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Abstract

Self-supervised learning (SSL) is an increasingly popular paradigm for representa-
tion learning. Recent methods can be classified as sample-contrastive, dimension-
contrastive, or asymmetric network-based, with each family having its own ap-
proach to avoiding informational collapse. While dimension-contrastive methods
converge to similar solutions as sample-contrastive methods, it can be empirically
shown that some methods require more epochs of training to converge. Moti-
vated by closing this divide, we present the objective function FroSSL which is
both sample- and dimension-contrastive up to embedding normalization. FroSSL
works by minimizing covariance Frobenius norms for avoiding collapse and min-
imizing mean-squared error for augmentation invariance. We show that FroSSL
converges more quickly than a variety of other SSL methods and provide theoreti-
cal and empirical support that this faster convergence is due to how FroSSL affects
the eigenvalues of the embedding covariance matrices. We also show that FroSSL
learns competitive representations on linear probe evaluation when used to train a
ResNet18 on the CIFAR-10, CIFAR-100, STL-10, and ImageNet datasets.

1 Introduction

The problem of learning representations without human supervision is fundamental in machine
learning. Unsupervised representation learning is particularly useful when label information is dif-
ficult to obtain or noisy. It requires the identification of structure in data without any preconceptions
about what the structure is. One way of learning structure without labels is self-supervised learning
(SSL). A flurry of SSL approaches have been proposed for learning visual representations (Chen
et al., 2020; HaoChen et al., 2021; Tsai et al., 2021b; Chen & He, 2021; Grill et al., 2020; He et al.,
2020; Zbontar et al., 2021; Li et al., 2021). The basic goal of SSL is to train neural networks to
capture semantic input features that are augmentation-invariant. This goal is appealing for repre-
sentation learning because the inference set often has similar semantic content to the training set.

A trivial solution to learning augmentation-invariant features is to learn networks that encode every
image to the same point. Such a solution is known as informational collapse and is of course useless
for downstream tasks. SSL approaches can be roughly divided into three families, each with its
own method of avoiding collapse: sample-contrastive (SC) methods, dimension-contrastive (DC)
methods, and asymmetric network (AN) methods. One disadvantage common to all current SSL
methods is their speed of convergence. When compared to traditional supervised learning, SSL
methods must be trained for large numbers of iterations to reach convergence. For example, a
typical experiment in the literature is to train for 1000 epochs on ImageNet which can take several
weeks even with 4 GPUs. An imperative direction of research is to investigate how to reduce SSL
training time. An observation that is often hidden by only reporting the final epoch accuracy is that,
empirically, certain SSL methods seem to converge slower than others. This phenomenon has been
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Table 1: Taxonomy of dimension-contrastive SSL methods describing how they avoid informational
collapse and achieve augmentation invariance

Method Variance Invariance
Barlow Twins Cross-correlation off-diagonals Cross-correlation diagonals
VICReg (Variance) Hinge loss on auto-covariance diagonal MSE

(Covariance) covariance off-diagonals per view
W-MSE Implicit through whitening MSE
CorInfoMax Log-determinant entropy of covariance per view MSE
FroSSL (ours) Log of normalized covariance Frobenius norm per view MSE

observed in Simon et al. (2023) but not discussed in detail. Our goal is to answer the following
research question: Does there exist an SSL method with dimension-contrastive advantages, namely
simplicity via avoidance of both negative sampling and architectural restrictions, while achieving a
superior speed of convergence to other existing SSL methods?

We propose an SSL objective which we call FroSSL. Similar to many DC methods, FroSSL consists
of a variance and invariance term. The invariance term is simply a mean-squared error between the
views and is identical to VICReg’s invariance term (Bardes et al., 2022). The variance term is the
log of the squared Frobenius norm of the normalized covariance embedding matrices. To the best of
our knowledge, using the Frobenius norm of covariance matrices has not been explored in SSL. Our
contribution can be summarized as:

• We introduce the FroSSL objective function and show that it is both dimension-contrastive
and sample-contrastive up to a normalization of the embeddings.

• We evaluate FroSSL on the standard setup of SSL pretraining and linear probe evaluation
on CIFAR-10, CIFAR-100, STL-10, and ImageNet. We find that FroSSL achieves strong
performance, especially when models are trained for fewer epochs.

• We examine the covariance eigenvalues of various SSL methods to show which methods
lead to the best-conditioned, and thus quickest, optimization problems.

2 Dimension-Contrastive Methods

The dimension-contrastive methods, which are sometimes called negative-free contrastive (Tsai
et al., 2021a) or feature decorrelation methods (Tao et al., 2022), operate by reducing the redundancy
in feature dimensions. Instead of examining where samples live in feature space, these methods ex-
amine how feature dimensions are being used. Many recent works in DC SSL, whether explicitly or
implicitly, consist of having a loss function that fulfills two roles:

• Variance This is the explosion factor that ensures informational collapse is avoided.
• Invariance This is the implosion factor that ensures useful augmentation-invariant repre-

sentations are learned.

SSL methods belonging to the DC family include Barlow Twins (Zbontar et al., 2021), VI-
CReg (Bardes et al., 2022), W-MSE (Ermolov et al., 2021), and CorInfoMax (Ozsoy et al., 2022).
A taxonomy of these methods showing how they avoid informational collapse and achieve augmen-
tation invariance is shown in Table 1.

3 The FroSSL Objective

To motivate FroSSL, we begin by examining the Barlow Twins objective,

LBarlow =
∑
i

(1−Mii)
2 + λ

∑
i

∑
i ̸=j

Mij
2 (1)

where M is the cross-correlation matrix. Without feature normalization, the objective LBarlow pushes
M to approach identity and is not rotationally invariant. However, we posit that DC methods should
be rotationally invariant because the orientation of the covariance does not affect the relationships
between principal components. In other words, redundancy in the embedding dimensions is invariant
to the rotation of the embeddings. Thus DC methods should be rotationally invariant as well.
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One natural matrix operation that is invariant to unitary transformations is the Frobenius norm.
Minimizing the Frobenius norm of normalized embeddings will cause the embeddings to spread out
equally in all directions. Normalization is crucial because otherwise, minimizing the Frobenius norm
will lead to trivial collapse. We propose to use the following term to reduce redundancy between
dimensions:

LFro = log(||ZT
1 Z1||2F ) + log(||ZT

2 Z2||2F ) (2)

where Zi is a batch of embeddings in view i. The Frobenius norm || · ||F is defined as:

||A||F =

√√√√ m∑
i

n∑
j

A2
ij =

√√√√min(m,n)∑
k

σ2
k(A) (3)

where σk(A) is the kth largest singular value of A. The LFro term fills the role of a variance term.
For the invariance term, we can simply use mean-squared error between the views. Combining the
variance and invariance terms yields the FroSSL objective.

minimize LFroSSL = log(||ZT
1 Z1||2F ) + log(||ZT

2 Z2||2F ) +
1

N

n∑
i=1

||z1,i − z2,i||22 (4)

By the duality of the Frobenius norm, we can choose to calculate either ||ZT
1 Z1||2F or ||Z1Z

T
1 ||F

depending on if d > n. The former has time complexity O(nd2) while the latter has complexity
O(n2d). We provide Pytorch-style pseudocode in Appendix A.

3.1 The Role of the Logarithm - Entropy and Self Regulation

The role of the logarithms in (2) is twofold. First, the logarithm allows interpreting LFro as entropy
maximization. One recent information-theoretic framework with success in deep learning is matrix-
based entropy (Sanchez Giraldo et al., 2015). It is an information-theoretic quantity that behaves
similarly to Rényi’s α-order entropy, but it can be estimated directly from data without making
strong assumptions about the underlying distribution. In particular, the first and second terms of (2)
correspond to the matrix-based negative collision entropies of Z1 and Z2. This is relevant because
maximizing collision entropy directly minimizes the coincidence of points, thus avoiding trivial
collapse. We compare FroSSL to other methods using entropy in Appendix C.

Second, we hypothesize that the log ensures that the contributions of the variance term to the gradient
of the objective function become self regulated (d log f(x)

dx = 1
f(x)

df(x)
dx ) with respect to the invariance

term. Initially we attempted using tradeoffs between the Frobenius norm term and the mean-squared
error term. However, a grid search showed that the optimal tradeoff was when the terms were equally
weighted. This is a nice advantage over methods such as Barlow Twins and VICReg, where the
choice of tradeoff hyperparameters is crucial to the performance of the model.

3.2 FroSSL is both Sample-contrastive and Dimension-contrastive

Using the definitions of SC and DC methods first proposed in Garrido et al. (2023b), it can be shown
that, up to an embedding normalization, FroSSL is both SC and DC. Full proofs of this claim are
given in Appendix F.1. The choice of normalization strategy is not of particular importance to
the performance of an SSL method (Garrido et al., 2023b). Unless otherwise specified, we only
normalize the variance and not the embeddings. Another method that shares these properties is
TiCo (Zhu et al., 2022). Additionally, variants of the DC VICReg were introduced in Garrido et al.
(2023b) that allowed it to be rewritten as the SC SimCLR.

4 Comparing Stepwise Convergence in the Nonlinear Regime

Recent work has examined the training dynamics of SSL models (Simon et al., 2023). In particu-
lar, they find that the eigenvalues of the covariance exhibit “stepwise” behavior, meaning that one
eigendirection is learned at a time. They claim that this phenomenon contributes to slowness in SSL

3



0 500 1000 1500 2000
Step

0

100

200

300

400

500

Ei
ge

nv
al

ue

Final Cond. Number: 1.80
Final Entropy: 2.40

Saturation 1700 steps

VICReg

0 500 1000 1500 2000
Step

0

50

100

150

200

250

Ei
ge

nv
al

ue

Final Cond. Number: 1.96
Final Entropy: 2.39

Saturation 1250 steps

Barlow Twins

0 500 1000 1500 2000
Step

0

5

10

15

20

25

30

35

Ei
ge

nv
al

ue

Final Cond. Number: 1.84
Final Entropy: 2.39

Saturation 550 steps

SimCLR

0 500 1000 1500 2000
Step

0

25

50

75

100

125

150

175

Ei
ge

nv
al

ue

Final Cond. Number: 1.48
Final Entropy: 2.42

Saturation 450 steps

FroSSL

Figure 1: The top 14 eigenvalues of the embedding covariance ZT
1 Z1. The condition number and

eigenvalue Shannon entropy are shown for the end of epoch 5 (roughly 2000 steps). A vertical line
marks the saturation of the 14th eigenvalue. The best quantities are bolded.

Table 2: (Left) The top1 accuracies of SSL methods on small datasets. (Right) top1 accuracies at
certain epochs on STL-10 using an online linear classifier during training. Best result is in bold,
second and third best are underlined.

Method CIFAR-10 CIFAR-100 STL-10 Average
Sample-Contrastive

SimCLR 91.8 65.8 85.9 81.2
SwAV 89.2 64.9 82.6 78.9
MoCo v2 92.9 69.9 83.2 82.0

Asymmetric Network
SimSiam 90.5 66.0 88.5 81.7
BYOL 92.6 70.5 88.7 83.9
DINO 89.5 66.8 78.9 78.4

Dimension-Contrastive
VICReg 92.1 68.5 85.9 82.2
Barlow Twins 92.1 70.9 85.0 82.7
W-MSE 2 91.6 66.1 72.4 76.7
FroSSL 92.8 70.6 87.3 83.6

3 10 30 50 100

40.7 44.8 61.5 66.2 70.1
30.9 38.7 64.6 69.3 74.3
24.6 45.0 63.8 69.4 75.2

31.8 41.2 54.7 65.6 77.1
28.8 32.7 59.6 64.7 70.6
26.6 26.7 38.2 43.2 46.1

43.6 51.1 61.2 67.5 71.1
32.1 46.6 62.0 62.6 69.0
17.2 30.4 45.6 53.4 61.9
44.8 56.9 64.8 67.1 72.0

optimization because the smallest eigendirections take longer to be learned. This is supported by a
recent finding that shows that high-rank representations lead to better classification accuracies (Gar-
rido et al., 2023a).

We create an experimental setup similar to the one used in Simon et al. (2023). In Figure 4, we
compare FroSSL to VICReg, Barlow Twins, and SimCLR. We train for 5 epochs and plot the top 14
eigenvalues of the view 1 covariance ZT

1 Z1 over time. At the end of the 5th epoch, FroSSL outper-
forms the other methods in the following three metrics: condition number, eigenvalue entropy, and
saturation time. We speculate that FroSSL allows the covariance eigenvalues to converge quicker
because per Equation (3), the LFro term can be rewritten in terms of the embedding matrix eigenval-
ues. This shows that if each dimension is normalized to have variance ρ, then LFro explicitly tries to
make the covariance eigenvalues approach to ρ. Implementation and metric details are given in D.1.

5 Experimental Results

For CIFAR-10, CIFAR-100, and STL-10, we use the solo-learn framework (da Costa et al., 2022).
For methods other than FroSSL, we show CIFAR-10 and CIFAR-100 results from da Costa et al.
(2022); Ermolov et al. (2021). All STL-10 models and results were trained by us. Implementation
details are in Appendix D.2. In the left of Table 2, we show linear probe evaluation results on these
datasets. It is readily seen that FroSSL learns competitive representations with other SSL methods.
In the right of Table 2, online linear classifier accuracies are shown for STL-10 on several epochs
during training. FroSSL outperforms all other DC methods. Additionally, FroSSL outperforms all
other SSL methods shown in the first 30 epochs. In Appendix B, we show a comparison between
FroSSL and Barlow Twins on training a ResNet18 on ImageNet.

6 Conclusion

We introduced FroSSL, a self-supervised learning method that can be seen as both sample- and
dimension-contrastive. We demonstrated its effectiveness through extensive experiments on stan-
dard datasets. In particular, we discovered that FroSSL is able to achieve substantially stronger
performance than alternative SSL methods when trained for a small number of epochs. To better
understand why this is happening, we presented empirical results based on stepwise eigendecom-
positions. We plan to examine the theoretical convergence properties of FroSSl, similarly to the
analysis done in Simon et al. (2023). We will also try FroSSL in combination with other SSL meth-
ods as a way of achieving faster convergence.
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A Pseudocode for FroSSL

for x in loader:
# augment the image
x_a, x_b = augment(x)

# pass through network f to get embeddings
z_a = f(x_a)
z_b = f(x_b)
N, d = Z_a.shape

# center embeddings
Z_a = Z_a - Z_a.mean(0)
Z_b = Z_b - Z_b.mean(0)

# normalize dimensions to sqrt(D) std.
Z_a = (D**0.5) * (Z_a / Z_a.norm())
Z_b = (D**0.5) * (Z_b / Z_b.norm())

# calculate invariance (MSE) term
invariance_loss = MSELoss(Z_a, Z_b)

# calculate variance (Frobenius norm) term
frobenius_a = torch.log(torch.norm(Z_a.T @ Z_a, ord=’fro’))
frobenius_b = torch.log(torch.norm(Z_b.T @ Z_b, ord=’fro’))
variance_loss = frobenius_a + frobenius_b

# FroSSL loss
loss = invariance_loss + variance_loss
loss.backward()
optimizer.step()

B Performance on ImageNet

Here we use FroSSL to train a ResNet18 on ImageNet for 100 epochs. We compare to Barlow
Twins on the exact same setup. We show the top1 and top5 accuracies in the first 30 epochs in
Figure B. Even after the first epoch, FroSSL has an improvement of 12.2% over Barlow Twins.
We show the first 30 epochs to emphasize what happens early in training. Afterward, Barlow Twins
does catch up to FroSSL and achieves similar performances. FroSSL and Barlow Twins achieve
final top1/top5 accuracies of 53.4/77.7 and 52.5/77.5, respectively. The important implementation
details are given in Appendix D.3.

Figure 2: Comparison of SSL methods when training a ResNet18 on ImageNet.
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C Entropy in SSL

Here we briefly discuss other SSL methods that, like FroSSL, can be interpreted as using entropy.
The FroSSL objective is closely related to the CorInfoMax objective proposed in Ozsoy et al. (2022).
The CorInfoMax objective uses log det entropy, as opposed to the matrix-based entropy described
in Section 3.1. One advantage of our approach is that the Frobenius norm can be computed in
O(d2n), assuming that d < n. On the other hand, log det entropy always requires computing
the eigendecomposition which is O(d3). Another advantage of FroSSL over CorInfoMax is the
absence of hyperparameters in the objective. We found the selection of ϵ to be critical for avoiding
instabilities in the eigendecomposition.

Another recent SSL work that uses entropy is SimMER (Yang et al., 2022). Rather than log det or
matrix-based entropy, SimMER uses an entropy estimator based on nearest neighbors (Kozachenko
& Leonenko, 1987). Unlike FroSSL, SimMER is not negative-free because the estimator implicitly
chooses the nearest neighboring point as a negative.

D Experimental Details

D.1 Stepwise Convergence Experimental Details

For all SSL objectives, a ResNet18 was trained on STL10 using lr = 0.1 and a batch size of 256.
The learning rate was chosen by performing a sweep over {1e-4, 1e-3, 1e-2, 1e-1} and selecting
the one that led to the highest linear probe accuracy after 100 epochs. A learning rate of 0.1 was
best for all objectives. Training occurred for only 5 epochs because we were interested in stepwise
behaviors early during training.

The hyperparameters for each SSL criterion are:

• Barlow Twins We used λ = 0.05 as recommended by Zbontar et al. (2021) and d = 1024.

• VICReg We used λ = 25, µ = 25, ν = 1 as recommended by Bardes et al. (2022).

• SimCLR We used temperature τ = 0.2 and d = 256.

• FroSSL We used d = 1024.

The metrics we use to compare methods are:

• Condition Number Given by λ1(Z
T
1 Z1)

λ14(ZT
1 Z1)

. The ideal condition number is 1 because the
smallest eigendirection is as relevant as the largest.

• Shannon Entropy Given by −
∑

i λi log(λi), where the eigenvalues are normalized to sum
to 1 before computation. The optimal value here is maximum entropy, which is obtained
when all eigenvalues are equal. Higher entropy is better because more eigendirections have
been learned.

• Saturation Given by the step at which the 14th eigenvalue saturates. Earlier is better
because convergence can occur with fewer training steps.

D.2 Small Datasets Experimental Details

Optimizer For the backbone, the LARS optimizer (You et al., 2017) is used with an initial learning
rate of 0.3, weight decay of 1e-6, and a warmup cosine learning rate scheduler. For the linear probe,
the SGD optimzer (Kingma & Ba, 2014) is used with an initial learning rate of 0.3, no weight decay,
and a step learning rate scheduler with decreases at 60 and 80 epochs.

Epochs For CIFAR-10 and CIFAR-100, we pretrain the backbone for 1000 epochs. For STL-10, we
pretrain for 500 epochs. All linear probes were trained for 100 epochs.

Hyperparameters For methods other than FroSSL, we use the CIFAR-100 hyperparameters re-
ported in da Costa et al. (2022) on the STL-10 dataset. A batch size of 256 is used for all methods.

Hardware The backbones were trained on one NVIDIA V100 GPU.
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D.3 ImageNet Experimental Details

Optimizer For the backbone, we use stochastic gradient descent (SGD) with an initial learning rate
of 1e-2, weight decay of 5e-4, and a cosine annealing scheduler with warm restarts every 15 epochs.
For the linear probe, the Adam optimizer is used with an initial learning rate of 5e-3, no weight
decay, and a step learning rate scheduler with decreases every 10 epochs.

Epochs The backbone is trained for 100 epochs. All linear probes were trained for 100 epochs.

Hyperparameters We use λ=5e-3 for Barlow Twins as recommended in Zbontar et al. (2021). An
effective batch size of 224 was used for the backbones, which equates to 56 samples per GPU. We
use the same augmentation set as Chen et al. (2020).

Hardware The backbones were trained on 4 NVIDIA A100 (40GB) GPUs.
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E Training Dynamics of FroSSL

E.1 Gradient with Linear Network

Given the empirical improvements to optimization speed observed in FroSSL, it is of interest to
study the theoretical training dynamics of FroSSL in comparison to other SSL criterions. Inspired
by the approach taken in Simon et al. (2023), we examine how FroSSL behaves in the linear network
regime.

First, we use a simplified variant of FroSSL given by:

L = ||ZT
1 Z1 − Id||2F + ||ZT

2 Z2 − Id||2F + ||Z1 − Z2||2F (5)

As compared to Equation (4), the main changes are: the mean-squared error is replaced with an
equivalent formulation in terms of Frobenius norms, the logs are removed because they lead to non-
linear ODEs later that are nontrivial to solve, and batchnorm is replaced with a distance to Id. The
variance terms of Equation (5) are similar to Barlow Twins, although they are defined on covari-
ance matrices rather than cross-correlation matrices. Additionally, Equation (5) bears resemblance
to a VICReg variant used to study optimal SSL representations through the lens of graph Lapla-
cians (Balestriero & LeCun, 2022). However, the VICReg variant considers a covariance matrix of
a batch containing both Z1 and Z2, rather than treating them individually as we do.

Second, we assume our networks are a linear mapping W1,W2 ∈ Rdxm. In particular, we present
a general analysis where each branch is not restricted to share weights. Because implicitly Z1 =
f(X1), we can simplify Equation (5) as

L = ||W1Γ1W
T
1 − Id||2F + ||W2Γ2W

T
2 − Id||2F + ||X1W

T
1 −X2W

T
2 ||2F (6)

where we have defined the data covariance Γ1 = XT
1 X1 ∈ Rmxm. Because we wish to understand

the training dynamics of W1 and W2, we define their gradients as:

dW1

dt
= ∇W1

L = −2(W1Γ1 + 2W2X
T
2 X1 + 2W1Γ1W

T
1 W1Γ1) (7)

dW2

dt
= ∇W2L = −2(W2Γ2 + 2W1X

T
1 X2 + 2W2Γ2W

T
2 W2Γ2) (8)

We show how these gradients were derived in Appendix F.2. Because of the difficulty of solving
Equations (7) and (8) for arbitrary choices of W , in the subsequent section we choose particular W1

and W2 that aids analysis.

E.2 Aligning W with the data covariance

For brevity, we describe the initialization for W1, though W2 follows identically. Because we train
with gradient descent, we parameterize W1 in terms of time t as W1(t). As described in Simon et al.
(2023), one powerful choice of W1(0) when initializing W1 = W1(0) is setting the right singular
vectors of W1 to be the top eigenvectors of the data covariance Γ1. This type of initialization is
called “aligned initialization”. One critical assumption henceforth is that for finite batch sizes the
data covariances per view, Γ1 and Γ2, share eigenvectors but perhaps have differing eigenvalues.
This is reasonable because X1 and X2 are drawn from the same distribution and are augmented
with the same random transforms. Next, we define the eigendecompositions of Γ1,Γ2, and W1(0)
as:

Γ1 = V D1V
T (9)

Γ2 = V D2V
T (10)

W1(0) = U1S1(0)V̂
≤d (11)

where U1 ∈ Rdxd are arbitrary orthonormal matrices, V̂ ≤d ∈ Rdxm are the top d eigenvectors
of Γ1 and Γ2, and S1(0) ∈ Rdxm are diagonal matrices of singular values such that S1(0) =
diag(s1,1(0), · · · , s1,d(0)) with s1,j(0) > 0. The matrices U1 and S1(0) may be thought of as
our initial random parameters, with V̂ ≤d placing constraints on the final orientation of W (0). The
matrices U2(0) and S2(0) are defined similarly for W2(0). The training dynamics of W1(0) from
Equation (7) are given by the following proposition:

10



Proposition E.1 (Aligned Initialization). If W1 is initialized by (11), with W2 being initialized
similarly, then the singular vectors of W1 do not change over time. The W1 parameterized by t
given by

W1(t) = U1S(t)V̂
≤d (12)

and the singular values evolve according to

s1,j(t) =

√√√√√ 2
√

λjγj − λj

(2λ2
j −

λj−2
√

λjγj

s21,j(0)
) exp

[
8t
√

λjγj − 4λjt
]
− 2λ2

j

(13)

Proof. A full proof is given in Appendix F.3. A quick outline is that plugging (12) into (7) gives an
ordinary differential equation (ODE). Solving this ODE as an initial value problem gives (13).

Proposition E.2 (Small Initialization). If W1,W2 have initial weights drawn from N(0, σ2), for
sufficiently small σ, then they have the same training dynamics of aligned initialization as described
in Proposition E.1. This is proven in Simon et al. (2023).

F Proofs

F.1 Sample- and Dimension-Contrastive

Here we introduce necessary definitions and propositions to show that FroSSL is both sample- and
dimension-contrastive. The following two definitions are from Garrido et al. (2023b).
Definition F.1 (Dimension-Contrastive Method). An SSL method is said to be dimension-
contrastive if it minimizes the non-contrastive criterion Lnc(Z) = ||ZTZ − diag(ZTZ)||2F , where
Z ∈ RNxD is a matrix of embeddings as defined above. This may be interpreted as penalizing the
off-diagonal terms of the embedding covariance.
Definition F.2 (Sample-Contrastive Method). An SSL method is said to be sample-contrastive if it
minimizes the contrastive criterion Lc(Z) = ||ZZT − diag(ZZT )||2F . This may be interpreted as
penalizing the similarity between pairs of different images.
Proposition F.1. If every embedding dimension is normalized to have equal variance, then FroSSL
is a dimension-contrastive method. The proof is shown in Appendix F.1.

Proof. We start with rewriting the argmin of Equation (4) as such:

argmin
Z1,Z2

LFroSSL = argmin
Z1,Z2

[
log(||ZT

1 Z1||2F ) + log(||ZT
2 Z2||2F ) + LMSE(Z1, Z2)

]
= argmin

Z1,Z2

[
||ZT

1 Z1||2F + ||ZT
2 Z2||2F + LMSE(Z1, Z2)

]
Without loss of generality, assume that each dimension has unit variance. Then both covariance
matrices have 1 in each diagonal element.

= argmin
Z1,Z2

[
||ZT

1 Z1 − diag(ZT
1 Z1)||2F + ||ZT

2 Z2 − diag(ZT
2 Z2)||2F + 2D + LMSE(Z1, Z2)

]
= argmin

Z1,Z2

[Lnc(Z1) + Lnc(Z2) + 2D + LMSE(Z1, Z2)]

Thus we have that the embeddings that minimize FroSSL also minimize the non-contrastive losses
Lnc for both views.

Proposition F.2. If every embedding is normalized to have equal norm, then FroSSL is a sample-
contrastive method. The proof is shown in Appendix F.1.

Proof. Using the duality of the Frobenius norm (||ATA||2F = ||AAT ||2F ), we rewrite Equation (4)
to use Gram matrices rather than covariance matrices:

LFroSSL = log(||ZT
1 Z1||2F ) + log(||ZT

2 Z2||2F ) + LMSE(Z1, Z2)

= log(||Z1Z
T
1 ||2F ) + log(||Z2Z

T
2 ||2F ) + LMSE(Z1, Z2)

Assuming that each embedding is normalized to have unit norm, then both Gram matrices have 1 in
each diagonal element. Then the rest of the proof then follows similarly to Proposition F.1.
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Proposition F.3. If the embedding matrices are doubly stochastic, then FroSSL is simultaneously
dimension-contrastive and sample-contrastive.

F.2 Derivation of FroSSL Variant Gradient

We start with Equation (6) and derive each term individually.

Term 3: The third term of (6), which corresponds to the MSE invariance term of (4), can be rewritten
as:

||X1W
T
1 −X2W

T
2 ||2F = trace((X1W

T
1 −X2W

T
2 )T (X1W

T
1 −X2W

T
2 )) (14)

= trace(W1X
T
1 X1W

T
1 +W2X

T
2 X2W

T
2 − 2W2X

T
2 X1W

T
1 ) (15)

= trace(W1X
T
1 X1W

T
1 ) + trace(W2X

T
2 X2W

T
2 )− 2trace(W2X

T
2 X1W

T
1 )
(16)

Using Equations 102 and 111 in the Matrix Cookbook (Petersen et al., 2008), we get the gradient as

∇W1 ||X1W
T
1 −X2W

T
2 ||2F = 2W1X

T
1 X1 − 2W2X

T
2 X1

= 2W1Γ1 − 2W2X
T
2 X1

(17)

∇W2
||X1W

T
1 −X2W

T
2 ||2F = 2W2X

T
2 X2 − 2W1X

T
1 X2

= 2W2Γ2 − 2W1X
T
1 X2

(18)

Term 1: The first term of (6), which corresponds to the argument of the View 1 logarithm of (4), is
derived using Equation 6 of Simon et al. (2023). In particular, we get

∇W1
||W1Γ1W

T
1 − Id||2F = −4(W1Γ1W

T
1 − Id)W1Γ1 (19)

∇W2 ||W1Γ1W
T
1 − Id||2F = 0 (20)

Term 2: The second term of (6) follows similarly to the first term.

∇W1
||W2Γ2W

T
2 − Id||2F = 0 (21)

∇W2
||W2Γ2W

T
2 − Id||2F = −4(W2Γ1W

T
2 − Id)W2Γ2 (22)

Combining Everything: We can now combine all of our gradients to find (7) and (8).

∇W1
L = 2W1Γ1 − 2W2X

T
2 X1 − 4(W1Γ1W

T
1 − Id)W1Γ1

= −2(W1Γ1 + 2W2X
T
2 X1 + 2W1Γ1W

T
1 W1Γ1)

(23)

∇W2
L = 2W2Γ2 − 2W1X

T
1 X2 − 4(W2Γ2W

T
2 − Id)W2Γ2

= −2(W2Γ2 + 2W1X
T
1 X2 + 2W2Γ2W

T
2 W2Γ2)

(24)

F.3 Derivation of Linear layer Gradient w.r.t Time

Plugging (12) into (7), we immediately get

dW1

dt
= 2US1(t)D1V̂

⊙≤d − 4US1(t)(D
⊙ 1

2
1 ⊙D

⊙ 1
2

2 )V̂ ≤d

− 4US3
1(t)D

2
1V̂

≤d
(25)

Next, one should recognize that all terms are left-multiplied by U and right-multiplied by V̂ ≤d. This
lets us combine everything into a more compact form.

dW

dt
= 2U

[
S1(t)

(
D1 − 2(D

⊙ 1
2

1 ⊙D
⊙ 1

2
2 )− 2S2

1(t)D
2
1

)]
V̂ ≤d (26)
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It can be seen in (26) that the singular vectors of W remain unchanged over time. The only changes
are the singular values which are given in the brackets. The dynamics of the singular values over
time constitute an ODE given by

s′1,j(t) = 2s1,j(t)
(
λj − 2

√
λjγj − 2s21,j(t)λ

2
j

)
(27)

where λj , γj are the j-th largest eigenvalues of D1, D2, respectively. One can find the general
solution to this ODE using their favorite ODE solver. It gives a solution in the form:

s1,j(t) =

√√√√ 2
√

λjγj − λj

exp
[
2(2

√
λjγj − λj)(c1 + 2t)

]
− 2λ2

j

(28)

where c1 is some constant. We can find c1 by solving the initial value problem given by our initial
S1 matrix. Thus (28) can be rewritten as:

s1,j(t) =

√√√√√ 2
√

λjγj − λj

(2λ2
j −

λj−2
√

λjγj

s21,j(0)
) exp

[
8t
√

λjγj − 4λjt
]
− 2λ2

j

(29)
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