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Abstract

In this work, we study the role of unconstrained unlabeled data in semi-supervised
learning and propose a semi-supervised learning framework which can learn ef-
fective representations from such unlabeled data. Most existing semi-supervised
methods rely on the assumption that labelled and unlabeled samples are drawn
from the same distribution, which limits the potential for improvement through the
use of free-living unlabeled data. Consequently, the generalizability and scalability
of semi-supervised learning are often hindered by this assumption. Our method
aims to overcome these constraints and effectively utilize unconstrained unlabeled
data in semi-supervised learning. UnMixMatch consists of three main components:
a supervised learner with hard augmentations that provides strong regularization,
a contrastive consistency regularizer to learn underlying representations from the
unlabeled data and a self-supervised loss to enhance the representations that are
learnt from the unlabeled data. We perform extensive experiments on 4 commonly
used datasets and demonstrate superior performance over existing semi-supervised
methods with a performance boost of 4.79%. Extensive ablation and sensitivity
studies show the effectiveness of each of the proposed components of our method.

1 Introduction
Semi-supervised learning (SSL) [1, 2, 3, 4] uses large amounts of unlabeled data along with small
amounts of labelled data to reduce the reliance on fully-labelled datasets. Most existing semi-
supervised methods can be broadly divided into two main categories: pseudo-labelling [1, 2] and
consistency regularization [3, 5, 6]. Existing SSL methods rely on the assumption that the labelled
and unlabeled data belong to the same distributions, an assumption that is not necessarily true in
real-world scenarios. Moreover, this assumption prohibits us from leveraging free-living unlabeled
data. In fact, it has been shown in previous studies that incorporating out-of-distribution data with the
unlabeled set for SSL impairs performance [7, 8].

To adopt a less constrained approach regarding unlabeled data, open set SSL has been proposed
[9, 10, 11, 12], which allows the unlabeled set to contain samples from classes which are not
necessarily present in the labelled set. Most open set SSL methods [13] learned to distinguish
known classes from unknown ones, effectively avoiding samples from unknown classes in the
learning process. Nevertheless, this setting still places certain restrictions on the unlabeled data,
necessitating the inclusion of samples from every known class and ensuring that its data distribution is
similar. These constraints create two important challenges. First, collecting an unlabeled dataset that
necessarily includes samples from certain classes can be challenging in real-world settings. Second,
this approach severely restricts the scalability of SSL to large, web-scale, unconstrained unlabeled
data since such data do not hold the aforementioned constraints. Most existing semi-supervised
methods are not suitable for learning from unconstrained data as they rely on pseudo-label predictions,
which require the ‘unlabeled’ set to have the same classes as the ‘labelled’ set.
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In this paper, we propose a novel SSL approach called UnMixMatch, which can learn effective
representations from unconstrained unlabeled data and effectively enable SSL to scale up using
web-scale unlabeled data. UnMixMatch comprises three main components, which have some
similarities to previous SSL methods but have been specifically modified and tailored toward the
‘scalability’ criteria: (1) A supervised learner with hard augmentations: We introduce a new hard
augmentation module that combines RandAug with MixUp to prevent overfitting on the small labelled
set. The convention of using soft augmentations of the existing literature does not perform well when
learning from unconstrained unlabeled data. (2) A contrastive consistency regularizer: The primary
unsupervised learning component of our method involves a contrastive regularizer, which learns the
underlying data representations by enforcing the model to produce consistent predictions under strong
perturbations. In contrast to existing SSL methods, we do not regularize the class predictions, as the
unlabeled set contains unknown classes. Instead, we enforce consistency in the predicted embedding
space. (3) A self-supervised pre-text learning module: To further enhance the learned representations,
we include a pre-text task called rotation prediction on the unlabeled data, where the model learns by
predicting the degree of rotation applied to each sample.

We conduct extensive research on four common datasets: CIFAR-10, CIFAR-100, SVHN, and STL-
10. First, we re-implement and benchmark 13 recent semi-supervised methods with unconstrained
unlabeled data, using ImageNet-100 as the unlabeled set. We find that existing methods experience
performance degradation in unconstrained settings. In comparison, UnMixMatch outperformed exist-
ing methods by an average of 4.79%. Additionally, UnMixMatch exhibits robust scaling capabilities
regarding the size of the unlabeled datasets, as we observe an additional 5.61% improvement when
we increase the unlabeled data size by a factor of 10. Furthermore, we achieved state-of-the-art
results in the open set SSL. Finally, we ablate each component of UnMixMatch and demonstrate the
crucial role that each component plays in the performance.

In summary, we make the following contributions: (1) We propose a novel semi-supervised method
that can learn effective representations from unconstrained unlabeled data for the first time. (2)
We conduct an extensive study to benchmark the performance of existing semi-supervised methods
when the unlabeled data are not constrained to match the distribution of the labelled data. (3) We
demonstrate that our method outperforms previous methods by a large margin in unconstrained
learning and sets a new state-of-the-art for open set SSL. We also show that the performance of our
method scales up by increasing the amount of unconstrained unlabeled data.

2 Method
Supervised Module. SSL requires a labelled set XL to be learned using a supervised component.
The first contribution of our method is, therefore, to create a supervised learner suitable for our
purpose of scalable SSL. Here, we hypothesize that given large amounts of unlabeled data in an
unconstrained setting and relatively very small amounts of labelled data, the supervised module may
overfit the small labelled set. Thus, unlike FixMatch [4], MixMatch [14], and ReMixMatch [15],
which use weak augmentations for their supervised modules, we apply hard augmentations on the
labelled samples in our supervised module. This acts as a regularizer for supervised learning and is
better able to deal with overfitting compared to weaker augmentations. We utilize RandAug [16] as
the hard augmentation followed by the MixUp operation [14, 15]. We denote RandAug plus MixUp
as the RandMixUp operation. Finally, a supervised loss is applied to a batch of samples.

RandAug is a hard augmentation technique for generating diverse samples by employing a sequence
of transformations [16]. More specifically, it applies Rn ∈ 1..13 transformations randomly chosen
from a list of 13 augmentations, including rotation, translation, and colour distortion. The magnitude
of each transformation is sampled randomly from a pre-defined range. We denote the augmentation
operation as x̂ = RandAug(x). On the other hand, MixUp operation interpolates between two data
points (x1, y1), (x2, y2) to generate mixed samples and labels as: x̄ = λ · x1 + (1 − λ) · x2; ȳ =
λ · y1+ (1−λ) · y2, where λ is the mixing coefficient. Following MixMatch [14], we sample λ from
a beta distribution (λ ∼ Beta(α, α)) with hyper-parameter α.

For a batch of unlabeled samples Xu = ((x̂i); i ∈ (1, .., b)), with batch size b, we first generate
the pseudo-label for each sample Xi as pi = Pθ(xi), where Pθ is the encoder with a classification
head. Next, for a batch of labelled samples Xl = ((x̂i, yi); i ∈ (1, ..., b)) and the unlabeled
samples with pseudo-labels Xp = ((x̂i, pi); i ∈ (1, .., b)), we augment all the samples using X̄ =
RandAugMix(Xl, Xp). Accordingly, we define the supervised loss of our method as: Lsup =
1
b

∑
x̄,ȳ∈X̄ H(ȳ, Pθ(y|x̄)).
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Table 1: Comparison of our method against other SSL methods with unconstrained unlabeled data on 4 datasets.

CIFAR-10 CIFAR-100 SVHN STL-10
Methods 40 labels 250 labels 4000 labels 400 labels 2500 labels 10000 labels 40 labels 250 labels 1000 labels 1000 labels Avg.
Supervised 24.24±1.1 43.33±2.2 83.76±0.4 10.39±0.3 39.57±0.4 63.4±0.1 24.67±2.1 75.42±2.4 87.74±0.6 60.96±1.3 51.35
Pi-Model [5] 24.16±1.5 48.14±1.1 84.19±0.3 12.81±0.9 40.01±0.3 63.55±0.1 28.02±1.1 76.56±2.2 87.83±0.6 69.73±0.6 53.5
Mean Teacher [3] 26.22±1.0 49.35±1.7 83.7±0.4 13.72±0.9 41.57±0.3 63.83±0.1 28.57±1.3 76.78±2.3 87.68±0.6 70.12±0.1 54.15
VAT [6] 24.7±1.3 46.18±1.3 84.73±0.2 11.5±0.8 41.73±0.2 63.76±0.1 41.95±2.5 76.18±1.9 88.07±0.5 63.12±0.6 54.19
Pseudo-label [1] 24.88±1.6 50.29±1.3 84.11±0.1 12.12±0.1 39.72±0.8 63.57±0.0 36.04±2.7 78.04±1.2 88.91±0.3 65.6±0.9 54.33
UDA [22] 28.12±2.5 65.59±1.7 88.31±0.1 21.11±0.8 51.82±0.6 69.42±0.6 48.8±4.1 77.73±1.9 88.83±0.3 82.54±0.2 62.23
MixMatch [14] 32.58±0.8 58.24±0.3 84.59±0.3 20.26±0.6 45.94±0.4 65.89±0.2 57.46±1.7 77.65±1.2 89.95±0.2 71.85±0.6 60.44
ReMixMatch [15] 35.56±0.8 64.71±0.6 87.64±0.3 18.9±0.8 49.11±0.9 69.38±0.1 56.94±4.2 79.57±0.9 90.57±0.3 79.13±0.8 63.15
FixMatch [4] 27.91±3.9 64.98±1.0 88.18±0.1 21.2±0.6 51.4±1.3 67.8±0.3 43.71±5.5 74.52±1.0 88.06±0.6 81.85±0.4 60.96
FlexMatch [23] 32.8±0.8 63.22±1.0 87.82±0.1 20.87±0.7 51.28±0.8 69.52±0.5 60.5±2.5 79.72±0.6 88.85±0.4 82.67±0.4 63.72
CoMatch [24] 41.68±0.7 62.31±0.7 84.52±0.3 22.6±0.6 44.0±1.0 58.55±0.3 45.87±2.8 73.19±0.3 86.45±0.2 82.0±0.0 60.12
CCSSL [12] 30.89±5.9 67.2±1.5 88.77±0.1 24.53±1.5 56.3±0.2 71.13±0.3 50.02±6.6 80.39±0.6 88.6±0.3 82.0±0.0 63.98
SimMatch [25] 23.77±1.8 57.72±1.3 84.12±0.7 18.65±1.2 47.33±1.0 66.54±0.8 51.23±1.6 74.48±1.1 88.57±1.0 77.23±1.2 58.96
ScMatch [26] 27.81±1.1 56.78±0.6 83.09±0.2 18.14±1.1 46.21±0.7 64.24±0.2 56.59±0.9 75.08±0.8 89.23±0.3 79.44±0.7 59.66
UnMixMatch 47.93±1.1 68.72±0.6 89.58±0.2 26.13±1.1 54.18±0.7 71.73±0.2 72.9±0.9 80.78±0.8 91.03±0.3 84.73±0.7 68.77

Consistency Regularization Module. To deal with the unconstrained nature of existing unlabeled
data and learn effective representations, we apply a consistency regularizer as our second contribution.
A consistency regularizer learns from the unlabeled data by enforcing consistency on its predictions
under different augmentations. Prior works that have used consistency regularization for SSL
[5, 14, 15] enforce consistency on the class predictions under different perturbations. However,
regularization over class predictions is not useful for learning in unconstrained settings where
unlabeled data do not necessarily come from the same classes as the labelled data. To address this,
we enforce consistency in the low-dimensional embedding space using a contrastive loss. Using
contrastive loss on the embedding space enables the model to learn class-agnostic representations
from unconstrained unlabeled data. In UnMixMatch, we adopt the Noise Contrastive Estimation loss,
a.k.a InfoNCE [17].

Contrastive learning learns from positive (perturbations of the same sample) and negative samples (all
other samples) by bringing embeddings of the positive samples together and pushing them away for
the negatives. For each sample, xi ∈ XU , two augmentations are applied to generate two augmented
images x̂i = RandAug(xi). These are first passed through the encoder and a projection head (shal-
low linear layers with non-linearity and batch normalization) to obtain embeddings zi = Pθp(z|x̂i).

The contrastive loss is accordingly defined as: Lcon = − 1
2b

∑2b
i=1 log

exp(zi,zκ(i)/τ)∑2b
k=1 1[k ̸=i]exp(zi,zk/τ)

, where,

κ(i) is the index of the second augmented sample, 1[k ̸=i] is an indicator function which returns 1
when k is not equal to i, and 0 otherwise. τ is a temperature parameter.

Self-supervised Module. Finally, we intend to enhance the quality of the representations extracted
from the unconstrained unlabeled data using the consistency regularizer.It has been recently shown that
self-supervised techniques can be employed to learn underlying domain-invariant representations for
unlabeled data [18, 19]. Moreover, this idea has already been demonstrated to be useful in conjunction
with SSL [20, 21, 15]. As a result, we integrate a straightforward yet effective self-supervised pre-text
task called rotation prediction, which learns by predicting the degree of rotations applied to unlabeled
images. In practice, a rotation module randomly samples one of the following rotations and applies it
to an unlabeled image: 0◦, 90◦, 180◦, 270◦. As a result, the rotation prediction task can be viewed as
a four-way classification problem, represented as: Lrot =

1
b

∑
u∈U H(r, Pθr (r|Rotate(u)). Here,

Pθr is the encoder with a rotation head that predicts the rotation, and H is the cross-entropy loss.

Total Loss. Finally, we incorporate the loss functions for the three modules above to create the total
loss: LUnMixMatch = Lsup + βLcon + γLrot. Here, β and γ are hyper-parameters that balance the
significance of the contrastive and rotation losses.

3 Experiments and Results
For our main experiments, we follow the standard semi-supervised evaluation protocol from prior
works [4], and present the results on four datasets: CIFAR-10 [27], CIFAR-100 [27], SVHN [28],
and STL-10 [29]. We use ImageNet-1K [30] as unconstrained unlabeled data.

Performance in Unconstrained Settings. Table 1 presents the main results of our work on the
four datasets. Here, we first re-implement 13 semi-supervised methods and report the results with
unconstrained unlabeled data. We report the average accuracies and standard deviations across three
individual runs for each setting. We also report the average accuracy across all settings for overall
comparison. It should be noted that the performance of prior methods is considerably lower than what
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has been reported in the original papers, where the unlabeled and labelled samples came from the same
datasets (unlabeled data were not unconstrained). Next, we observe that UnMixMatch demonstrates
superior performance compared to other methods, with an average improvement of 4.79%. We obtain
considerable improvement across all datasets and splits, except using CIFAR-100 with 2500 labels,
where CCSSL achieves a better result. When considering the number of labelled samples, we notice
that the differences between UnMixMatch and other methods are more pronounced when the labelled
set size is small. For example, with only 40 labelled samples from CIFAR-10, UnMixMatch achieves
a 17.04% performance gain over CCSSL (which has the second highest overall average performance
after ours), and 6.25% higher than the next best result for this specific setting, which was obtained by
CoMatch. A similar pattern is observed for SVHN, where UnMixMatch outperforms CCSSL and
FlexMatch by 22.88% and 12.4%, respectively.

Table 2: Impact of unlabeled set size.
Data IN-100 Subset 1 Subset 2 IN-1K
No. of samples 130K 450K 850K 1.28M
ReMixMatch 35.56 35.72 36.15 36.24
CoMatch 41.68 42.52 42.31 43.38
UnMixMatch 47.93 50.01 51.99 53.54

Scaling Up the Unlabeled Set. Our main motivation for
using unconstrained unlabeled data is to take advantage of the
abundance of free-living unlabeled data. In this experiment,
we evaluate the performance of UnMixMatch as the size of
the unlabeled set is increased. The results of this study are
presented in detail in Table 2. Specifically, we increase the size of the unlabeled set from 130K
images of ImageNet-100 (a subset of ImageNet-1K) to 1.28M images of ImageNet-1K, with two more
subsets of 450K and 850K images from ImageNet-1K. We perform this experiment on CIFAR-10
with 40 labelled samples with the two best methods (CoMatch and ReMixMatch) on this setting
and observe an increasing trend in the accuracy of UnMixMatch as the number of images in the
unlabeled set increases. With ImageNet-1K used as the unlabeled set, which is approximately 10
times larger than ImageNet-100, the accuracy of UnMixMatch improves from 47.93% to 53.54%, a
significant improvement of 5.61% by simply increasing the size of the unlabeled set. CoMatch and
ReMixMatch, on the other hand, show very small improvements with the increase in the unlabeled
data, but the performance difference with our method further increases.

Table 3: Performance on open set SSL
for CIFAR-10 with 6/4 split.

Labelled samples/class
Methods 50 100 400
Supervised 64.3±1.1 69.5±0.7 80.0±0.3
FixMatch [4] 56.8±1.2 70.2±0.6 83.7±0.5
MTC [10] 79.7±0.9 86.3±0.9 91.0±0.5
OpenMatch [9] 89.6±0.9 92.9±0.5 94.1±0.5
UnMixMatch 95.7±0.8 96.8±0.5 97.2±0.4

Results on Open Set Settings. Next, we investigate the per-
formance of UnMixMatch on open set SSL. Open set SSL is
a relatively less challenging setting than unconstrained set-
tings, where the unlabeled set may contain images of unknown
classes but must contain images of all known classes [9, 10].
For learning in open set settings, we employ a variant of Un-
MixMatch which takes advantage of the fact that the unlabeled
set contains samples of all known classes from the labelled set
and learns from the predicted pseudo-labels on the unlabeled set. In this variant, we replace the
contrastive loss in our method with the class-aware contrastive loss of CCSSL [12]. This method
first predicts the pseudo-labels for the unlabeled samples and uses them with contrastive loss to learn
clusters of known classes in the embedding space. For this experiment, we follow the experimental
setup of OpenMatch [9], which reports the results for CIFAR-10 with a 6/4 split. This split means that
the labelled set contains images of 6 classes from CIFAR-10, while the unlabeled set includes images
of 6 known and 4 unknown classes. Like OpenMatch, we take 6 animal classes as the known classes
and 4 object classes as the unknown classes. We perform this experiment using three different splits
with 50, 100, and 400 labelled samples per class in the known set. The results of this experiment are
presented in Table 3, where it can be observed that our method outperforms the existing methods
and sets a new state-of-the-art for open set SSL. Once again, UnMixMatch better demonstrates its
effectiveness when the amount of labelled data is limited. With 50 labelled samples per class, our
approach provides a 6.1% improvement over the second-best method, OpenMatch. For 100 and 400
labelled samples per class, UnMixMatch shows 3.9% and 3.1% improvements, respectively.

4 Conclusion
Existing semi-supervised methods struggle to learn when the assumption that the unlabeled data comes
from the same distribution as the labelled data, is violated. This work proposes a new semi-supervised
method for learning from unconstrained unlabeled data. Our method shows large improvements over
existing methods and even larger improvements under low-labelled data settings. Our approach also
outperforms existing methods on open set settings. Most importantly, UnMixMatch scales up in
performance when the size of unlabeled data increases. We hope this research will draw attention to
this more challenging and realistic SSL setting with unconstrained unlabeled data.
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