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Abstract

In order to create machine learning systems that serve a variety of users well, it is
important to not only achieve high performance on average but also ensure equitable
outcomes across diverse groups. In this paper, we explore the potential of multi-task
learning (MTL) with self-supervised objectives as a tool to address the challenge
of group-wise fairness. We show that by regularizing the joint representation space
during multi-tasking, we are able to obtain improvements on worst-group error.
Through comprehensive experiments across NLP and CV datasets, we demonstrate
that regularized multi-tasking with self-supervised learning competes favorably
with state-of-the-art distributionally robust optimization methods. Our approach
– without introducing data external to the end-task – improves worst-case group
accuracy over empirical risk minimization by as much as ∼ 4% on average in
settings where group annotations are completely unavailable.

1 Introduction

Multi-tasking [1, 2, 3] with self-supervised learning-based auxiliary objectives (MTL-SSL) has
proven to be a powerful tool for improving a model’s aggregate performance on a desired end-task
[4, 5, 6]. Congruently, as learned systems exert ever-increasing influence on the real world, it is
paramount that they not only perform well on aggregate but also exhibit equitable outcomes across
diverse subgroups characterized by attributes such as race [7, 8], gender [7, 9], and geographies
[10, 11]. However, despite the strides made from leveraging SSL via multi-task learning and the
widely acknowledged importance of equitable machine learning, previous work has neither examined
the effect of MTL-SSL on worst-group outcomes nor sought to design effective strategies that leverage
said approach to achieve more equitable outcomes. In this paper, we attempt to fill this gap.

Traditionally, the problem of poor group-based outcomes has been tackled explicitly via methods such
as distributionally robust optimization (DRO) [12, 13, 14, 15]. In DRO, instead of finding parameters
θ that minimize the expected risk ℓ over the training distribution (i.e., empirical risk minimization
- ERM), the worst-case risk over a pre-defined set of distributions (the uncertainty set) is instead
minimized. Since designing an appropriate uncertainty set generally requires explicit access to group
annotations at training time (which are unavailable in many practical settings), several works have
been proposed to tackle the challenges of worst-group generalization with little to no access to group
annotations. These efforts often fall into two categories. The first category consists of methods that
employ a two-stage training framework where examples with high loss are identified in the first stage
and a second re-training stage appropriately refocuses on these examples [16, 17, 18, 19, 20, 21]. By
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virtually requiring two passes over the data, these methods tend to increase training overhead. On
the other hand, the second category involves the unsupervised discovery of latent groups [22, 23],
which can increase complexity at training time and thus deter their wide usage. In contrast, this paper
empirically demonstrates that MTL-SSL can implicitly improve the worst-group performance without
incurring the overhead of two-stage training, costly acquisition of group labels, or the instantiation of
complex models.

In general, poor group outcomes occur when a model relies on spurious features (the ones irrelevant
to the task’s group-based test accuracy) instead of core features (those necessary to robustly solve
the task) during training. A carefully chosen auxiliary task would be one that, when multi-tasked
with the end task, encourages a model to use core features as opposed to spurious ones. In this paper,
we explore self-supervised learning tasks as candidates for multi-tasking. Our choice of MTL-SSL
as an intervention for worst-case group performance is inspired by previous work like [24] that
shows that transfer learning can improve model robustness. Moreover, given the widespread adoption
of SSL objectives in both pre-training and multi-tasking to enhance average-case performance, it
prompts the question of how this approach affects worst-case group performance. Taken together, it
is reasonable to anticipate that a thoughtfully designed variant of MTL-SSL will similarly enhance
worst-case accuracy. Note that the MTL-SSL as a counter-measure alone may not be effective if the
model has enough capacity to use the spurious features for the end task and the core features for the
self-supervised task. We, therefore, augment the MTL-SSL framework with ℓ1 regularization on the
model’s final layer activation order to restrict capacity right before end-task prediction. Regularization
causes the SSL task to act as a constraint, forcing the model (due to limited capacity) to ignore
spurious features whilst focusing on core features in order to do well on both tasks.

We empirically validate our MTL-SSL intervention against worst-case group performance across
experiments in natural language processing (NLP) and computer vision (CV). Through a battery of
experiments, we demonstrate that MTL using the self-supervision-based pre-training objective with
ℓ1 regularization on a pre-trained model’s final layer activations is competitive when pitted against
state-of-the-art DRO approaches like JTT (Just-Train-Twice) [17] and BR-DRO (Bitrate-Constrained
DRO) [15]. In settings where validation group annotations are available across 3 widely used datasets,
we outperform JTT and BR-DRO on 3 and 2 tasks, respectively, using our regularized MTL approach
with end-task data only. Our approach improves worst-case group accuracy over ERM (by as much
as ∼ 4%) and JTT (by ∼ 1%) in settings where group annotations are entirely unavailable. We ablate
our method across a wide range of settings: varying the choice of SSL auxiliary task, using only
end-task data versus external data, and training with a pre-trained model versus training a model
from scratch. Our results demonstrate that multi-tasking the end-task with a self-supervised learning
objective can be a versatile and robust tool against poor group-based outcomes.

2 Experimental Details

Datasets. We conduct experiments across three primary datasets: Waterbirds [13], MultiNLI [25]
and CivilComments [26, 27]. To relieve the burden of compute, we introduce a fourth dataset, which
is a smaller, sub-sampled version of one of the original CivilComments dataset, which we call
CivilComments-Small. Please see Appendix A.1 for more details about the datasets we explore.

Multitask Model and Training Details. Let Tprim denote the end-task and Tssl denote the self-
supervised auxiliary task. We follow the parameter sharing paradigm [28, 29] where both Tprim

and Tssl share the same model body, parameterized by θbase. We instantiate task-specific heads,
parameterized by θprim and θssl, respectively. We introduce ℓ1 regularization to the final layer
activations, positioned just before the per-task prediction heads. This regularization constraint
encourages sparsity in the shared representation, ultimately enhancing the alignment of core features
between the two tasks and reducing the prominence of spurious features. To facilitate such constrained
multi-task training, we adopt a task-heterogeneous batching scheme [30], where each parameter
update is performed using aggregated gradients across tasks. Let hprim, hssl ∈ Rd be the output
representations generated by the base model, which are fed into their respective task-specific heads.
Then, our final multi-task learning objective can be expressed in terms of equation 1. Note that whilst
we optimize Lfinal we care only about improving worst-group error on Tprim.

Lfinal = Lprim + wssl · Ltrans + wreg

(
∥hprim∥1 + ∥hssl∥1

)
(1)
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We use the pre-trained BERTbase [31] and ViTbase [32] as the shared base models for NLP and CV
tasks, respectively. We leverage the base models’ self-supervised pretraining objectives, namely,
masked language modeling (MLM) and masked image modeling (MIM), for our auxiliary transfer
task Tssl. Please see Appendix A.3 for more details about training and hyper-parameters.

Baseline Methods. We explore four baselines: Empirical Risk Minimization (ERM), Just Train
Twice (JTT) [17], Bit-rate Constrained DRO (BR-DRO)[15] and Group-DRO [13]. Appendix
section A.4 contains a more detailed description of these baseline methods.

Evaluation Details. We evaluate all the methods and datasets based on worst-group accuracy.
We adopt two model selection strategies: 1) Val-GP: Assuming access to group annotations in the
validation data, we choose the model checkpoint that maximizes the worst-group accuracy on the
validation set. 2) No-GP: We checkpoint models based on average validation accuracy, assuming no
access to any group annotations.

3 Results And Discussion

3.1 SSL based Multi-Tasking is Competitive with Bespoke DRO Methods

Table 1: Regularized multitask learning consistently reduces the gap between ERM and groupDRO.

Method Group Labels Civilcomments MNLI Waterbirds
ERM Val Only 61.32.0 67.61.2 85.41.4
JTT Val Only 67.81.6 67.51.9 85.92.5

BR-DRO Val Only 68.90.7 68.50.8 86.71.3
ERM + MT + L1 Val Only 68.23.2 69.71.5 87.52.7

groupDRO (Upper Bound) Train and Val 69.91.2 78.00.7 93.90.7

Table 1 details the performance comparison with previously proposed methods for worst-group
generalization *. We consider GroupDRO as an upper bound on performance since it uses group
annotations at training time. Our MTL-SSL approach outperforms JTT and BR-DRO on two datasets
(MNLI and Waterbirds) while performing comparatively with BR-DRO on the CivilComments
dataset. Given the competitive results in Table 1, we argue that our regularized MTL-SSL formulation
is an attractive option over JTT and BR-DRO based on its simplicity. Unlike JTT, multi-task
learning does not require training the model twice. Also, our approach is simple compared to BR-
DRO, which requires jointly training the task model and an adversary model in a min-max fashion.
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Figure 1: Regularized MTL-SSL boosts
worst-group accuracy, regardless of
group annotations.

3.2 MTL-SSL improves Worst Group Performance
even without Group Annotated Validation Data

While prior studies often assume access to group
annotations in the validation set [17, 33], our focus is
on scenarios where no such annotations are available.
This is particularly relevant to practical tasks where
obtaining group annotations for the validation set can
be prohibitively expensive in terms of cost and human
effort. Figure 1 summarizes our findings, illustrating
performance across five random seeds. Without group
annotations, the MTL-SSL approach outperforms JTT
and achieves a ∼ 2% − 3% improvement over ERM.
This improvement persists even when validation group
annotations are introduced, but a more significant boost of
∼ 5%− 15% is observed when using group-labeled data.
This boost is valuable for practitioners with resources to
obtain at least some group annotations.

*Values in tables are means from 5 random seeds with subscripts indicating standard deviations.
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3.3 Are both Regularization and Multi-Tasking Jointly Necessary?

Table 2: Waterbirds Ablation
Method Group Labels

None Validation

ERM 80.14.6 85.41.4
+ L1 82.05.4 86.41.4
+ MIM 80.14.6 85.32.4
+ MIM + L1 83.33.4 87.52.7

Table 3: Civilcomments-small Ablation
Method Group Labels

None Validation

ERM 51.65.6 67.42.1
+ L1 51.64.0 66.31.6
+ MLM 58.36.6 68.50.4
+ MLM + L1 53.74.3 69.41.7

We conduct an ablation to verify if both ingredients are indeed necessary for improved worst-group
accuracy. Our results are captured in Tables 2 and 3. Regularizing the final embedding space
during ERM can result in worse performance compared to training via ERM solely (66.31.6 vs
67.42.1 on CivilComments-small with validation group labels). On the other hand, multi-tasking
without regularization can fail to improve over ERM, as evidenced by the experiments on Waterbirds.
The regularized MTL-SSL approach stands out as the only configuration consistently enhancing
performance on both datasets, whether with or without validation group annotations. We discuss
more about the effect of wssl and wreg in Appendix A.7.

3.3.1 Going Beyond the Pre-Training Objective

Table 4: Waterbirds: MIM → SimCLR
Method Group Labels

None Validation

ERM 80.14.6 85.41.4
+ MIM + L1 83.33.4 87.52.7

+ SimCLR + L1 84.03.4 87.21.6

Table 5: Civilcomments-small: MLM → CLM
Method Group Labels

None Validation

ERM 51.65.6 67.42.1
+ MLM + L1 53.74.3 69.41.7

+ CLM + L1 50.94.9 67.31.4

In this section, we explore other auxiliary objectives outside the model’s original pre-training objective
during multitasking. For the Waterbirds dataset, we experiment with SimCLR – a constrastive
prediction task based on determining whether two distinct augmented images originate from the same
base image [34]. For Civilcomments-small, we substitute the standard masked language modeling
(MLM) task with causal language modeling (CLM) as the auxiliary task. Results are mixed when
we deviate from the pre-training objective as the auxiliary task. From the results in Tables 4 and 5,
we observe that SimCLR’s performance closely resembles that of the MIM pre-training objective,
whereas CLM shows relatively inferior results compared to MLM. We hypothesize that BERT’s
intrinsic bidirectional attention mechanism and non-autoregressive nature are not ideally suited for
causal language modeling [35], resulting in the model underperforming on both the end-task and
CLM. Given the sensitivity of model performance to the choice of the replacement objective, we
proffer a practical recommendation to practitioners: use the pre-training objective as the auxiliary
task. This is in line with recent work on best practices for fine-tuning pre-trained models [36]. We
provide additional insights, such as the effect on average accuracy and introduction of external data,
in Appendix A.5 and A.8.

4 Conclusion

This works presents an empirical investigation on how multi-tasking with self-supervised objective can
improve worst-group performance. Specifically, we show that constraining the shared representations
in the multi-tasking framework with ℓ1 regularization limits the usage of spurious features,
thereby improving generalization. Consequently, As a result, our MTL-SSL approach consistently
outperforms the conventional ERM training paradigm and either improves upon or competes
effectively with previously proposed methods for worst-group generalization, regardless of the
availability of group annotations. These findings emphasize the versatility of our approach, providing
a robust solution for enhancing model performance in challenging worst-case scenarios across various
practical applications.
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A Appendix

A.1 Datasets

Waterbirds: This image classification dataset was introduced by [13]. The task is to distinguish
between species of land and water birds. It consists of bird images sourced from the CUB dataset
[37] and superimposed on land or water backgrounds from the Places dataset [38]. The label (type of
bird) is spuriously correlated with the background, resulting in 4 groups. Since this is a small dataset
(4,795 train examples), we also use it for ablations.

MultiNLI: This is a natural language inference dataset. The task is to classify whether the second
sentence is entailed by, contradicts, or is neutral with respect to the first sentence [25]. Following
[13], we utilize the presence of negation words as a spurious attribute, leading to the creation of a
total of 6 groups.

Civilcomments: The Civilcomments dataset is a toxicity classification dataset that contains comments
from online forums [26, 27]. Along with the toxicity label, each text is annotated with additional
overlapping sub-group labels of 8 demographic identities: male, female, LGBTQ, Christian, Muslim,
other religions, Black, and White. As per [27] and [13], we define 16 overlapping groups by taking
the Cartesian product of the binary toxicity label and each of the above eight demographic identities.

Civilcomments-small: As Civilcomments is a large dataset of about 448,000 data points, we create a
sub-group stratified subset of 5% for conducting ablations and other detailed experiments. Our subset
contains 13770, 2039, and 4866 data points in our train, validation, and test split, respectively.

A.2 Model Details

For Tprim, we employ a classification head of a single-layer multi-layer perceptron (MLP). For Taux,
we leverage the pre-trained MLM and MIM heads from BERT and ViT, respectively. We utilize the
embedding of the [CLS] token from the base model through this MLP for classification. To ensure
proper scaling, the L1 loss is normalized by the number of parameters in the shared representation.

A.3 Training Details

For training, we vary the fine-tuning learning rate within the ranges of {10−3, 10−4} for Waterbirds,
and {10−4, 10−5} for the text datasets. We experiment with batch sizes in the set {4, 8, 16, 32}
for all the datasets. We use the same batch sizes for Tprim and Ttrans. We train for 50 epoch
for the NLP datasets and 200 epochs for Waterbirds, with an early stopping patience of 10, as per
the check-pointing scheme explained in section 2. We use the Adam optimizer for NLP datasets
with decoupled weight decay regularization of 10−2 [39]. Consistent with the recent studies on
ViT [32, 40], we use SGD with momentum of 0.9 [41] to fine-tune Waterbirds. We cross-validate
wssl and wreg from {e−1, 1, e1}. We run each hyperparameter configuration across 5 seeds and
report the averaged results. We report the ERM, JTT, and groupDRO results for Civilcomments
and MultiNLI from [42] as the authors conducted extensive hyperparameter tuning across all these
methods. However, since [42] report results on Waterbirds using a ResNet-50 model [43] and our
experiments employ ViT, we re-run all baselines using ViT with a consistent set of hyperparameters,
as mentioned above.

A.4 Baseline Methods

Empirical Risk Minimization (ERM) This is the standard approach of minimizing the average loss
over all the training data. No group information is used during training except when the Val-GP
strategy is used for model selection.

Just Train Twice (JTT): JTT presents a two step approach for worst group generalization [17]. JTT
first trains a standard ERM model for T epochs to identify misclassified data points. Then, a second
model is trained on a reweighted dataset constructed by upweighting the misclassified examples by
λup. It does not use group information during training except when the Val-GP strategy is used for
model selection.
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Bit-rate Constrained DRO (BR-DRO): Traditionally, in the two-player formulation of DRO
(e.g., CVaR-DRO), the adversary can propose arbitrarily complex reweighting functions, which
leads to overly pessimistic solutions for the game equilibrium. On the contrary, BR-DRO [15]
restricts the complexity class of the adversary (max player), where the complexity is defined with
an information-theoretic constraint under a data-independent prior. This leads to a weaker form of
robustness since the game equilibrium does not come with performance guarantees for arbitrarily
reweighted training points. On the other hand, the BR-DRO solution is also less pessimistic and is
robust to “simpler” distribution shifts, where the shift is characterized by a reweighting function
contained in a simpler complexity class. BR-DRO does not use group information during training
except for the Val-GP setting.

Group-DRO: Group distributionally robust optimization minimizes the maximum loss across all
the sub-groups [13]. This optimization method incorporates group annotations during training.
Consequently, we regard its results as an upper bound for methods that do not leverage group labels
during the training process.

A.5 Impact on Average Accuracy under Different Settings

A.5.1 Multi-tasking Improves Average Performance
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Figure 2: Regularized MTL improves
average group accuracy when group
annotations are available

Figure 2 illustrates the performance of ERM, JTT,
and our approach concerning average accuracy.
Constrained multi-tasking with the pre-training
objective consistently improves performance across
both datasets when validation group annotations
are available. Therefore, when considering both
Figure 1 and 2, it becomes evident that our method
not only yields superior average performance but
also excels in worst-case scenarios. In cases where
group annotations are absent, our method achieves
slightly lower results, though still exceeding 97%.
However, juxtaposing the results in Figure 1 and
2, we see that our approach achieves a better trade-
off between average and worst-case accuracy across
both datasets. Thus, our empirical findings align
with our theoretical investigation, demonstrating that
our method effectively reduces spurious features in
shared representations and enhances generalization
across all sub-groups.

A.5.2 Are both Regularization and Multi-Tasking Jointly Necessary?

Table 6: Waterbirds Ablation
Method Group Labels

None Validation

ERM 95.50.2 94.10.7
+ L1 95.60.3 94.70.9
+ MIM 95.30.4 95.00.6
+ MIM + L1 95.80.3 95.40.4

Table 7: Civilcomments-small Ablation
Method Group Labels

None Validation

ERM 83.90.4 81.41.0
+ L1 83.70.4 80.30.7
+ MLM 83.91.2 81.11.1
+ MLM + L1 84.40.4 82.00.5

Tables 6 and 7 present ablation studies focusing on average accuracy. Consistent with the findings in
Section A.5.2, we observe that incorporating L1 regularization into multi-task learning with the pre-
trained objective produces the highest average accuracy when validation annotations are accessible.
In line with the theoretical findings, the synergy between L1 regularization and MLM/MIM results in
stable trade-offs between average and worst-group accuracy.
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Table 8: Waterbirds: MIM → SimCLR
Method Group Labels

None Validation

ERM 95.50.2 94.10.7
+ MIM + L1 95.80.3 95.40.4
+ SimCLR + L1 96.10.3 95.50.7

Table 9: Civilcomments-small: MLM → CLM
Method Group Labels

None Validation

ERM 83.90.4 81.30.9
+ MLM + L1 84.40.4 82.00.5

+ CLM + L1 83.30.7 81.10.9

A.5.3 Going Beyond the Pre-Training Objective

The results presented in Tables 8 and 9 elucidate the impact of multi-tasking using various transfer
learning objectives on average accuracy. In line with the observations in Section 3.3.1, SimCLR
consistently delivers results that are either superior or comparable to those achieved with the masked
image modeling objective. CLM, on the other hand, gives lower performance than ERM and
ERM+MLM+L1 on both checkpointing schemes.

A.6 Impact of Pre-training

Table 10: Waterbirds: Finetuning vs training from scratch.

Pretrianed Method No Group Annotations Val Group Annotations
Avg Acc WG Acc Avg Acc WG Acc

No
ERM 65.10.5 4.51.6 53.30.7 10.12.9
JTT 67.05.3 10.812.2 56.22.1 49.94.0

ERM + MIM + L1 67.02.3 1.650.7 53.52.7 12.03.2

yes
ERM 95.50.2 80.14.6 94.10.7 85.41.4
JTT 95.60.3 82.11.2 94.00.5 85.92.5

ERM + MIM + L1 95.80.3 83.33.4 95.40.4 87.52.7

Table 11: Civilcomments-small : Fine-tuning versus training from scratch.

Pretrianed Method No Group Annotations Val Group Annotations
Avg Acc WG Acc Avg Acc WG Acc

No
ERM 80.70.8 31.17.2 74.40.9 54.03.7
JTT 79.60.6 34.98.9 74.31.2 58.71.3

ERM+MLM+L1 80.70.6 31.37.6 74.20.3 56.20.9

Yes
ERM 83.90.4 51.65.6 81.41.0 67.42.1
JTT 83.30.2 52.55.2 81.30.8 68.01.8

ERM+MLM+L1 84.40.4 53.74.3 82.00.6 69.41.7

Finetuning pre-trained models is arguably the de-facto paradigm in machine learning [31, 32, 4].
Consequently, our experiments so far have exclusively focused on pre-trained models. In this section,
we wish to understand the effect of deviating from this paradigm on our MTL approach. We thus
compare against JTT and ERM when the model is trained from scratch instead of starting with a
pre-trained model.

Tables 10 and 11 depict our results on Waterbirds and Civilcomments-small, respectively. Our results
show that pre-training is critical for setting up regularized MTL as a viable remedy against poor
worst-group outcomes. We posit the following explanation for this outcome. Solving the MLM and
MIM tasks effectively from scratch with only task data is difficult. This poor performance on the
auxiliary task translates to an inability to constrain the use of spurious features on the end task. Our
recommendation to practitioners is that our approach be used during finetuning of pre-trained
models in order to be maximally effective.

A.7 Impact of wssl and wreg

Figures 3 and 4 depict the influence of wssl and wreg on the trade-off between average and worst
group accuracy. In both the Waterbirds and Civilcomments-small datasets, we consistently observe
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that setting wreg to e−1 results in the best performance. This configuration consistently outperforms
wreg = 1 and wreg = 0, highlighting the importance of L1 regularization in enhancing both average
and worst-group performance, albeit with a smaller weight coefficient. Notably, when wreg exceeds
1, there is a significant drop in performance, indicating a substantial reduction in the representation
capacity of the shared representation layer. The influence of wssl varies between the datasets, and it is
challenging to precisely quantify the effect of different wssl values.
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Figure 3: Effect of L1 regularization weight on the trade-off between average and worst-group
performance.
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Figure 4: Effect of SSL objective weight on the trade-off between average and worst-group
performance.
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A.8 Introducing External Data

Table 12: Civilcomments-small : Unlabeled data also helps improve worst-group error.

Method Group Labels
None Validation

ERM 51.65.6 67.42.1
ERM + MLM + L1task 53.74.3 69.41.7
ERM + MLM + L1unlabeled 57.22.5 70.50.5

Leveraging unlabeled data has proven effective in improving adversarial robustness [44],
generalization [45], and worst-group performance [46]. Consequently, we extend our constrained
multitasking framework to incorporate unlabeled data. Among the three datasets considered, only
Civilcomments has a readily available unlabeled corpus [46]. Therefore, we investigate the impact of
using unlabeled data on the Civilcomments-small dataset. We sample unlabeled data of equivalent
size to our training data. Instead of conducting experiments across five different seeds, we generate
five distinct, non-overlapping subsets of unlabeled data and report results based on their average
performance.

As evidenced from Table 12, unlabeled data leads to further improvements over the end-task data.
Thus, transfer learning from unlabeled, which is supported by our theoretical investigation. We leave
the experiments with a larger pool of unlabeled data for future work.

A.9 Related Work

Robustness using group demographics. Among the approaches that leverage group information,
Distributionally Robust Optimization [13] is the most popular technique that tries to minimize the
maximum loss over the sub-groups. [47] presented Model Patching, a data augmentation method
designed to enhance the representation of minority groups. [48] and [49] developed training paradigms
that impose heavy Lipschitz regularization around minority data points for worst-group performance
improvement. The Predict-then-Interpolate approach established by [50], introduces an effective
algorithm capable of learning correlations across stable environments, thereby enhancing worst-group
generalization. FISH, proposed by [51], focuses on domain generalization via inter-domain gradient
matching. [21] proffered DFR, a simple yet efficient method that involves retraining the final layer of
the model using a held-out dataset where the spurious correlations are broken. Lastly, studies by [52],
[53], and [54] have demonstrated that straightforward data reweighing and subsampling strategies
can yield commendable worst-group performance.

Robustness without group demographics. Extensive research has been dedicated to addressing
the challenges of worst-group generalization in a more realistic scenario, one where access to group
annotations during training is not available. GEORGE [22] adopts a clustering-based methodology to
unveil latent groups within the dataset and subsequently employs groupDRO for improved robustness.
Learning from Failure (LfF) [16] introduces a two-stage strategy. In the first stage, an intentionally
biased model aims to identify minority instances where spurious correlations do not apply. In the
second stage, the identified examples are given increased weight during the training of a second
model. Just Train Twice (JTT) method [17] follows a similar principle by training a model that
minimizes loss over a reweighted dataset. This dataset is constructed by up-weighting training
examples misclassified during the initial few epochs. Correct-N-Contrast (CNC) [18] builds upon
JTT but employs a contrastive loss in the training of the final model. Spread Spurious Attribute (SSA)
[19] follows a slightly different two-step approach. Initially, a pseudo-labeling phase trains a spurious
attribute predictor per group. In the subsequent robust training phase, the spurious attribute predictor
is used to pseudo-label (input, label) pairs with spurious attributes. AGRO [23] proposes a method
for the adversarial discovery of error-prone groups to enhance robust optimization. Recently, [20]
introduced AFR, a modification of DFR [21], which is both simple and efficient, requiring no group
annotations.
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