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Abstract
Generalized Category Discovery seeks to cluster unknown categories while simul-
taneously discerning known ones. Existing approaches mostly rely on contrastive
learning to produce distinctive embeddings for both labeled and unlabeled data.
Yet, these methods often suffer from dispersed clusters for unknown categories
due to a high rate of false negatives. To alleviate this problem, we introduce label
smoothing as a hyperparameter that permits ‘forgivable mistakes’ for visually
similar samples. We introduce a self-supervised cluster hierarchy, which allows us
to control the strength of label smoothing to apply. By assigning pseudo-labels to
emerging cluster candidates and using these as ‘soft supervision’ for contrastive
learning, we effectively combine the benefits of clustering-based learning and con-
trastive learning. We demonstrate state-of-the-art generalized category discovery
performance on various fine-grained datasets.

1 Introduction
As we continue to advance in computational capacity, abundant labeled datasets, and robust proba-
bilistic models, supervised learning continues to outperform humans in classifying images within
predefined categories [1–5]. Despite their superior performance in familiar, well-defined settings,
deep learning models fail when faced with the unknown, demonstrating a noticeable shortfall in
generalization to distinguish novel categories encountered at the test time. A primary strategy to
solve this problem could involve discarding any novel category – in essence, bifurcating the data
into known versus novel clusters while focusing on classifying known categories. This strategy
is the well-studied problem of open set recognition [6–9]. An alternative methodology involves
transferring classification knowledge from known to novel categories. This strategy, known as Novel
class discovery [10–14, 14–18], aims to categorize new categories, drawing on the classification
understanding gained from known categories. Nevertheless, novel class discovery harbors an inherent
limitation: the presumption of mutual exclusivity of known and novel categories.

To uncover novel categories concurrently with known ones, Generalized Category Discovery [19–
24] provides a model with unlabeled data from both novel and known categories, which can be
framed as semi-supervised learning [25–29] with the uniqueness of having categories without any
labeled instances. A widely accepted method to tackle semi-supervised learning challenges has been
self-supervision [30–32]. Interestingly, contrastive learning [33–35], a form of self-supervision, has
demonstrated its potential in unearthing new semantics that can be used for generalized category
discovery [13, 36, 37]. However, a significant challenge persists due to the high occurrence of false
negatives within the same category [36, 38, 39]. Supervised contrastive learning [40, 41] could
potentially alleviate this issue for known categories with labeled data but not novel categories. In
this paper, we propose a unique approach that harnesses the power of contrastive learning and
pseudo-labeling on various hierarchy-level representations. Moreover, we employ the known labels at
each stage of the hierarchy, providing more abstract supervision to the representation, which proves
advantageous for recognized and novel categories. Ultimately, we utilize the labels generated at each
level as pseudo labels for the supervised contrastive learning of unlabeled data.
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(a) Unsupervised Hierarchical Contrastive Learning (b) Supervised Hierarchical Contrastive Learning

Figure 1: The motivation for hierarchical unsupervised and supervised learning (a) Unsupervised
Hierarchical Contrastive Learning. In contrast to conventional unsupervised contrastive learning,
our method implicitly divides the feature space into different zones with different strengths of repelling
negative samples based on their distance to the positive sample. (b) Supervised Hierarchical
Contrastive Learning. Our supervised contrastive learning also divides feature space into different
semantic zones. If two samples are more similar semantically, even if they belong to different
categories, the pull between them is stronger. In the box indicated in both Figure (a) and (b), the
synergy between the two losses repels the semantically different samples and attracts the similar ones.

Our key contributions are as follows:

• Our research leverages hierarchical contrastive learning across varying degrees of supervision,
providing us with the ability to adjust our supervision to different abstraction levels.

• Rather than employing clustering at every level, our approach utilizes the category cluster centers to
generate more abstract labels. This strategy effectively mitigates the heavy computational expense
of traditional clustering methods, particularly when dealing with many categories.

• Empirically, we demonstrate that our novel methodology facilitates effective category discovery
and outperforms the existing baselines. Owing to its model-agnostic nature, our approach can be
applied to other methods underpinned by contrastive learning.

2 Hierarchial Contrastive Generalized Category Discovery
Background. The Generalized Category Discovery problem introduced by Vaze et al. [41] tries
to categorize a set of images that can be from the known categories seen during training or novel
categories. Formally, we only have access to YS or seen categories during training time, while we aim
to categorize samples from novel categories or YU during test time. Novel Class Discovery assumes
that YS ∩ YU = ∅, While Generalized Category Discovery, we have YS ⊂ YU . Vaze et al. [41] apply
semi-supervised contrastive learning to generate a discriminative yet informative embedding for both
known and unknown categories. Initially, the method employs unsupervised contrastive learning
to discern an image from a multitude of others. Then, it integrates supervised contrastive learning,
enabling the model to exploit the similarities among samples within the same class.

Label Smoothing. For contrastive unsupervised training, the goal is to optimize parameter θ to
have pθ(y = 1|x̂i, x̂j) = δij in which δij is the delta Kronecker function which is one only when
i = j and zero otherwise. However, for the underlying ground truth distribution pT , this equality
holds at the level of a hidden context variable, meaning pT (y = 1|ci, cj) = δcicj . In supplemental,
it is shown that we can connect these two using Bayesian networks and label smoothing [42, 43]
pθ(y = 1|x̂i, x̂j) = pT (y = 1|ci, cj)(1 − α) + αU where U is the uniform distribution over all
clusters, denoting the uncertainty about the ground truth y. We can approximate this α with one
of the discussed strategies in supplemental. One thing to consider is that there is no specification
about the level of abstraction ci and cj could be. They could be as fine as data samples and their
augmentations or as abstract as seen vs. unseen categories. We can exploit this property to change
the level of abstraction for different categories. This is the foundation for our hierarchical Supervised
and unsupervised contrastive learning.

Hierarchical contrastive learning. Similar to [41], we use semi-supervised contrastive learning,
but our approach deploys various levels of dependency on supervision in a hierarchical fashion,
as depicted in Figure 2. The top level of this hierarchy denotes more abstract inclination, as seen
vs. unseen, while the lower levels show a finer emphasis as sample vs. sample. Our hierarchical
contrastive learning consists of three phases: pseudo-label extraction, unsupervised, and supervised
hierarchical contrastive learning, which we will explain respectively.

Phase I - Pseudo-label extraction: Our approach introduces pseudo-labels for unlabelled samples
while preserving the ground truth samples for known categories. With each iteration, these pseudo-
labels are derived through a combination of clustering and linear assignment. As shown in Figure 2,
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Figure 2: Hierarchical contrastive learning framework. Green box: pseudo-label extraction
pipeline. We hierarchically use these prototypes to find confidence in supervised and unsupervised
contrastive learning. Blue box: unsupervised hierarchical contrastive learning pipeline. Red box:
supervised hierarchical contrastive learning pipeline.

we first apply clustering to the whole data to extract Ns+Nu clusters and their corresponding centers
P1, · · · , PNs+Nu where Ns is the number of seen or known categories and Nu is the number of
unknown categories. Given we have the labels for the labeled data, using linear assignment, we divide
these cluster prototypes into Ns seen clusters S0

1 , · · · , S0
N , and Nu unknown clusters U0

1 , · · · , U0
N .

Here, the superindex 0 shows that this is the 0th level of abstraction. Now, for any ith level of
abstraction, we cluster the prototypes of i − 1th seen abstraction level into half the amount seen
categories and simultaneously i− 1th unknown prototypes into the half amount. This ensures the
prevention of over-assignment of samples to known category clusters and a few select unknown
category clusters and hence reliable pseudo-labels for different levels of category abstractions.

Phase II- Unsupervised Hierarchical Contrastive Learning: In the early stages of training, the
model lacks proficiency in known and unknown labels. Consequently, these pseudo-labels may be
inherently noisy, leading to inaccurate model supervision. Unsupervised contrastive learning can
use ground truth data to form clusters to counteract these limitations. However, since it thrives
on distinguishing the augmented version of a sample from other samples, including the ones that
share a semantic context with the current sample, it leads to dispersed clusters. To counteract these
limitations, we employ label smoothing to manage unreliable labels. We also progressively consider
more abstract categories; hence, fewer negative samples are discarded for these bigger clusters. But
we also progressively decrease the importance of these "bigger cluster" negative samples. However,
as we mentioned, there are multiple levels of abstraction and clusters. Hence, for the label smoothing
coefficient cl = α

∑h
i=0

1
2iD

i, we will have Ltotal
u = Lu(cl), where h = max(lgNs, lgNu) and lg

is the logarithm base two, Lu is the unsupervised contrastive learning and cl is its label smoothing
matrix. Also, α is the label smoothing hyperparameter, and Di is the distance metric at the abstraction
level i. Finally, Ltotal

u is the unsupervised contrastive loss.

Phase III- Supervised Hierarchical Contrastive Learning: The resulting pseudo-labels from Phase
I are the ground truth for the subsequent epoch. So, let us assume Li

s is the supervised contrastive
learning for the level of the pseudo label i. The overall supervised contrastive learning can be
calculated as Ltotal

s =
∑h

i=0
1
2iL

i
s. Given the availability of labeled samples from known categories,

we gradually reduce the impact of label smoothing for known categories as the model becomes more
adept at distinguishing them. This strategy ensures that the model generates highly accurate labels for
known categories by the end of the training while still delivering valuable pseudo-labels for unknown
categories. Since we can access different levels of abstraction, we use supervised contrastive learning
for samples belonging to the same cluster. Finally, our total loss will be Ltotal = Ltotal

s + Ltotal
u .

3 Experiments
In this section, we evaluate our method empirically. Experimental design, dataset statistics, and
implementation details have been included in the supplemental.

Fine-grained image classification. Fine-grained image datasets are more aligned with a hierarchical
perspective on categories. For generic datasets, visual cues aid the model in discerning the novelty of
a category. On the contrary, fine-grained datasets require more nuanced attention to category-specific
details. Table 1 summarizes our model’s performance on the fine-grained datasets. This table shows
that our model has more robust and consistent results than other methods for fine-grained datasets.
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Table 1: Comparison on fine-grained image recognition datasets. Accuracy score for the first three
methods is reported from [41] and for ORCA from [20]. Bold and underlined numbers, respectively,
show the best and second-best accuracies. Our method has superior performance for the three
experimental settings (All, Known, and Novel). This table shows that our method is especially well
suited to fine-grained settings.

CUB-200 FGVC-Aircraft Stanford-Cars Oxford-IIIT Pet Herbarium-19
Method All Known Novel All Known Novel All Known Novel All Known Novel All Known Novel

k-means [46] 34.3 38.9 32.1 12.9 12.9 12.8 12.8 10.6 13.8 77.1 70.1 80.7 13.0 12.2 13.4
RankStats+ [13] 33.3 51.6 24.2 26.9 36.4 22.2 28.3 61.8 12.1 - - - 27.9 55.8 12.8
UNO+ [11] 35.1 49.0 28.1 40.3 56.4 32.2 35.5 70.5 18.6 - - - 28.3 53.7 14.7
ORCA [37] 36.3 43.8 32.6 31.6 32.0 31.4 31.9 42.2 26.9 - - - 24.6 26.5 23.7
GCD [41] 51.3 56.6 48.7 45.0 41.1 46.9 39.0 57.6 29.9 80.2 85.1 77.6 35.4 51.0 27.0
XCon [47] 52.1 54.3 51.0 47.7 44.4 49.4 40.5 58.8 31.7 86.7 91.5 84.1 - - -
PromptCAL [20] 62.9 64.4 62.1 52.2 52.2 52.3 50.2 70.1 40.6 - - - - - -
DCCL [19] 63.5 60.8 64.9 - - - 43.1 55.7 36.2 88.1 88.2 88.0 - - -
SimGCD [23] 60.3 65.6 57.7 54.2 59.1 51.8 53.8 71.9 45.0 - - - 44.0 58.0 36.4
GPC [48] 52.0 55.5 47.5 43.3 40.7 44.8 38.2 58.9 27.4 - - - - - -

Ours 66.5 79.3 60.1 56.7 69.1 50.5 52.2 72.1 42.3 87.4 91.2 85.4 41.2 59.0 31.6

Table 2: Comparison with state-of-the-art for coarse-grained image classification. Accuracy
score for the three first methods is reported from [41] and for ORCA from [20] and the rest are
reported from the corresponding work. Bold and underlined numbers show the best and second-best
accuracies. Our method has a consistent performance for the three experimental settings (All, Known,
Novel). Our method is especially suitable for novel categories in both datasets.

CIFAR-10 CIFAR-100 ImageNet-100
Method All Known Novel All Known Novel All Known Novel

k-means [46] 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RankStats+ [13] 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ [11] 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA [37] 96.9 95.1 97.8 74.2 82.1 67.2 79.2 93.2 72.1
GCD [41] 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3
XCon[47] 96.0 97.3 95.4 74.2 81.2 60.3 77.6 93.5 69.7
PromptCAL [20] 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3
DCCL [19] 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2
SimGCD [23] 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9
GPC [48] 90.6 97.6 87.0 75.4 84.6 60.1 75.3 93.4 66.7

Ours 96.4 96.5 96.3 77.4 80.9 70.4 77.0 90.1 70.5

Coarse-grained image classification. We evaluate our model on three generic datasets, namely
CIFAR10/100 [44] and ImageNet-100[45]. Table 2 compares our results against state-of-the-art
generalized category discovery methods. Our method performs consistently well on both known and
novel datasets. The generic datasets do not always have the hierarchy structure of more fine-grained
datasets. Hence, the benefit of label smoothing is less substantial than fine-grained datasets.

4 Related Works
Novel Category Discovery can be traced back to [10] and [49] which solidified the novel class
discovery as a new specific problem. The main goal of novel class discovery is to transfer the implicit
category structure from the known categories to infer unknown categories [11–14, 14–18]. Prior to
the novel class discovery, the problem of encountering new classes at the test time was investigated
by open-set recognition [6–9]. However, in the open-set scenario, the model rejects the samples
from novel categories, while novel class discovery aims to infer the known categories, but it still has
a limiting assumption that test data only consists of novel categories. For a more realistic setting,
Generalised Category Discovery is introduced by [41] and concurrently under the name Open-world
semi-supervised learning by [37]. In this scenario, while the model should not lose its grasp on old
categories, it must discover novel categories in test time. This adds an extra challenge because when
we adapt the novel class discovery methods to this scenario, they try to be biased to either novel
or old categories and miss the other group [19–24]. In this work, instead of viewing categories as
separate, we take into account that there is a hidden hierarchy for the categories.

5 Conclusion
This work leverages hierarchical contrastive learning to discover unknown categories in conjunction
with the known ones. To this end, we use clustering and linear assignment to extract pseudo labels for
the subsequent supervised contrastive learning. The use of these pseudo-labels facilitates supervised
contrastive learning for the unlabeled data, thereby enhancing the training speed and the integrity of
the clusters formed for unknown categories. Since these pseudo-labels can also employed at different
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levels of hierarchies, they provide informative supervision signals for different abstraction levels.
Finally, by employing the label smoothing hyperparameter, we let the model adopt unsupervised
contrastive learning in a more local scope and focus on finer distinctions. This in the end leads to a
stronger fine-grained ability for our model.
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A A Probabilistic Approach to Category Hierarchies

In this section, we provide insights into why hierarchical contrastive learning can provide more
information about unseen categories. For contrastive supervised training, the goal is to optimize
parameter θ in order to have the following equation:

pθ(y = 1|x̂i, x̂j) = δij (1)

in which δij is the delta Kronecker function which is one only when i = j and zero otherwise. In
reality, what we aim for the model to learn through this objective function is the equality of a hidden
context variable. Hence, we can consider the following equation:

pθ(y = 1|ci, cj) = δcicj . (2)

Consider the simple Bayesian network depicted in Figure 3. From this diagram, we can calculate the
probability of p(y|x̂i, x̂j) based on this Bayesian network.

pθ(y = 1|x̂i, x̂j) =

∑
xi

∑
xj

∑
ci

∑
cj
p(y = 1|ci, cj)p(ci)p(cj)p(xi|ci)p(xj |cj)p(x̂i|xi)p(x̂j |xj)∑

xi

∑
xj

∑
ci

∑
cj

∑
y p(y|ci, cj)p(ci)p(cj)p(xi|ci)p(xj |cj)p(x̂i|xi)p(x̂j |xj)

.

(3)
With some straightforward algebra, we can simplify this equation to

pθ(y = 1|x̂i, x̂j) =
∑
ci

p(ci|x̂i)p(ci|x̂j). (4)

y

cj ci

xixj

x̂ix̂j τiτj

Figure 3: Baysian Network for the
Contrastive Learning Problem. The
shaded nodes are observed variables xi

and xj which corresponds to the images
i and j. The augmentations x̂i and x̂j

created by adding a noise with parame-
ters τi and τj to the actual images.

For xi, we can assume that x̂i would be a hypersphere
with the radius raug. The hypersphere for cluster ci will
have a radius of Ri. We can then approximate p(ci|x̂i)
with the shared volume of hypersphere ci and hypersphere
x̂i. While this can be approximated by the shared cap
volume between these two hyperspheres, we can adopt
some strategies for simplifying this approximation.

Strategy one: sample distance zero one, for this strategy
we simply consider that if xi and xj do not belong to the
same cluster, then p(ci|x̂i)p(ci|x̂j) is negligible. So, for
this strategy, we only consider the negative and positive
samples that belong to the same cluster.

Strategy two: sample distance pairwise, for this strategy,
we consider that xi and xj probability of being members
of the same cluster will be a function of their pairwise
distance.

Strategy three: cluster distance, for this strategy, instead
of considering the distance to the actual data point xj ,
we consider the distance of xi to the center of the cluster
containing xj . This strategy can be seen as a combination of the previous two strategies.

A.1 Experimental Setup

Eight Datasets. We evaluate our model on three generic datasets CIFAR10 [44], CIFAR100 [44] and
ImageNet-100 [45] and four fine-grained datasets: CUB [50], Aircraft [52], Stanford-Cars [51] and
Oxford-IIIT Pet [53]. Finally, we use the challenging Herbarium19 dataset [54], which is fine-grained
and long-tailed. Following [41], we subsample the training dataset in a ratio of 50% of known
categories at the train and all samples of unknown categories. For all datasets except CIFAR100, we
consider 50% of categories as known categories at training time, while for CIFAR100, 80% of the
categories are known during training time. A summary of dataset statistics and their train test splits is
shown in Table 3.
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Table 3: Statistics of datasets and their data splits for the generalized category discovery task.
The first three datasets are coarse-grained image classification datasets, while the next four are
fine-grained datasets. The Herbarium19 dataset is both fine-grained and long-tailed.

Labelled Unlabelled
Dataset #Images #Categories #Images #Categories

CIFAR-10 [44] 12.5K 5 37.5K 10
CIFAR-100 [44] 20.0K 80 30.0K 100
ImageNet-100 [45] 31.9K 50 95.3K 100

CUB-200 [50] 1.5K 100 4.5K 200
SCars [51] 2.0K 98 6.1K 196
Aircraft [52] 3.4K 50 6.6K 100
Oxford-Pet [53] 0.9K 19 2.7K 37

Herbarium19 [54] 8.9K 341 25.4K 683

Implementation Details. Following [41], we use ViT-B/16 as our backbone, which is pre-trained
by DINO [55] on unlabelled ImageNet 1K [2], we use the batch size of 128. For label smoothing,
we use the α=0.5. Different from [41], we froze 10 blocks of ViT-B/16 and fine-tuned the last two
blocks instead of only the last block. The code will be released.

Evaluation Metrics. Similar to [41], we use semi-supervised k-means to cluster the predicted
embeddings. Then, we use the Hungarian algorithm [56] to solve the optimal assignment of emerged
clusters to their ground truth labels. We report the accuracy of the model’s predictions on All, Known,
and Novel categories. Accuracy on All is calculated using the whole unlabelled test set, consisting of
known and unknown categories. For Known, we only consider the samples with labels known during
training. Finally, for Novel, we consider samples from the unlabelled categories at train time.

9


	Introduction
	Hierarchial Contrastive Generalized Category Discovery
	Experiments
	Related Works
	Conclusion
	A Probabilistic Approach to Category Hierarchies
	Experimental Setup


