ wl €N (ghe))

= (1= - (wi) ) +

(C.38)

1, let j& =

[(w'?, N4 (el &)

(C.39)

Ol e les - T T eyl et e

i€[n], il

= (1—n\)- (W't z>+%’3b§“[< {0 €019 11€113{ lower order terms}

1— /(t an
> (1= T+ (

1 -
5 —o(V) - g3 - (i)
= (=N T 4 O ) - (),

where the third equality holds if we properly choose the order of A.
According to (C:39) and (C40), we always have

F;(tJrl) > (

—nA)-T

/(t +77 @(d1+2e) . (I—\;(t))q—l
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C.7 Proof of Lemma

By applying Lemmato th) and taking C; = ©(d**2¢),§ = 1/2, A = ©(1/m), we have

> n<0/Cy(rV)1?) = 6(dE—Im3),

t>0,1{P<A
And note the definition of T}, we have
n-T! = @(d(%—e)qﬁ), (C.41)
In Lemma[C.3] we have already prove that
R < (1= m2) - B0 47+ 0(d) - ((RAD) 4+ (A)e 1),
(C.42)
AGHD < (1= pA) - AGHD e {£1).
Define A®) := maxre{ﬂ}{ﬁ“, M”}, according to (C:42), we have
ACD < (1 —p))-AD 4 5. 0(d) - (AD)7 L,

By applying Lemmato A®, and taking C}, = O(d), § = 1/2, A = C - A9, where A is a large
constant, we have

S 02 0(1/C(AV)2) = §(dt ),
+>0,A(0 <A
Let T’ be the first iteration that A® reaches C - A9, then we have
n-T =O(di~3?). (C.43)

According to (CAT) and (CA3), we have ' = w(T}), which indicates that when I'\") reaches
©(1/m), A remains initialization magnitude ©(d~%).

C.8 Empirical, test error and loss for early stopped classifier

Assume the accuracy of pseudo-labeler p is larger than 1/2. We first estimate the empirical loss
for early stopped classifier fyy(r,), where Top = max,cr+11{7-} and T, is defined as the first
iteration that A\ reaches ©(1/m). According to Section and Lemma , we have A0 =
O(1), A" = O(d=1),T® = O(d—1+¢), for r € {&1}. We have the following lemma:

Lemma C.22. Early stopped classifier fyy(ro) (x) possesses following properties:

1. Training error of early stopped classifier fy(r,) (x) is asymptotically 1 — p: nuim (>m 1y, -
Fwero (xi) < 0]+ 370 Lfy; - fweno (x7) < 0]) =1 = p £ o(1).

2. Test error is nearly 1 — p, if we use pseudo-label § generated by pseudo-labeler as target:
Pxy)~D g~y B [ - fww o) (x) < 0] =1 —pEo(1).

3. Test error is nearly 0, if we use true label y as target: P(x ,)~p[y - fw(r) (x) < 0] = o(1) and
hence sign fy (7o) (x) = sign(y) with high probability,

where p is the accuracy of the pseudo-labeler. We can regard p as the probability that x; is paired
with true label y;, 1 — p is the probability that x; is paired with wrong label —y;.

Proof of Lemma[C.22} Recall the definition of fw in (2.1)) that

fwao (xi) = Z [U(<W§~TO), yi - v)) + a(<W§TD),€i>)}

B Z [0_(<W§_To)’yi.v>)+g(<w§T0)7£i>)]
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According to Section and Lemma | we have AV = 91 ), A — O(d=1),T® =

max { max;e(p, ] F( ) , AX e [] F } O 4+€), for r € {£1}. If y; = 1, we have following
lower bound for fw(TO) (xi)

fw(TO)(Xi) = Z [G(<W§T0)’V>) + O'(<W§T0)7£i>)} _ Z {O’(<w§To)7v>) —+ U(<W§TO)a€i>):|
J=1 j=m+1

> (K(lTo))q + (F(To))q _ m(]\(lTo))q _ m(F(To))q
— 7 K3
> (7\§T°>)q{ — lower order terms},

and following upper bound for fyy(ry) (%;):

2m

o (W™ V) +o((wi™e0)] = 30 [o(wl™ v) + o ((wi™ )]
/ j=m+1
< m(KgTo))q + m(FETO))q _ (A&To))q _ (FETO))(]

< (/A\(IT"))‘I{—i— lower order terms}.

I

I
-

fW(To) (Xz) =

If y; = —1, we have following upper bound for fyy(ro) (X;):

m 2m

fw(To) (XZ) = |:CT( — <W§TO)’ v>) + O'(<WJ(,T0), €z>)} _ Z {0’( — <W§T0), V>) + O’(<W§To)7 €z>)}
J=1 j=m+1
< (A7 (T - (D) — (0"

o~

< - (A( 3 ) {+ lower order terms},

and following lower bound for fyy(ry) (x;):

m 2m
Fvero (x; =Z[a W) (W e)] = 30 (= )+l 6)|
j=1 j=m+1
> (ATD)" 4 ()7 (AT m(r()"
> m(A(T{’)) — lower order terms}.

Therefore, for unlabeled data, we have y; - fyy (1o (x;) € [(1—0(1))- (ASo)ya, (m+o(1))- (JA\@(,ZT“))(I]
and hence sign ( fwao (xz)) = sign(y;) holds with high probability. We can also prove for labeled
data (x], }) that ey () € [(1=0(1))-(A3;*)7 (m-to(1))-(A5,")7]. sign (fwim (x4)) =
sign(y;) in the same way. L L

Note that y; takes y; with probability p, —y; with probability p and n; = o(n,,), the first statement in
this lemma follows obviously.

To prove the other two statement, we need to give an upper bound for the norm of w . According to

(®

the update rule of w; ", we have

qnu; _ _
Wi = (1) wl oy T (Zczyz Wiy Ty v (WL €T &)

ny+ ny
+Zblyl Oy >]3—1-y;-v+[<w§-”,ez>]i—1-s;)),

leading to
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Iyl < (1 =) - w)' ||2+W-(Z<[< v I vl + [ €01 gile)

i=1

+Z w® v ]1-||v||2+[<w§“,£;>11‘1-||s;||2>)

< =) I+ e () vl (s (R, A0)
(3 gille+ D Ngllz) - (1O)* )
1€[ny] i€[n]

< \|W§-t (PRIUE (@(d%) - O(1) + O(dz+e) - o(d(q—l)(—%e)))

= [wll2 +n- 6(d?),
(C.44)
ss57  where the first inequality is by triangle inequality; the second inequality is due to the definition of

858 A(t) A(t) (), the last 1nequahty is due to Lemma
859 Accordlng to Lernma L we know that T, - n = é(di ),r € {£1}and Tp - 77 max,eq+13{77 -
1

3

1
g0 1} = O(d1). Notethatw§-0 ~ N(0,0814),00 = ©(d" ) and hence ||w " |, = ©(d"1), we
se1  know that

1wy < [Willz + 7 Ty - O(d"%) =O(d~T) + O(d~T) = 6(d™1).

sz Therefore, for any (x,y) sampled from distribution D where x = [y - v',£7]" and & ~ N(0, 02),
863 we have

(wiT) &) ~ N(0,02[lw ™ 12), (™), €)] = 00, |wi™||2) = O(d~ ). (C45)

se+  And this indicates that (w (To) &) will still be dominated by (w; (To) , v), therefore it holds for newly
se5s sampled (x,y) that

Yy fwer (x) € [(1=o0(1)) - (AJT)9, (m + o(1)) - (AJF0))7],
se6  which means that
P(X,y)N’D [y : fW<T0> (X) < 0] = 0(1)'
se7  This verifies the third statement that test error is nearly zero.
ges For the second statement, note that

Plx,y)~D, g~y B [0 - fwero) (x) < 0]
=P, )~plU - fivn (X) L 0[7 =y - Pjey.80) ¥ = y)
+ Play)~lU - o (X) <0y = —y| - Pyy.54) (T = —v)
=P Pixy~ply - fwo) (x) 0]+ (1 = p) - Pxy)~ply - fwro (x) = 0]
=p-o(1)+(1—p) (1 —-o(1))
=1-p=+o(l),

se9 which verifies the second statement. O

s7o  C.9 Downstream task

g71  For downstream tasks, we use early stopped classifiers, which are stopped when on-diagonal feature

872 /AX(t are learned while off-diagonal feature J_X(t) and noise I'(*) are not memorized. Assume we have
g7s  learned K early stopped classifiers f ) (%), f (TK)( x) by using n,, pseudo-labeled data

g74 generated by pseudo-labeler f}V,-- -, f i and ny labeled data.
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Then, we want to design a classifier on the learned representation fw(Tf%) (%), fW(TéK) (x) to fit
1 K

y. Here we consider training a downstream linear model

K
9a(%X) = D" arf o (),
k=1 k

where a;, € R denotes the weight as the k-th pre-trained model. Given labeled training data

S = {(x},y;)}:,, we want to optimize the empirical loss function

1 <
Lgi(a) = - > 0y ga(x))),
i=1
where £(z) = log(1 + exp(—z)) denotes the cross entropy loss. We initialize a as zero and optimize
empirical loss function by gradient descent, i.e.
altt =al . v, Ls(a®),a® = 0.

In order to estimate the training error and test error for downstream task, we first introduce following
lemma about the increasing rate of Ha(t) Hl
Lemma C.23 (Logarithmic increasing rate). For any learning rate n > 0, a,(:) will always increase

for any k € [K] and hence ||al)||, = S, a,(:). And it holds that [|a(||, = ©(log(t)).

|» we introduce and prove the following lemma:

In order to give the increasing rate of Ha(t) |
Lemma C.24. Consider following sequence {x;}2; with
i1 =2+ C-a % 29 =0,
where ¢ > 1 and C' > 0 are constants, and it follows that
1oga(lna-C-t—|—1) < x4 Sloga(lna-C-t—i—l) + C,

and

T —x <#
LT = O a1

Proof of Lemma|C.24] Note that
Tiy1 — 2 =C-a™™ = a" (241 —x;) =C,

by adding up above equation from ¢ = O to ¢ = ¢t — 1, we have

t—1
> ati (@i —3) =C -t (C.46)
i=0

= ade > C -t
o
Tt _ 4T0
:uzc.t
Ina
= a"*>C -lna-t+1
{ xy > log, (C-Ina-t+1),

— — "%t __Cc
Li+1 Ty = C-a S C-lna-t+1°

where the first arrow is due to ¢” is monotone increasing.
On the other hand,

a:Ei+1 — awi-‘rC'aizi — azi . aC'Cl/iIi S awi . aC/(ClnaH—l) S awi . aC

)
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ge3  which implies

t—1 =1
ZaziJrl . (xi-&-l _ Z't) S aC Z a®i . (,’,EH_l - Iz)
=0 =0

t—1
— Za””l (i1 —x) < a® - Ct
1=0

:>/It a®dz < a® - Ct,
o
so4 where the first arrow is due to (C:46) and the last arrow is due to a” is monotone increasing.
o5 This leads to
Ty §loga(lna~0-ac-n+1)

< loga(lan'-aC -n—|—ac)

=log, (Ina-C-t+1)+C
gos Therefore, we have

1oga(lna-0-t—|—l) < x4 §loga(lna-0-t—|—1) + C,

go7 and
< C
T - _
bl " =Ta-C-t+1

898
g9 Now we are ready to prove Lemmal[C.23]
90 Proof of Lemma[C.23] Note that we take downstream task linear model ga(x) as

d m , .
0= S0l 35 o) i)

=1

- Z [a((w,(:]@;c),yﬂ)Jra((W,(j;Dk),Q)}}

j=m+1
d
= a (X))
Z kfwi‘Té‘)( )
k=1 ’

901 Then, we have following update rule for model parameter a:
1 &
af ™ = — ST ga (6D) WS g (D),
ny = w,

902 where we initialize ag)) as zero for all k € [K].

903 Next, we prove following statement by using induction method: when ¢t > 1,

%04 © a,(f),Vk € [K] is non-negative and increasing.

[, = X .

we o af ™ =0 +0-6(1) - (exp (~ a1 -6(1))). vk € [K].

905 ¢

s07 Note that a\”) = 0 for all k € [d] and therefore g, (x}) = 0, ¢ (Y- gaor (%)) = £/(0) = —1/2,
1 &
af) = al = =S (Y gaor (x0) U r (x0)
i1 Wi
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916

0
_al(c)_i_77 o Zyl (T) Zyl (Tk> 1) forall k € [K].

Note that the accuracy of the k-th pseudo-labeler pj, > 1/2, accoring to the proof of Lemma|C.22}
we have

f:[ (Wi i) + o ((wild) €0)]

j=1
2m )
= 3 [l ) + o (wl )]
j=m+1

= - B(Ry)),

for all k € [K]. Therefore

BTG,
a) =5 Zyz b (K) 2 5 O((AU)7) > 0,vk € [K].

It follows that
[2®], = Z |—Za
=1
Note that
Yi * gaon (X Zaé)f (. x;)
K
1
:Z fc) (yz fW<T§><X§))
k=1 k
K SN (C47)
= o B(@Ry)
k=1
K ~
=3 a”-6(1)
k=1
= [a®];-6(1)
This leads to

exp (—y/- *ga(n) (X/'))
VTR 1 i) =— v Z
(Ui - ga (x7)) 1+ exp (=¥} - gav (X))

= —¢- (exp ( — yi : ga<1>(X§)))
= o (exp (¥ -6(1)).

where the second equality is due to ¥ - ga) (x5) > 0, exp (=¥} - gay (%)) < land ¢ € (1/2,1);
the last equality is due to (C:47). It follows that

ay) = af’ Zfl Yi - gaw (X7)) 'yifwgm(xﬁ)

= ag) +n-c- @(1)' (eXP(* la 1)||1 ‘ é(l))),Vk € K]

where ¢ € (1/2,1). By then, we have already proved the induction hypothesis of ¢ = 1.
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917 Next, assume the induction hypotheses hold for ¢. For ¢ 4+ 1, we have

k

1 &
al™ = ol — . - D> (Y- gan (%)) 'ygfw@g;)(XQ) >al > 0.
<0

>0
918 And it follows that
K
a0l = D" 0" and i - gaeen (x1) = [a“V] - O(1), (C.48)

i=1

919 leading to
O (4 gaen (<) = —c+ (exp (= [a® D))y - 8(1)) ), c € (1/2,1),

920 and

a’(€t+2) _ a,(:“) +n- (:)(1) . (exp ( _ ||a(t+1)H1 . é(l)))’v].ﬂ c [K}.

921 This indicates that if induction hypotheses hold for ¢, then they holds for ¢ + 1.
922 Adding up k € [K], we can obtain

la® Dy = [[a®||, +n- (1) - exp ( —6(1) - []a® Hl) (C.49)

923 According to Lemma , we know that Ha(t) | , = log t/©(1){= lower order terms w.r.t. t}. [

924 The following lemma gives the convergence guarantee of downstream task:

925 Lemma C.25. (Convergence Guarantee) For any learning rate n > 0,
e(1)

n-0(1)-t+1

926 which means within polynomial steps, gradient descent is guaranteed to find a point with small
927 gradient.

|VaLs (a®)||; < and V2Lg(a) > 0 for any a € R?,

928 Proof of Lemma Note that

K

[VaLs (a®)||; = Z |0, Lg: (a®)]
k=1

K
—Y  Oa, L (@)
k=1

K ait«kl) _ Cl(t)

- k
k=1 N
_ 2"V — @
7] )
920 then according to Lemma[C.24]and (C.49), we know
-o(1
2Dl ~ fa®], < —220)L ©50)
O(1) t+1
930 And it follows that ~
o(1
VaLs @)l <~k —,
n-O(1)-t+1

931 which shows that within polynomial steps, gradient descent is guaranteed to find a point with small
932 gradient.
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Note that

O, L5t (a ZE’ Yi - gaw (X)) -y;fwfok)(xb,
aakan LS' ZEN yz ga(t) )) (fWLT(’f)(Xi) ’ fW;Tg)(Xl)) forall k,j € [K]v
T
Denote fW(Tl (%), ,f (TK)( )} as fw~ (x}), then

n]

1
2 _ 1" 1 / N\NT
Vals(a) = o 3¢ 0k (<)) (fw- (x0) - - (<) 7).
Note that fw-(x}) - fw«(x;)" is a non-negative definite matrix, ¢”(z) = exp(—z)/(1 +

exp (—z ))2 > 0 and the fact that sum of non-negative definite matrices is still a non-negative
definite matrix, it follows that V2 Lg(a) = 0. O

Theorem C.26 (Restatement of Theorem [3.3). Under semi-supervised learning setting, for down-
stream task, suppose K early stopped classifiers { fw: }<_, are obtained after the pre-training of

KK CNN models finished, and after Ty, = ©(d’!/n) iterations with learning rate n = (1),
then we can find a linear model a(74t) | which satisfies: Both test error and loss are nearly 0, i.e.

P )~y - Garran (x) < 0] = 0(1), Lo (U(y - gacran (%)) = o(1).
Proof of Theorem[C.26] For test error, we have

K
Px,y)~Dl¥ * Goran (%) < 0] =Py yyup [Za,(fdt) (v fwp(x) < O}
k=1

K
= Pix,y)~p {Zal(cht) ‘ é(l) < 0} =o(1)
k=1

where the last equality is due to a(TC“) > 0 according to Lemma
For test loss, we have

LD (g(y *Ga(Tay) (X))) = IE(x,y)ND [E(y * G (Tay) (X))],

i.e., we estimate for newly generated data (x, y) the magnitude of £(y - g, (x)). In order to do so,
we will first estimate £(y; - gav (x;)). Then, we will show that £(y - gae) (%)) and £(y, - gac) (%;))
nearly equal to each other.

(®)

According to the update rule of a;,”, we have

1
ay ™ =0 = (W gaco (1)) LS oy (5).
Lis Wi
Adding up the above equation for k € [K], we obtain

|y = a®)y —n- Zf’ Ui+ Gaw (x yZZf cx ()

And according to (C.30), we have

la

la® ]y — [la™]|; <
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therefore it follows that

_E Z Zl yz ga(t) Y Z f (T(f) &

n-0(1)-t+1

Note that X' = ©(1) and for all ¥ € [K] we have y - fW(TéC) (x}) = ©(1), it follows that
k

(1)
o) -t+1

_726/ yz ga(t) ))

Note that n; = (:)(1) and according to Lemma(C.14] there exists a positive sample (xiy,yi,) and a
negative sample (x;,, ¥;,) with the property that

_ O gy < O
dB) a1 e ) S e T

Note that £(z) = log(1 4 exp(—=z)) and ¢'(z) = —exp(—=z)/(1 + exp(—=2)), we know that for
z >0,

=0y}, - gaw (x7,)) <

() = ¢ exp(—),
(z2) < exp(—z) = —l'(2)/c,c€ (1/2,1).

It follows that

e(1)
n-0(1)-t+1
Note that ¢(z) is 1-Lipschitz, we have

o)

E Z " Yalt X; S —_— .
(0, ~ gai0 (x1,)) n-0(1)-t+1

A(Yiy - gan (x7,)) <

V(y'gau) (X)) —f(ygl *Ga®) (Xgl))| < \y *Ga® (X) - y§1 *Ga®) (Xgl) ) C51)
|£(y *Ga® (X)) - 4(3/22 '9a<t>(X§2))| < |y “ Gaw (X) — yiz “Ga®) (X§2)|~
If y = 1, we have
Y gar (%) = ¥, gao (%7,)| = |ga0 (%) = gao (x7,)|
K
(t)
fWiTk z:: *i) (C.52)
“)( )fwiT@(Xﬁl))‘,
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967
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969
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and

- 3 (ol o 0]

_i [ (. 3)) + o (w8, )]

+ Zm o™ ) +o(w™ ]
_ i [r(w™.8)) = o (w™.1))]

b3S [ €) — (™)
—é(di;T;I

where the last equality is due to (C:43)) and Lemma[C.4]

Plugging (C.33) into (C:32)), we have

1Y+ Gao (%) = Ui, + gaco (x7,)| = O(d™ 1) - a1 (C.54)
If y = —1, we can prove in a similar way that
[ Gaco (%) = 9, - Gaco (x3,)| = O(d™5) - []a®) 1. (C55)

Plugging (C.34) and (C.33) into (C.31)), we have
0y - gaeo (%)) < max {y}, - gaco (X5,), ¥y + Gaco (x4,)} +Od™5+) - |a®y

According to Lemma and (C49), we have ||a®||; = logt/O(1){ lower order terms w.r.t. },
therefore

o(1 ~
((y - gaw (%)) < # + O(d™5%¢) - log t {+ lower order terms w.r.t. ¢}
n-0(1)-t+1
Taking n = ©(1) and Tz = ©(d*/n) where o > 0 is a sufficiently small constant, we know that

Lp(6(y - garrao (x)))
= E(x,y)wD[E(y * 9a(Tay) (X))]
o(1) ~
<——————— 4+ 0(d™%17°) - log Ty {= lower order terms w.r.t. Ty} + o(1)
n-O(1) T + 1

=o(1),

which completes the proof. O

D Proof of supervised learning setting

Here we prove Theorem[3.4] First, we give following lemma to facilitate the proof.
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973 Lemma D.1 (Gradient Calculation). The gradient of loss function Ls(W) with respect to weight
974 parameter w is

ny
U4 — —
Vi, Lt (W) = =20 g [ty )10 o+ [ €017 - ),
=1

o75  where u; = (]1[1gj§m] —1[m+1SjS2m]) and —é’(yg . fw(xg)) = exp[—v. - fw(x))]/(1 +
o76 exp[—y; - fw(x})]) is denoted as b;.

o077 Proof of Lemma[D1} When1 < j <m,
Vw, l(y; - fw(x7)) = 0 (y; - fw (X)) - vi - Viw, fw (x7)
=—b; - y; - Vw, fw(x})
= —biy; - (o' ((Wj,y; - V) -yi - v+ o' ((wy, €)) - &)
= —gbsy; ([(wj,yf -yl v + [(w, €] €))
g78 and whenm + 1 < j < 2m,
Ve, L(Y; - fw (x})) = by ([(w, v5 - V)T yf v+ [(wy, D)4 - &)
979 Combining above two cases, we have
Vo, 07 - fw () = =a(Lp<jcm) = Lpmra<i<om) )bt (W5, 90 - V) - yh - v+ [((wy, €015 - &)
= _qujbiyg(Kijy; 'V>]fl ?Ji "Vt [<Wj»5§>]$1 5:)

980 and therefore

1 & 1 «
Vi Ler (W) = 2. vajLi(W) o vaje(y; - fw ()

u _ _
= qubzyl [(wiy vyl v+ [(wy, €] - €)).

=1

981 O

982 Proof of Theorem[3.4] Recall the definition of fw in that
2m
Z o (wisy-v) +o(tws, )] = 30 [o(wiy-v) +o(w;,0)].
j=1 j=m-+1

983 Define w; := m'/7 . w;, we have

m

fw(x) = Z {a((m—l/q WY v>) + U(<m—1/q . gvj,@)}

- % om0y %) 4 o (™7 5,,0))|

j=m+1

S o)) < 3 [o(0ew) +o(5,6)]
-ZfV“(;( X).

se4  Since the standard deviation of Gaussian initialization of w; is o and note that w; := m!'/9 - w;,
985 the standard deviation of Gaussian initialization of w; is mt/ 10q := 0p.
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On the other hand, note that the update rule of w§-t) is w](-tﬂ) = w;-t) —1n-Vw,Lg (W®), and in
Lemma|[D.T] we have

Vo Lo W) = =293 (o, I v (o, €07 61)
i=1
It follows that
wi T =il T Z B0y ([w g I gy [ € E). o
By plugging w; = m~/a. w; into (D.I)), we have

_1 ny
~ ~ gnm <u; _
wit = w0 TNy (g v (WD, €T €

m =1
Assume 7 =m~ g 7, we have w§ ) = ~§t) —n-Vg,Ls (W(t)). Therefore, our data model and
training algorithm is equivalent to the model and algorithm below:
1 _ .
Farnn ) = =3 o (05 v) + 0((;,8)|.
j=1
1 2m
for (00 = — 37 [ol(Fy,y-v) + o ((;.6)].
j=m+1

fw(®) = {0 (%) = fg- (%),
and we use gradient decent with learning rate 77 and cross-entropy loss to optimize such a data model,
ie.
ny
~ 1 ~ ~
Wi~ N(0,53 L), % = W — i Vi, Ls (W), L/ (WO) = 37 £y} - fi (x0)),
i=1
where £(z) = log(1 + exp(—z)), 5o = m'/95¢. Note that the new model meets the one used in Cao

et al.| (2022). To leverage their result, we introduce condition 4.3 from|Cao et al.| (2022 and verify
that the new model meets the new condition.

Condiiion D.2 (Condition 4.2 in |Cao et al.| (2022)). Dimension d is sufficiently large that
d = Q(m2VI/(@=2IpaVI2e=2)/(a=2)]) " Training sample size n and neural network width m
satisfy n,m = Q(polylog(d)). Learning rate n satisfies n < 5(min{\|v||2_2,0;2d*1}). The
standard deviation of Gaussian initialization o is approximately chosen such that 5(nd_%) .
min{(o,v/d) !, [vllz '} < 00 < O(m=2/ (@2 =1/ @20 - min{(o,v/d) !, [ v]5 ).
Theorem D.3 (Theorem 4.4 in|Cao et al.{(2022))). For any e >0, let T=0mn"'m- n(a Vd)=1.

(q 2 4 n~'e 'nm3d~'c,?). Under Condition if n71 - SNR™7 = Q(1),SNR =
Hv||2 /o,\/d, then with probability at least 1 — d~!, there exists 0 < t < T such that:

1. The training loss converges to 4, i.e., Lg(W®)) < 4.
2. The trained CNN has a constant order test loss: Lp(

W) = 0(1).

Note that in our setting, m = O(polylog(d)), nj = O(1), ||v]l2 = ©(dz), 5o = m* %0, ¢ =
O(d=1) o, = O(d*), = m inand n = O(d~'~%), it’s not difficult to verify that Condition

);
holds. Besides, SNR = d~90! =1 . SNR™7 = ©(d4¢) = (1). Therefore, the conclusion of
Theorem[D.3]holds for

T=0G"m- n(o,Vd)™7- 00_('1_2) + ﬁfleflnm:gd*la;z)
::é(ﬁfl'(dhﬁ+f)fq.(d73ﬁ54{q72)+_ﬁ>1671d71d723
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_ @(;,‘7'—1 . d(1/4—6)q—3/2 + ,”;}'—le—ld—l—Qe)
_ @(nfl . d(1/476)q73/2).

E Auxiliary Lemmas

For the estimation of A(® and IAX(O), we introduce the following lemma.

Lemma E.1 (Borell-TIS inequality). Let X be a centered Gaussian on R™ and set 0% =
max;e,) E(X7?). Then for each ¢ > 0,
— t2
> t) <2 *Xx.

i

For the expectation of /A\SO) and ]\50), we give the following lemma.

Lemma E.2. Let Y = maxi<i<m, X;, where X; ~ N (0, 0?) are i.i.d. random variables. Then

1
———o0+/logm < E[Y] < V20+/log m.
vmlog2

For the estimation of ||£;]|3 and (&;, &;), we introduce following lemma.

Lemma E.3 (Lemma B.2 in|Cao et al.|(2022)). Suppose that & > 0 and d = Q(log(4n/J)). Then
with probability at least 1 — 4,

02d/2 < &3 < 302d/2,

(&, &1)| < 207 - \/dlog(4n?/5),
foralli,l € [n], i # L.
Besides, we introduce the following lemma about the tensor power method.

Lemma E.4. Consider an increasing sequence x; > 0 defined as x;y1 = ¢ + 7 - C’tngl, and
C1 < Cy < Cs forall t > 0, then we have for A > xg, every § > 0, and every n > 0:

> < 0 +n-02(1+5)q—1<1+1°g(1‘1/9”0)>7

20,2, <A (1-(1+0)-=2)z572Cy G og (1 +9)
§(1— A)a—2
20,2, <A (1+8)171(1 = (1 +08)~(=2))ag” Co log (1 +0)
Proof of LemmalE.4} Forevery g =0,1,2,---,let 7, be the first iteration such that z; > (1 + §)9,.

Let b be the smallest integer such that (1 + 5) x9 > A By the definition of 7,, we have x; €
[(1+0)9zq, (1 + 0)9" ag) forall t € [14,7g11) and @, > (1 +6)9 2o, 27,—1 < (1 + 8)920,
leading to

Z n- Ct[(l + 6)gm0]q_1 < Lrgpr = Trg = Z (‘rtJrl - ‘rt)

t€[rg,Tg+1) t€[Tg,Tg+1)

= > 0 Gaft < Y -G+

t€[rg,Tg+1) t€[rg,Tg+1)

following lower bound for z, , — z,:

—1
Trgpr = Trg = Trgyy = Trg—1 — 1 C‘r —1$T -1
> (]- + 5)g+1x0 — (1 + (5)gx() —-n- C‘rgfl[(]- + 5)91.0]11—1
=6(1+0)9z9—n-Cry1(1+ 5)((1—1)g$g*17
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1031 and following upper bound for z, , — z,:

Lrgin = Xrg = Tryya—1 +n- C"'g+1 1l‘7_ +11 1~ Ty
<(A+6)5 2y +1- Cryi—1l(1+ 5)(9+1)x0}q71 — (14 6)9x0
=61+ 6)%20 +n-Crypp o1 (1 + ) DigTgIt
1032 Therefore,

> -G+ 6)%m] " < 5(1+6)mo + 1+ Crppy 1 (14 6) DT
t€[Tg,7g41)
1033
Z n- Ct[(]. + 6)g+1$0}q—1 2 5(1 + (S)g{Eo -n- C‘rgfl(]- + 5)(11—1)9%8*1'
t€[Tg,7g41)

1034 These imply that

0 5
.Cy < 5 40-Cr o1 (146 e Cu(148)1 Y,
te[g;gmn e e 7 A
1035
1)
' = - Tg— 1 1) (a=1)
te[r§;+1)77 €= (1+8)a=Dat(a=1gd~? n- Cry-1(149)7

0

— - Cy(1+6)~ 7.

T (14 6)@Dgta—1) 02

1036 Recall b is the smallest integer such that (1 + 6)%0 > A, so we can calculate that

b—1

5
O < +1-Co(l+6)7 1
t>(§<A’7 ¢ ;(1—}—6)(%2)955(172 1 - Ca )
5(1— (1+9)"(a=20) -
_ = G @0 s +n-Ca(146)77"b
)
= (1—(1—‘1-(5) (= 2)) — + 1 02(14—(5)‘1 1b
1037 and
b—1 5
-Gy > —n-Cy(146)"@Vp
tzgj;An t7§(1+5)(q72)9+(q71)xq72 1~ Ca(1+0)

B §(1—(1406)"(@=2b)
(A0 (1 (14 8)~a)zd 2
6(1 = (z0/A)172)
T (A48T (1 (1+6) @)l

5 —n-Co(1+0)~@Vp

5 — - Co(1+ )"0V,

1038 where the last inequality is due to (1 4 )%z > A.
10ss  Note that (14 6)b"1zg < A, ie. b < 1+ 26A/20) herefore

log (14+9) °
) _ log(A/ﬂﬁo))
G < +17-C 1+5q1<1+ 7
t>0,zzt:<A77 ' (1—(1+06)"(@2)z2? n- Cal ) log (1+4)
1040 -

5(1 —xo/A loo (A
Y naz O - Ca(1 a0 (1 B 20)
0,2, <A (T+68)a1(1— (1+6)"(a=2))af log (1 4 6)
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1041 Note that C; < C; < (g, we have

Y < i +n-02(1+5)q—1<1+1°g(14/%)>’

>0,z <A (1—(1+0) -2z %, Ch log (1 +6)
1042
o(1— A)a—2
RE e N(RTRGI (R CE)
t>0,2,<A (1486 11— (1+6)"=2)zf " Cy log (1 + 9)
1043 D
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