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Abstract

In this paper we tackle the problem of Generalized Category Discovery (GCD).1

Given a dataset with labelled and unlabelled images, the task is to cluster all images2

in the unlabelled subset, whether or not they belong to the labelled categories. Our3

first contribution is to recognize that most existing GCD benchmarks only contain4

labels for a single clustering of the data, making it difficult to ascertain whether5

models are using the available labels to solve the GCD task, or simply solving an6

unsupervised clustering problem. As such, we present a synthetic dataset, named7

‘Clevr-4’, for category discovery. Clevr-4 contains four equally valid partitions8

of the data, i.e. based on object shape, texture, color or count. To solve the task,9

models are required to extrapolate the taxonomy specified by the labelled set, rather10

than simply latching onto a single natural grouping of the data. We use this dataset11

to demonstrate the limitations of unsupervised clustering in the GCD setting;12

showing that even very strong unsupervised models fail on Clevr-4, and further13

reveal that they each have characteristic biases from their pre-training. We also14

use Clevr-4 to examine the weaknesses of existing GCD algorithms, and propose a15

new method which addresses these shortcomings, outperforming state-of-the-art16

models on Clevr-4 and the challenging Semantic Shift Benchmark.17

1 Introduction18

Developing algorithms which can classify images within complex visual taxonomies, i.e. image19

recognition, remains a fundamental task in machine learning [1–3]. However, most models require20

these taxonomies to be pre-defined and fully specified, and are unable to construct them automatically21

from data. The ability to build a taxonomy is not only desirable in many applications, but is also22

considered a core aspect of human cognition [4–6]. The task of constructing a taxonomy is epitomized23

by the Generalized Category Discovery (GCD) problem [7, 8]: given a dataset of images which is24

labelled only in part, the goal is to label all remaining images, using categories that occur in the25

labelled subset, or by identifying new ones. For instance, in a supermarket, given only labels for26

‘spaghetti’ and ‘penne’ pasta products, a model must understand the concept of ‘pasta shape’ well27

enough to generalize to ‘macaroni’ and ‘fusilli’. It must not cluster new images based on, for instance,28

the color of the packaging, even though the latter also yields a valid, but different, taxonomy.29

GCD is related to self-supervised learning [9] and unsupervised clustering [10], which can discover30

some meaningful taxonomies automatically [11]. However, these cannot solve the GCD problem,31

which requires recovering any of the different and incompatible taxonomies that apply to the same32

data. Instead, the key to GCD is in extrapolating a taxonomy which is only partially known. In this33

paper, our objective is to better understand the GCD problem and improve algorithms’ performance.34

To this end, in section 2, we introduce the Clevr-4 dataset. Clevr-4 is a synthetic dataset where35

each image is fully parameterized by a set of four attributes, and where each attribute defines an36

equally valid grouping of the data (see fig. 1). Clevr-4 extends the original CLEVR dataset [12] by37

introducing new shapes, colors and textures, as well as allowing different object counts to be present38

in the image. Using these four attributes, the same set of images can be clustered according to four39

statistically independent taxonomies. This feature sets it apart from most existing GCD benchmarks,40

which only contain sufficient annotations to evaluate a single clustering of the data.41
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Figure 1: What is the key difference between Generalized Category Discovery (GCD) and tasks
like self-supervised learning or unsupervised clustering? GCD’s key challenge is extrapolating the
desired clustering of data given only a subset of possible category labels. We present a synthetic
dataset, Clevr-4, which contains four possible clusterings of the same images, and hence can be used
to isolate the GCD task. Above, one can cluster the data based on object count, shape or texture.

Clevr-4 allows us to probe large pre-trained models for biases, i.e., for their preference to emphasize42

a particular aspect of images, such as color or texture, which influences which taxonomy can be43

learned. For instance, contrary to findings from Geirhos et al. [13], we find almost every large model44

exhibits a strong shape bias. Specifically, in section 3, we find unsupervised clustering – even with45

very strong representations like DINO [14] and CLIP [15] – fails on many splits of Clevr-4, despite46

CLEVR being considered a ‘toy’ problem in other contexts [16]. As a result, we find that different47

pre-trained models yield different performance traits across Clevr-4 when used as initialization for48

category discovery. We further use Clevr-4 to characterize the weaknesses of existing category49

discovery methods; namely, the harms of jointly training feature-space and classifier losses, as well50

as insufficiently robust pseudo-labelling strategies for ‘New’ classes.51

We make the following key contributions: (i) We propose a new benchmark dataset, Clevr-4, for GCD52

and related tasks. Clevr-4 contains four independent taxonomies and can be used to precisely study the53

category discovery problem. (ii) We use Clevr-4 to garner insights on the biases of large pre-trained54

models as well as the weaknesses of existing category discovery methods. We demonstrate that55

even very strong unsupervised models fail on this ‘toy’ benchmark. Furthermore, in appendix A, we56

leverage our findings to develop a simple but performant method for GCD. Our method, inspired by57

‘mean-teachers’ and termed ‘µGCD’ (‘mean-GCD’), substantially outperforms current state-of-the-art,58

both on the introduced Clevr-4 and on the challenging Semantic Shift Benchmark [17].59

2 Clevr-4: a synthetic dataset for generalized category discovery60

The category discovery challenge. Generalized Category Discovery (GCD) is the task of, given61

a dataset with some labelled images and some unlabelled images, classifying all images in the62

unlabelled subset. Here, unlabelled images may come from the labelled (‘Old’) categories or from63

‘New’ ones. As such, the key to category discovery (generalized or not) is to use the labelled64

subset of the data to extrapolate a taxonomy and discover novel categories in unlabelled images.65

This task of extrapolating a taxonomy sets category discovery apart from related problems. For66

instance, unsupervised clustering [10] aims to find the single most natural grouping of unlabelled67

images given only weak inductive biases (e.g., invariance to specific data augmentations), but permits68

limited control on which taxonomy is discovered. Meanwhile, semi-supervised learning [18] assumes69

supervision for all categories in the taxonomy, which therefore must be known, in full, a-priori.70

A problem with many current benchmarks for category discovery is that there is no clear taxonomy71

underlying the object categories (e.g., CIFAR [19]) and, when there is, it is often ill-posed to72

understand it given only a few classes (e.g., ImageNet-100 [20]). Furthermore, in practical scenarios,73

there are likely to be many taxonomies of interest. However, few datasets contain sufficiently74

complete annotations to evaluate multiple possible groupings of the same data. This makes it difficult75

to ascertain whether a model is extrapolating information from the labelled set (category discovery)76

or just finding its own most natural grouping of the unlabelled data (unsupervised clustering).77

2



Table 2: Unsupervised clustering accuracy (ACC) of pre-trained models on Clevr-4. We find
most models are strongly biased towards shape, while MAE [26] exhibits a color bias.

Pre-training Method Pre-training Data Backbone Texture Shape Color Count Average

SWaV [9] ImageNet-1K ResNet50 13.1 65.5 12.1 18.9 27.4
MoCoV2 [27] ImageNet-1K ResNet50 13.0 77.5 12.3 18.8 30.4
Supervised [2] ImageNet-1K ResNet50 13.2 76.8 15.2 12.9 29.5

DINO [14] ImageNet-1K ViT-B/16 16.0 86.2 11.5 13.0 31.7
MAE [26] ImageNet-1K ViT-B/16 15.1 13.5 64.7 13.9 26.8
iBOT [28] ImageNet-1K ViT-B/16 14.4 85.9 11.5 13.0 31.2

CLIP [15] WIP-400M ViT-B/16 12.4 78.7 12.3 17.9 30.3
DINOv2 [29] LVD-142M ViT-B/14 11.6 98.1 11.6 12.8 33.5

Table 1: Clevr-4 statistics for the different splits of
the dataset. Note that the same data must be classified
along independent taxonomies in the different splits.

Texture Color Shape Count

Examples {metal, rubber} {red, blue} {torus, cube} {1, 2}
|YL| 5 5 5 5
|YU | 10 10 10 10

|DL| 2.1K 2.3K 2.1K 2.1K
|DU | 6.3K 6.1K 6.4K 6.3K
|DL|+ |DU | 8.4K 8.4K 8.4K 8.4K

Clevr-4. In order to better study this prob-78

lem, we introduce Clevr-4, a synthetic79

benchmark which contains four equally80

valid groupings of the data. Clevr-481

extends the CLEVR dataset [12], using82

Blender [21] to render images of multiple83

objects and place them in a static scene.84

This is well suited for category discovery,85

as each object attribute defines a different86

taxonomy for the data (e.g., it enables clustering images based on object shape, color etc.). The87

original dataset is limited as it contains only three shapes and two textures, reducing the difficulty of88

the respective clustering tasks. We introduce 2 new colors, 7 new shapes and 8 new textures to the89

dataset, placing between 1 and 10 objects in each scene.90

Each image is therefore parameterized by object shape, texture, color and count. The value for each91

attribute is sampled uniformly and independently from the others, meaning the image label with92

respect to one taxonomy gives us no information about the label with respect to another. Note that this93

sets Clevr-4 apart from existing GCD benchmarks such as CIFAR-100 [19] and FGVC-Aircraft [22].94

These datasets only contain taxonomies at different granularities, and as such the taxonomies are95

highly correlated with each other. Furthermore, the number of categories provides no information96

regarding the specified taxonomy, as all Clevr-4 taxonomies contain k = 10 object categories.97

Finally, we create GCD splits for each taxonomy in Clevr-4, following standard practise and reserving98

half the categories for the labelled set, and half for the unlabelled set. We further subsample 50% of99

the images from the labelled categories and add them to the unlabelled set. The dataset is procedurally100

generated, and we synthesize 8.4K images for training. The full summary statistics of each split is101

given in table 1, and the full generation procedure is detailed in the supplementary.102

3 Learnings from Clevr-4 for category discovery103

Unsupervised clustering of pre-trained representations (table 2). We first demonstrate the limita-104

tions of unsupervised clustering of features as an approach for category discovery (reporting results105

with semi-supervised clustering in fig. 10). Specifically, we run k-means clustering [23] on top of106

features extracted with self- [9, 14, 24], weakly- [15], and fully-supervised [2, 3, 25] backbones,107

reporting performance on each of the four taxonomies in Clevr-4. The representations are trained on108

up to 400M images and are commonly used in the vision literature.109

We find that most models perform well on the shape taxonomy, with DINOv2 achieving over 98%110

accuracy. However, no model performs well across the board. For instance, on some splits (e.g.,111

color), strong models like DINOv2 perform comparably to random chance. This underscores the112

utility of Clevr-4 for delineating category discovery from standard representation learning. Logically,113

it is impossible for unsupervised clustering on any representation to perform well on all tasks. After114

all, only a single clustering of the data is produced, which cannot align with more than one taxonomy.115

We highlight that such limitations are not revealed by existing benchmarks; on the CUB dataset,116

unsupervised clustering with DINOv2 achieves 68% ACC (≈ 140× random, see table 5).117

Pre-trained representations for category discovery (table 3). Many category discovery methods118

use self-supervised representation learning for initialization in order to leverage large-scale pre-119

training, in the hope of improving downstream performance. However, as shown above, these120
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Table 3: Effects of large-scale pre-training on category discovery accuracy (ACC) on Clevr-4.
We find that large-scale pre-training provides inconsistent gains on Clevr-4.

Method Backbone Pre-training (Data) Texture Shape Color Count Average Average Rank

SimGCD ResNet18 - 58.1 97.8 96.7 67.6 80.5 2.0
SimGCD ViT-B/16 MAE [26] (ImageNet-1k) 54.1 99.7 99.9 53.0 76.7 2.0
SimGCD ViT-B/14 DINOv2 [29] (LVD-142M) 76.5 99.9 87.4 51.3 78.8 2.0

Table 4: Category discovery accuracy (ACC) on Clevr-4. We find a much reduced gap between the
GCD baseline [7] and SimGCD state-of-the-art [30], and further find our proposed µGCD provides
substantial boosts (see supplementary). Results are averages across five random seeds.

Model Backbone Texture Shape Color Count Average

All Old New All Old New All Old New All Old New All

Fully supervised ResNet18 99.1 - - 100.0 - - 100.0 - - 96.8 - - 99.0
GCD ResNet18 62.4 97.5 45.3 93.9 99.7 90.5 90.7 95.0 88.5 71.9 96.4 60.1 79.7
SimGCD ResNet18 58.1 95.0 40.2 97.8 98.9 97.2 96.7 99.9 95.1 67.6 95.7 53.9 80.1

µGCD (Ours) ResNet18 69.8 99.0 55.5 94.9 99.7 92.1 99.5 100.0 99.2 75.5 96.6 65.2 84.9

representations are biased. Here, we investigate the impact of these biases on a state-of-the-art method121

in generalized category discovery, SimGCD [30]. SimGCD contains two main loss components:122

(1) a contrastive loss on backbone features, using self-supervised InfoNCE [31] on all data, and123

supervised contrastive learning [32] on images with labels available; and (2) a contrastive loss to train124

a classification head, where different views of the same image provide pseudo-labels for each other.125

For comparison, we initialize SimGCD with a lightweight ResNet18 trained scratch; a ViT-B/16126

pre-trained with masked auto-encoding [26]; and a ViT-B/14 with DINOv2 [29] initialization.127

Surprisingly, and in stark contrast to most of the computer vision literature, we find inconsistent gains128

from leveraging large-scale pre-training on Clevr-4. For instance, on the count taxonomy, pre-training129

gives substantially worse performance that training a lightweight ResNet18 from scratch. On average130

across all splits, SimGCD with a randomly initialized ResNet18 actually performs best. Generally,131

we find that the final category discovery model inherits biases built into the pre-training, and can132

struggle to overcome them even after finetuning. Our results highlight the importance of carefully133

selecting the initialization for a given GCD task, and point to the utility of Clevr-4 for doing so.134

Limitations of existing category discovery methods. Next, we analyze SimGCD [30], the current135

state-of-the-art for the GCD task. We show that on Clevr-4 it is not always better than the GCD136

baseline [7] which it extends, and identify the source of this issue in the generation of the pseudo-137

labels for the discovered categories. In more detail, the GCD baseline uses only one of the two losses138

used by SimGCD, performing contrastive learning on features, followed by simple clustering in139

the models’ embedding space. To compare SimGCD and GCD, we start from a ResNet18 feature140

extractor, training it from scratch to avoid the potential biases identified above. We also train a model141

with full supervision and obtain 99% average performance on Clevr-4 (on independent test data),142

showing that the backbone has sufficient capacity. In appendix A, we characterise the limitations of143

SimGCD in detail and propose an extension, µGCD, which we find substantially outperforms SoTA144

on Clevr-4, as well as on established GCD benchmarks (the SSB [17]). We show Clevr-4 results145

in table 4, reporting results for ‘All’, ‘Old’ and ‘New’ class subsets.146

Remarks on Clevr-4. We note that Clevr-4 can find broader applicability in related fields. As147

examples, the dataset can be used for disentanglement research and as a simple probing set for biases148

in representation learning. For instance, we find that most of the ImageNet trained models are biased149

towards shape rather than texture, which is in contrast to popular findings from Geirhos et al. [13].150

Furthermore, larger models are often explicitly proposed as ‘all-purpose’ features for ‘any task’ [29];151

here we find simple tasks (e.g., color or count recognition) where initialization with such models152

hurts performance compared to training from scratch. Note that practical problems (e.g., vehicle153

re-identification [33] or crowd counting [34]) may require understanding of such aspects of the image.154

4 Conclusion155

In this paper we have proposed a new dataset, Clevr-4, and used it to investigate the problem of156

Generalized Category Discovery (GCD). This included probing the limitations of unsupervised157

representations for the task, as well as for identifying weaknesses in existing GCD methods. We158

further leveraged our findings to propose a simple but performant algorithm, µGCD, which not only159

only provides gains on Clevr-4, but also sets a new state-of-the-art on established GCD benchmarks.160
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details on our proposed µGCD method; appendices C.1 and C.2 for details on Clevr-4; appendix E.3360

for a long-tail evaluation of µGCD on the Herbarium19 dataset [35]; and appendix D.5 for analysis361

on the use of cosine classifiers in GCD.362
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A The µGCD algorithm388

Observing results in table 4, we make the three following observations regarding the performance of389

existing methods on Clevr-4: (i) Both methods’ performance on texture and count is substantially390

worse than on shape and color. (ii) On the harder texture and count splits, the GCD baseline actually391

outperforms the SimGCD state-of-the-art. Given that SimGCD differs from GCD by adding a392

classification head and corresponding loss, this indicates that jointly training classifier and feature-393

space losses can hurt performance. (iii) Upon closer inspection, we find that the main performance394
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Figure 2: Our ‘µGCD’ method. We begin with representation learning from the GCD baseline,
followed by finetuning in a mean-teacher style setup. Here, a ‘teacher’ provides supervision for a
‘student’ network, and maintains parameters as the exponential moving average (EMA) of the student.

gap on texture and count comes from accuracy on the ‘New’ categories; both methods cluster the395

‘Old’ categories almost perfectly. This suggests that the ‘New’ class pseudo-labels from SimGCD are396

not strong enough; GCD, with no (pseudo-)supervision for novel classes, achieves higher clustering397

performance.398

A.1 Addressing limitations in current approaches399

Given these findings, we seek to improve the quality of the pseudo-labels for ‘New’ categories.400

Specifically, we draw inspiration from the mean-teacher setup for semi-supervised learning [36],401

which has been adapted with minor changes in many self-supervised frameworks [14, 37, 38]. Here,402

a ‘student’ network is supervised by class pseudo-labels generated by a ‘teacher’. The teacher is an403

identical architecture with parameters updated with the Exponential Moving Average (EMA) of the404

student. The intuition is that the slowly updated teacher is more robust to the noisy supervision from405

pseudo-labels, which in turn improves the quality of the pseudo-labels themselves. Also, rather than406

jointly optimizing both SimGCD losses, we first train the backbone only with the GCD baseline loss,407

before finetuning with the classification head and loss.408

These changes, together with careful consideration of the data augmentations, give rise to our409

proposed µGCD (mean-GCD) algorithm, which we fully describe next in appendix A. Here, we note410

the improvements that this algorithm brings in Clevr-4 on the bottom line of table 4. Overall, µGCD411

outperforms SimGCD on three of the four Clevr-4 taxonomies, and further outperforms SimGCD by412

nearly 5% on average across all splits. µGCD underperforms SimGCD on the shape split of Clevr-4413

and we analyse this failure case in the supplementary.414

A.2 Our method415

In this section, we detail a simple but strong method for GCD, µGCD, already motivated in section 3416

and illustrated in fig. 2. In a first phase, the algorithm proceeds in the same way as the GCD417

baseline [7], learning the representation. Next, we append a classification head and fine-tune the418

model with a ‘mean teacher’ setup [36], similarly to SimGCD but yielding more robust pseudo-labels.419

Concretely, we construct models, fθ, as the composition of a feature extractor, Φ, and a classification420

head, g. Φ is first trained with the representation learning framework from [7] as described above,421

and the composed model gives f = g ◦Φ with values in Rk, where k is the total number of categories422

in the dataset. Next, we sample a batch of images, B, and generate two random augmentations of423

every instance. We pass one view through the student network fθS , and the other through the teacher424

network fθT , where θS and θT are the network parameters of the student and teacher, respectively.425

We compute the cross-entropy loss between the (soft) teacher pseudo-labels and student predictions:426

Lu(θS ;B) = − 1

|B|
∑
x∈B

⟨pT (x), log(pS(x))⟩, p∗(x) = softmax(fθ∗(x); τ∗), (1)

where p∗(x) ∈ [0, 1]k are the softmax outputs of the student and teacher networks, scaled with427

temperature τ∗. We further use labelled instances in the batch with a supervised cross-entropy428
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Table 5: Category discovery accuracy (ACC) on the Semantic Shift Benchmark [17]. We report
results from prior work using DINO intialization [14], and reimplement GCD baselines and SimGCD
with DINOv2 pre-training [29] (noted with *). MIB [43] and SimGCD [30] are recent pre-prints.

Pre-training CUB Stanford Cars Aircraft Average

All Old New All Old New All Old New All

k-means [23] DINO 34.3 38.9 32.1 12.8 10.6 13.8 16.0 14.4 16.8 21.1
RankStats+ [44] DINO 33.3 51.6 24.2 28.3 61.8 12.1 26.9 36.4 22.2 29.5
UNO+ [42] DINO 35.1 49.0 28.1 35.5 70.5 18.6 40.3 56.4 32.2 37.0
ORCA [8] DINO 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 26.9
GCD [7] DINO 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9 45.1
XCon [45] DINO 52.1 54.3 51.0 40.5 58.8 31.7 47.7 44.4 49.4 46.8
OpenCon [46] DINO 54.7 63.8 54.7 49.1 78.6 32.7 - - - -
MIB [43] DINO 62.7 75.7 56.2 43.1 66.9 31.6 - - - -
PromptCAL [47] DINO 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 55.1
SimGCD [30] DINO 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 56.1

µGCD (Ours) DINO 65.7 68.0 64.6 56.5 68.1 50.9 53.8 55.4 53.0 58.7

k-means* DINOv2 67.6 60.6 71.1 29.4 24.5 31.8 18.9 16.9 19.9 38.6
GCD* DINOv2 71.9 71.2 72.3 65.7 67.8 64.7 55.4 47.9 59.2 64.3
SimGCD* DINOv2 71.5 78.1 68.3 71.5 81.9 66.6 63.9 69.9 60.9 69.0

µGCD (Ours) DINOv2 74.0 75.9 73.1 76.1 91.0 68.9 66.3 68.7 65.1 72.1

component as:429

Ls(θS ;BL) = − 1

|BL|
∑
i∈BL

⟨y(x), log(pS(x))⟩, (2)

where BL ∈ B is the labelled subset of the batch and y(x) ∈ {0, 1}k is the one-hot class label of430

the example x. Finally, we add a mean-entropy maximization regularizer from [18] to encourage431

pseudo-labels for all categories:432

Lr(θS) = −⟨p̄S , log(p̄S)⟩, p̄S =
1

|B|
∑
x∈B

pS(x). (3)

The student is trained with respect to the following total loss, given hyper-parameters λ1 and λ2:433

L(θS ;B) = (1− λ1)Lu(θS ;B) + λ1Ls(θS ;BL) + λ2Lr(θS). The teacher parameters are updated434

as the moving average θT = ω(t)θT + (1− ω(t))θS , where ω(t) is a time-varying momentum.435

Augmentations. While often regarded as an ‘implementation detail’, an important component of our436

method is the careful consideration of augmentations used in the computation of Lu. Specifically,437

on the SSB, we pass different views of the same instance to the student and teacher networks. We438

generate a strong augmentation which is passed to the student network, and a weak augmentation439

which is passed to the teacher, similarly to [39]. The intuition is that, while contrastive learning440

benefits from strong data augmentations [9, 14], we wish the teacher network’s predictions to be441

as stable as possible. Meanwhile, on Clevr-4, misaligned data augmentations — e.g., aggressive442

cropping for count, or color jitter for color — substantially degrade performance (see appendix D.6).443

Architecture. We adopt a ‘cosine classifier’ as g, which was introduced in [40] and leverages L2-444

normalized weight vectors and feature representations. While it has been broadly adopted for many445

tasks [8, 9, 30, 41, 42], we demonstrate why this component helps in the supplementary. We find that446

normalized vectors are important to avoid collapse of the predictions to the labelled categories.447

B Results on real data and further analysis448

Datasets. We compare µGCD against prior work on the standard Semantic Shift Benchmark (SSB)449

suite [17]. The SSB comprises three fine-grained evaluations: CUB [48], Stanford Cars [49] and450

FGVC-Aircraft [22]. Though the SSB datasets do not contain independent clusterings of the same451

images (as in Clevr-4) the evaluations do have well-defined taxonomies — i.e. birds, cars and aircrafts.452

Furthermore, the SSB contains curated novel class splits which control for semantic distance with the453

labelled set. We find that coarse-grained GCD benchmarks do not specify clear taxonomies in the454

labelled set, and we include a long-tailed evaluation on Herbarium19 [35] in the supplementary.455

Model initialization and compared methods. The SSB contains fine-grained, object-centric datasets,456

which have been shown to benefit from greater shape bias [50]. Prior GCD methods [7, 45, 46]457
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initialize with DINO [14] pre-training, which we show in table 2 had the strongest shape bias among458

self-supervised models. However, the recent DINOv2 [29] demonstrates a substantially greater shape459

bias. As such, we train our model both with DINO and DINOv2 initialization, further re-implementing460

GCD baselines [7, 51] and SimGCD [30] with DINOv2 for comparison.461

Implementation details. We implement all models in PyTorch [52] on a single NVIDIA P40 or M40.462

Most models are trained with an initial learning rate of 0.1 which is decayed with a cosine annealed463

schedule [53]. For our EMA schedule, we ramp it up throughout training with a cosine function [38]:464

ω(t) = ωT − (1− ωbase)(cos(
πt
T ) + 1)/2. Here t is the current epoch and T is the total number of465

epochs. Differently, however, to most self-supervised learning literature [38], we found a much lower466

initial decay to be beneficial; we ramp up the decay from ωbase = 0.7 to ωT = 0.999 during training.467

Further implementation details can be found in the supplementary.468

Discussion of results (table 5). Overall, we find that µGCD outperforms the existing state-of-the-art,469

SimGCD [30], by over 2% on average across all SSB evaluations when using DINO initialization.470

When using the stronger DINOv2 backbone, we find that the performance of the simple k-means471

baseline nearly doubles in accuracy, substantiating our choice of shape-biased initialization on this472

object-centric evaluation. The gap between the GCD baseline [7] and the SimGCD state-of-the-473

art [30] is also reduced from over 10% to under 5% on average. Nonetheless, our method outperforms474

SimGCD by over 3% on average, as well as on each dataset individually, setting a new state-of-the-art.475

Ablations. We ablate our main design choices in table 6. L(1) shows the importance of pre-476

training with the GCD baseline loss [7] (though we find in section 3 that jointly training this477

loss with the classifier, as in SimGCD [30], is difficult). L(2) further demonstrates that stronger478

augmentation for the student network is critical, with a 7% drop in CUB performance without479

it. L(3)-(5) highlight the importance of a carefully designed EMA schedule, our use of a time-480

varying decay outperforms constant decay values. This is intuitive as early on in training, with a481

randomly initialized classification head, we wish for the teacher to be updated quickly. Later on482

in training, slow teacher updates mitigate the effect of noisy pseudo-labels within any given batch.483

Furthermore, in L(6)-(7), we validate the importance of entropy regularization and cosine classifiers484

in category discovery. In the supplementary, we provide evidence as to why these commonly used485

components [8, 30, 42] are necessary, and also discuss the design of the student augmentation.486

Table 6: Ablations. We find that a proper intial-
ization, momentum decay schedule, and augmen-
tation strategy are critical to strong performance.

CUB

All Old New

µGCD (Ours) 65.7 68.0 64.6
(1) W/o GCD init. 61.7 66.2 59.6
(2) W/o stronger student augmentation 58.1 72.5 50.9

(3) With ωt := 1 1.6 1.1 1.8
(4) With ωt := 0.0 62.7 66.4 60.9
(5) With ωt := 0.7 64.1 65.1 63.6

(6) W/o cosine classifier 54.9 64.2 50.3
(7) W/o ME-Max regularizer 42.0 41.8 42.1

487

PCA Visualization. Finally, we perform anal-488

ysis on the count split of Clevr-4. Uniquely489

amongst the four taxonomies, the count cate-490

gories have a clear order. In fig. 3, we plot491

the first two principal components [54] of the492

normalized features of the GCD baseline [7],493

SimGCD [30] and µGCD. It is clear that all fea-494

ture spaces learn a clear ‘number sense’ [55]495

with image features placed in order of increas-496

ing object count. Strikingly, this sense of nu-497

merosity is present even beyond the supervised498

categories (count greater than 5) as a byproduct499

of a simple recognition task. Furthermore, while the baseline learns elliptical clusters for each500

category, SimGCD and µGCD project all images onto a one-dimensional object in feature space.501

This object can could be considered as a ‘semantic axis’: a low-dimensional manifold in feature502

space, R ∈ Rd, along which the category label changes.503

C Clevr-4504

C.1 Clevr-4 generation505

We build Clevr-4 using Blender [21], a free 3D rendering software with a Python API. Following the506

CLEVR dataset [12], our images are constituted of multiple rendered objects in a static scene. Each507

object is defined by three ‘semantic’ attributes (texture, shape and color), and is further defined by508

its size, pose and position in the scene. We consider the first three attributes as ‘semantic’ as they509

are categorical variables which can neatly define image ‘classes’. Meanwhile, we designate the size,510

pose and position attributes as ‘nuisance’ factors which are not related to the image category.511

CLEVR Limitations. CLEVR is first limited – for the purposes of category discovery – as it has512

only two textures (‘rubber’ and ‘metal’) and three shapes (‘cube’, ‘sphere’ and ‘cylinder’). For513
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Figure 3: PCA [54] of features from the GCD baseline [7], SimGCD [30] and µGCD on the count
split of Clevr-4. While the baseline learns eliptical clusters for each category, SimGCD and µGCD
project images onto a one-dimensional object in feature space, which be considered as a ‘semantic
axis’ along which the category changes. Clustering accuracy is reported for ‘All’/‘Old’/‘New’ classes.

category discovery, we wish to have more categories, both to increase the difficulty of the task, and to514

ensure a sufficient number of classes in the ‘Old’ and ‘New’ subsets. Furthermore, we wish to have515

the same number of categories in each split; otherwise, in principal, an unsupervised algorithm may516

be able to distinguish the taxonomy simply from the number of categories present.517

Expanding the taxonomies. To increase the number of categories in each taxonomy, we introduce518

new textures, colours and shapes to the dataset, resulting in 10 categories for each taxonomy. We519

create most of the 8 new textures by wrapping a black-and-white JPEG around the surface of the520

object, each of which have their own design (e.g., ‘chessboard’ or ‘circles’). Given an ‘alpha’ for the521

opaqueness of this wrapping, these textures can be distinguished independently of the underlying522

color. We further leverage pre-fabricated meshes packaged with Blender to introduce 7 new shapes to523

the dataset, along with 2 new colors for the objects. The new shapes and colors were selected to be524

clearly distinguishable from each other. Full definitions of the taxonomies are given in appendix C.2.525

Image sampling process. For a given image, we first independently sample object texture, shape526

and color. We then randomly sample how many objects should be in the image (i.e., object count)527

and place this many objects in the scene. Each object has its own randomly sampled size (which is528

taken to be one of three discrete values), position and relative pose. Thus, differently to CLEVR,529

all objects in the image have the same texture, shape and color. This allows these three attributes,530

together with count, to define independent taxonomies within the data.531

C.2 Clevr-4 details532

We describe the categories in each of the four taxonomies in Clevr-4 below. All taxonomies have533

10 categories, five of which are used in the labeled set and shown in bold. Image exemplars of all534

categories are given in figs. 6 and 7.535

• Texture: rubber, metal, checkered, emojis, wave, brick, star, circles,536

zigzag, chessboard537

• Shape: cube, sphere, monkey, cone, torus, star, teapot, diamond, gear,538

cylinder539

• Color: gray, red, blue, green, brown, purple, cyan, yellow, pink, orange540

• Count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10541

fig. 5 plots the frequency of all categories in the taxonomies, while fig. 4 shows the mutual information542

between the four taxonomies. We find that all taxonomies, except for shape, are roughly balanced,543

and the four taxonomies have approximately no mutual information between them – realizing our544

desire of them being statistically independent.545

C.3 Clevr-4 examples546

We give examples of each of the four taxonomies in Clevr-4 in figs. 6 and 7.547
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Figure 5: Category frequency plots for each taxonomy in Clevr-4. All taxonomies are roughly
balanced, except for shape. shape shows minor imbalance due to greater difficulty in placing many
objects of some shapes (e.g., ‘star’ and ‘monkey’) in scenes.

D Analysis of results548

D.1 Clevr-4 error bars549

We show results for the GCD baseline [7], the current state-of-the-art SimGCD [30] and our method,550

µGCD, in fig. 8. The results are shown for five random seeds for each method, and plotted with the551

standard matplotlib boxplot function, which identifies outliers in colored circles. We also plot552

the median performance of our method on each taxonomy in dashed lines.553

Broadly speaking, the takeaways are the same as the results from Table 4 of the main paper. However,554

while the mean performance of our method is worse than SimGCD on the shape split, we can see here555

that the median performance of µGCD is within bounds, or significantly better, than the compared556

methods on all taxonomies.557

D.2 shape failure case558

Overall, we find our proposed µGCD outperforms prior state-of-the-art methods on three of the four559

Clevr-4 splits (as well as on the Semantic Shift Benchmark [17]). We further show in appendix D.1560

that, when accounting for outliers in the five random seeds, our method is also roughly equivalent to561

the SimGCD [30] state-of-the-art on the shape split of Clevr-4.562

Nonetheless, we generally find that our method is less stable on the shape split of Clevr-4 than on563

other taxonomies and datasets. We provide some intuitions for this by visualizing the representations564

and predictions of our method in fig. 9.565

Preliminaries: In fig. 9, we plot TSNE projections [56] of the feature spaces of two versions of566

our model, as well as the histograms of the models’ predictions on the shape split. Along with the567

models’ image representations (colored scatter points), we also plot the class vectors of the cosine568

classifiers (colored stars). On the left, we show our trained model when we randomly initilize the569

cosine classifier, while on the right we initialize the class vectors in the classifier with k-means570

centroids. We derive these centroids by running standard k-means on the image embeddings of the571

backbone, which is pre-trained with the GCD-style representation learning step (see appendix F).572
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Texture Shape

Figure 6: Examples of each category from the texture and shape taxonomies of Clevr-4.

Observations: In the plot on the left, we find that though the feature space is very well separated573

(there is little overlap between clusters of different categories), the performance of the classifier is574

still only around 90%. The histogram of model predictions demonstrates that this is due to no images575

being assigned to the ‘star’ category – this vector in the classifier is completely unused. Instead, too576

many instances are assigned to ‘gear’. In the TSNE plot, we can see that the ‘gear’ class vector is577

between clusters for both ‘gear’ and ‘star’ images, while the ‘star’ vector is pushed far away from578

both. We suggest that this is due to the optimization falling into a local optimum early on in training,579

as a result of the feature-space initialization already being so strong.580

On the right, we find we can largely alleviate this problem by initializing the classification head581

carefully – with k-means centroids from the pre-trained backbone. We see that the problem is nearly582

perfectly solved, and the histogram of predictions reflects the true class distribution of the labels.583

Takeaway: We find that when the initialization of the model’s backbone – from the GCD-style584

representation learning step, see appendix F – is already very strong, random initialization of the585

classification head in µGCD can result in local optima in the model’s optimization process. This can586

be alleviated by initializing the classification head carefully with k-means centroids – resulting in587

almost perfect performance – but the issue can persist with some random seeds (see appendix D.1).588
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Color Count

Figure 7: Examples of each category from the color and count taxonomies of Clevr-4.

D.3 Semi-supervised k-means with pre-trained backbones589

In fig. 10, we probe the effect of running semi-supervised k-means [7] on top of different pre-trained590

backbones. This is a simple mechanism by which models can leverage the information from the591

‘Old’ class labels. We find that while this improves clustering performance on some taxonomies, it is592

insufficient to overcome the biases learned during the models’ pretraining, corroborating our findings593

from table 2 of the main paper.594

D.4 Clustering with sub-spaces of pre-trained features595

In table 2 and fig. 10, we demonstrate that all pre-trained models have a clear bias towards one of the596

Clevr-4 taxonomies. Specifically, we find that clustering in pre-trained feature spaces preferentially597

aligns with a single attribute (e.g shape or color).598

Here, we investigate whether these clusters have any sub-structures. To do this, we perform PCA599

analysis on features extracted with two backbones: DINOv2 [29] and MAE [26]. Intuitively, we600

wish to probe whether the omission of dominant features from the backbones (e.g the shape direction601

with DINOv2 features) allows k-means clustering to identify other taxonomies. Specifically, we:602

(i) extract features for all images using a given backbone, X ∈ RN×D; (ii) identify the principal603

components of the features, sorted by their component scores, W ∈ RD×D; (iii) re-project the604
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Figure 8: Box plots of results on Clevr-4. We show results for the GCD baseline [7], the current
state-of-the-art SimGCD [30] and our method, µGCD. We plot results for five random seeds for
the four taxonomies, with outliers shown as colored circles. We also plot the median performance
of our method on each taxonomy in dashed lines. On all taxonomies, µGCD is within bounds, or
significantly better, than the compared methods.

w/o classifier init. w/ classifier init. 
ACC: 91.4 / 100.0 / 86.3 ACC: 99.8 / 99.9 /99.7

Figure 9: Analysis of the shape failure mode, showing TSNE plots [56] and prediction histograms
for two models, trained without (left) and with (right) initialization of the classification head with
k-means centroids. Left: When the backbone initialization (from the GCD representation learning
step [7]) is already very strong, the classification head gets stuck in a local optimum, with one class
vector unused. Right: We find we can alleviate this by initializing the class vectors with k-means
centroids, almost perfectly solving the problem, but the issue can persist with some random seeds.

features onto the components, omitting those with the p highest scores, X̂ = (X−µ) ·W[:, p :] ; (iv)605

cluster the resulting features, X̂ ∈ RN×D−p, with k-means. Here, µ is the average of the features X,606

and the results are shown in figs. 11 and 12.607

Overall, we find that by removing the dominant features from the backbones, performance on other608

taxonomies can be improved (at the expense of performance on the ‘dominant’ taxonomy). The effect609

is particularly striking with MAE, where we see an almost seven-fold increase in shape performance610

after the the three most dominant principal components are removed.611

This aligns with the reported performance characteristics of DINOv2 and MAE. The object-centric612

recognition datasets on which these models are evaluated benefit from shape-biased representations613

(see appendix B). We find here that both MAE and DINOv2 encode shape information, but that more614

work is required to extract this from MAE features. This is reflected by the strong linear probe and615

kNN performance of DINOv2, while MAE requires full fine-tuning to achieve optimal performance.616

Finally, we note that decoding the desired information from pre-trained features is not always trivial,617

and we demonstrate in section 3 that even in the (partially) supervised, fine-tuning setting in GCD,618

both of these backbones underperform a randomly initialized ResNet18 on the count taxonomy.619

D.5 Understanding cosine classifiers in category discovery620

Cosine classifiers with entropy regularization have been widely adopted in recognition settings for621

which less supervision is available [14, 41], including in category discovery [30, 42]. In fig. 13, we622

provide justifications for this by inspecting the norms of the learned vectors in classifiers when these623

regularizers are omitted.624
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Figure 10: Effect of semi-supervised k-means on representative pre-trained backbones. We find
semi-supervised k-means is insufficient to overcome the bias learned during pre-training.
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Figure 11: Re-clustering DINOv2 [29] features after removing dominant principal components.
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Figure 12: Re-clustering MAE [26] features after removing dominant principal components.
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Figure 13: Left: Norms of weight vectors in GCD classifiers, with and without regularizations.
Right: Prediction histogram of unregularized classifier.

Specifically, consider a classifier (without a bias term) as g = W ∈ Rd×k, containing k vectors of d625

dimension, one for each output category. In fig. 13, we plot the magnitude of each of these vectors626

trained with different constraints on CUB [48] (one of the datasets in the SSB [17]). Note that the627

classifier is constructed such that the first 100 vectors correspond to the ‘Old’ classes, and are trained628

with ground truth labels. In our full method, with normalized classifiers, the norm of all vectors is629

enforced to be the unit norm (blue dashed line). If we remove this constraint (solid orange line), we630

can see that the norms of vectors which are not supervised by ground truth labels (indices 101-200)631

fall substantially. Then, if we further remove the entropy regularization term (solid green line), the632

magnitudes of the ‘Old’ class vectors (indices 1-200) increases dramatically.633

This becomes an issue at inference time, with per-class logits computed as:634

lm = ⟨wm,Φ⟩ = |wm||Φ| cos(α) ∀m ∈ {1...k}

with the class prediction returned as argmax lm. In other words, we show that without appro-635

priate regularisation, our GCD models trivially reduce the weight norm of ‘New’ class vectors636

(|wm| ∀m > 100), leaving all images to be assigned to one of the ‘Old’ classes. The effects of637

this are visualized in the right panel of fig. 13, which plots the histogram of class predictions for an638

unregularized GCD classifier. We can see that exactly zero examples are predicted to ‘New’ classes.639

We further highlight that this effect is obfuscated by the evaluation process, which reports non-zero640

accuracies for ‘New’ classes through the Hungarian assignment operation.641

D.6 Design of data augmentation and mis-aligned augmentations642

In our SSB experiments, the teacher is passed a weaker augmentation, comprising only RandomCrop643

and RandomHorizontalFlip. We find this stabilizes the pseudo-labels produced by the teacher.644

However, the self-supervised literature consistently finds that strong augmentations are beneficial for645

representation learning [9, 14, 24]. As such, we experiment with gradually increasing the strength of646

the augmentation passed to the student model in table 7.647

Specifically, we experiment along two axes: the strength of the base augmentation (‘Strong Base648

Aug’ column); and how aggressive the cropping augmentation is (‘Aggressive Crop’ column). To649

make the base augmentation stronger, we add Solarization and Gaussian blurring [24]. For cropping,650

we experiment with a light RandomResizeCrop (cropping within a range of 0.9 and 1.0) and a651

more aggressive variant (within a range of 0.3 and 1.0). Overall, we find that an aggressive cropping652

strategy, as well as a strong base augmentation, is critical for strong performance. We generally found653

weaker variants to overfit. Though they also have lower peak clustering accuracy, the accuracy falls654

sharply later in training without the regularization from strong augmentation.655

Mis-aligned augmentations on Clevr-4 A benefit of Clevr-4 is that each taxonomy has a simple656

semantic axes. As such, we are able to conduct controlled experiments on the effect of targeting these657

axes with different data augmentations. Specifically, in table 8, we demonstrate the effect of having658

‘misaligned’ augmentations on two splits of Clevr-4. We train the GCD baseline with ColorJitter659

on the color split and CutOut for the count split. The augmentations destroy semantic information660

for the respective taxonomies, resulting in substantial degradation of performance. The ‘aligned’661
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Table 7: Design of student augmentation.

Aggressive Crop Strong Base Aug CUB

All Old New

✗ ✗ 38.6 54.6 30.6
✗ ✓ 41.6 58.8 33.0
✓ ✗ 52.7 69.4 44.7
✓ ✓ 65.7 68.0 64.6

Table 8: Effect of mis-aligned augmentations on the GCD Baseline.
Color Count

Aligned Augmentation 84.5 65.2
Misaligned Augmentation 26.1 46.6

augmentations are light cropping and flipping for color, and light rotation for count. The results662

highlight the importance of data augmentation in injecting inductive biases into deep representations.663

D.7 Effect of λ1664

In fig. 14, we investigate the effect of the hyper-parameter λ1, which controls the tradeoff between665

the supervised and unsupervised losses in µGCD. We find that with 0.1 <= λ1 <= 0.4, the ‘All’666

clustering accuracy is robust, while at λ1 = 0 (only unsupervised loss) and λ1 = 1 (only supervised667

loss), performance degrades. We note that the Hungarian assignment in evaluation results in imperfect668

‘Old’ performance even at λ1 close to 1 (more weight on the supervised loss). As such, we also show669

an ‘Upper Bound’ (‘cheating’) clustering performance in gray, which allows re-use of clusters in the670

‘Old’ and ‘New’ accuracy computation.671

E Additional Experiments672

E.1 Results with estimated number of classes673

In the main paper, we followed standard practise in category discovery [7, 30, 42, 46, 47, 57] and674

assumed knowledge of the number of categories in the dataset, k. Here, we provide experiments675

when this assumption is removed. Specifically, we train our model using an estimated number of676

categories in the dataset, where the number of categories is predicted using an off-the-shelf method677

from [7]. We use estimates of k = 231 for CUB and k = 230 for Stanford Cars, while these datasets678

have a ground truth number of k = 200 and k = 196 classes respectively.679

We compare against figures from SimGCD [30] as well as the GCD baseline [7]. As expected, we680

find our method performs worse on these datasets when an estimated number of categories is used,681

though we note that the performance of SimGCD [30] improves somewhat on CUB, and the gap682
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Figure 14: Effect of hyper-parameter, λ1. We investigate the effect of λ1 (which balances the
supervised and un-supervised losses), training µGCD models on the texture split.
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Table 9: Results on the SSB with estimated number of categories. We use the method from [7] to
estimate the number of categories as k = 231 for CUB, and k = 230 for Stanford Cars. We run our
method with this many vectors in the classification head, comparing against baselines evaluated with
the same estimates of k. Results from baselines are reported from [30].

Pre-training CUB Stanford Cars Average

All Old New All Old New All

GCD [7] DINO [14] 47.1 55.1 44.8 35.0 56.0 24.8 41.1
SimGCD [30] DINO [14] 61.5 66.4 59.1 49.1 65.1 41.3 55.3

µGCD (Ours) DINO [14] 62.0 60.3 62.8 56.3 66.8 51.1 59.2
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Figure 15: Results when varying the proportion of ‘Old’ category images reserved reserved for
DL. We find our µGCD method substantially outperforms the GCD baseline [7] across all settings.

between our methods is reduced on this dataset. Nonetheless, the proposed µGCD still performs683

marginally better on CUB, and further outperforms the SoTA by nearly 7% on Stanford Cars in this684

setting.685

E.2 Results with varying proportion of labelled examples686

In the main paper, we follow standard practise in the GCD setting [7, 30, 46, 47] and sample a fixed687

proportion of images, p = 0.5, from the labelled categories and use them in the labeled set, DL. Here,688

we experiment with our method if this proportion changes, showing results in fig. 15. We find our689

proposed µGCD substantially outperforms the GCD baseline [7] across all tested values of p.690

E.3 Results on Herbarium19691

We evaluate our method on the Herbarium19 dataset [35]. We use the ‘Old’/‘New’ class splits from692

[7] which are randomly sampled rather than being curated as they are in the SSB. Nonetheless, the693

dataset is highly challenging, being long-tailed and containing 683 classes in total. 341 of these694

classes are reserved as ‘Old’, and the dataset contains a total of 34K images. It further contains a695

clear taxonomy (herbarium species), making it a suitable evaluation for GCD. We compare µGCD696

against prior work in table 10, again finding that we set a new state-of-the-art.697

F Description of baselines and µGCD algorithms698

In this section we provide step-by-step outlines of: the GCD baseline [7]; the SimGCD [30] baseline;699

and our method, µGCD. Full motivation of the design decisions in µGCD can be found in section 3.700

Task definition and notation: Given a dataset with labelled (DL) and unlabelled (DU ) subsets, a701

model must classify all images in DU into one of k possible categories. DL contains only a subset of702

the categories in DU , and prior knowledge of k is assumed. During training, batches (B), are sampled703

with both labelled images (BL ∈ DL) and unlabelled images (BU ∈ DU ). The performance metric is704

the clustering (classification) accuracy on DU .705

706

GCD [7]. Train a backbone, Φ, and perform classification by clustering in its feature space.707
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Table 10: Results on Herbarium19 [35], which constitutes a long-tailed GCD evaluation.

Pre-training Herbarium19

All Old New

k-means [23] DINO [14] 13.0 12.2 13.4
RankStats+ [57] DINO [14] 27.9 55.8 12.8
UNO+ [42] DINO [14] 28.3 53.7 12.8
GCD [7] DINO [14] 35.4 51.0 27.0
ORCA [8] DINO [14] 20.9 30.9 15.5
OpenCon [46] DINO [14] 39.3 58.9 28.6

PromptCAL [47] DINO [14] 37.0 52.0 28.9
MIB [43] DINO [14] 42.3 56.1 34.8
SimGCD [30] DINO [14] 43.3 57.9 35.3

µGCD (Ours) DINO [14] 45.8 61.9 37.2

(1) Train Φ using an unsupervised InfoNCE loss [31] on all the data, as well as a supervised contrastive708

loss [32] on the labeled data. Letting xi and x′
i represent two augmentations of the same image in a709

batch B, the unsupervised and supervised losses are defined as:710

Lu
feat,i = − log

exp⟨zi,z
′
i⟩/τ∑n ̸=i

n exp⟨zi,zn⟩/τ
, Ls

feat,i = − 1
|N (i)|

∑
q∈N (i) log

exp⟨zi,zq⟩/τ∑n̸=i
n exp⟨zi,zn⟩/τ

where: zi = h◦Φ(xi); h is a projection head, which is used during training and discarded afterwards;711

and τ is a temperature value. N (i) represents the indices of images in the labeled subset of the712

batch, BL ∈ B, which belong to the same category as xi. Given a weighting coefficient, λ1, the total713

contrastive loss on the model’s features is given as:714

Lfeat = (1− λ1)
∑
i∈B

Lu
feat,i + λ1

∑
i∈BL

Ls
feat,i (4)

(2) Perform classification by embedding all images with the trained backbone, Φ, and apply semi-715

supervised k-means (SS-k-means) clustering on the entire dataset, DU
⋃
DL. SS-k-means is identical716

to unsupervised k-means [23] but, at each iteration, instances from DL are always assigned to the717

‘correct’ cluster using their labels, before being used in the centroid update. In this way, the cluster718

centroid updates for labelled classes are guided by the labels in DL.719

SimGCD [30]. Train a backbone representation, Φ, and a linear head, g, to classify images amongst720

the k classes in the dataset, yielding a model fθ = g ◦ Φ. Train the backbone jointly with the feature721

space loss from eq. (4), and with linear classification losses based on the output of g.722

(1) Generate pseudo-labels for an image, xi, as pT (xi) ∈ [0, 1]k, in order to train the classifier, fθ.723

Infer pseudo-labels on all images in a batch, B, and compute an additional supervised cross-entropy724

loss on the labelled subset, BL.725

• Pass two views of an image to the same model. Each view generates a soft pseudo-label for726

the other, for instance as:727

pT (xi) = sg[softmax(fθ(x
′
i); τT )] (5)

Here sg is the stop-grad operator and τT is the pseudo-label temperature.728

• Compute model predictions as pS(x) = softmax(fθ(x); τS) and a standard pseudo-729

labelling loss [14, 18, 38] (i.e. soft cross-entropy loss) as:730

Lu
cls(θ;B) = − 1

|B|
∑
xi∈B

⟨pT (xi), log(pS(xi))⟩+ ⟨pT (x
′
i), log(pS(x

′
i))⟩ (6)

Temperatures are chosen such that τT < τS to encourage confident pseudo-labels [14].731

• Optimize the model, fθ, jointly with: the pseudo-label loss (eq. (6)) and Lfeat (see eq. (4)).732

The model is further trained with: the standard supervised cross-entropy loss on the labelled733

subset of the batch, Ls
cls(θ;BL); and an entropy regularization term, Lr

cls(θ):734
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Ls
cls(θ;BL) = − 1

|BL|
∑
i∈BL

⟨y(x), log(pS(x))⟩, Lr
cls(θ) = −⟨p̄S , log(p̄S)⟩, p̄S =

1

|B|
∑
x∈B

pS(x)

Here, y(x) is a ground-truth label and, given hyper-parameters λ1 and λ2, the total loss is defined as:735

L(θ;B) = (1− λ1)(Lu
cls(θ;B) + (Lu

feat(θ;B)) + λ1(Ls
cls(θ;BL) + Ls

feat(θ;BL)) + λ2Lr
cls(θ).736

737

µGCD (Ours). Train a backbone representation, Φ, and a linear head, g, to classify images amongst738

the k classes in the dataset, yielding a model fθT = g ◦ Φ. Train the backbone first with the feature739

space loss from eq. (4), and then with linear classification losses based on the output of g.740

(1) Train a backbone Φ using Step (1) from the GCD baseline algorithm.741

(2) Append a classifier, g, to the backbone and duplicate it to yield two models. One model (a teacher742

network, fθT ) is used to generate pseudo-labels for a student network, fθS , as pT (xi) ∈ [0, 1]k. Infer743

pseudo-labels on all images in a batch, B, and compute an additional supervised cross-entropy loss744

on the labelled subset, BL. The student and teacher networks are trained as follows:745

• Generate a strong augmentation of an image, xi, and a weak augmentation, x′
i [39]. Pass746

the weak augmentation to the teacher to generate a pseudo-label and construct a loss:747

pT (xi) = sg[softmax(fθT (x
′
i); τT )] Lu

cls(θS ;B) = − 1

|B|
∑
xi∈B

⟨pT (xi), log(pS(xi))⟩ (7)

• Optimize the student’s parameters, θS , with respect to: the pseudo-label loss from eq. (7);748

the supervised loss, Ls
cls; and the entropy regularization loss, Lr

cls. Formally, the ‘student’,749

fθS , is optimized for: L(θS ;B) = (1− λ1)Lu
cls(θS ;B) + λ1Ls

cls(θS ;BL) + λ2Lr
cls(θS).750

• Update the teacher network’s parameters with the Exponential Moving Average (EMA) of751

the student network [36]. Specifically, update the ‘teacher’ parameters, θT , as:752

θT = ω(t)θT + (1− ω(t))θS

where t is the current epoch and ω(t) is a time-varying decay schedule.753

At the end of training, the ‘teacher’, fθT , is used for evaluation.754

Remarks: We first highlight the different ways in which the labels from DL are used between the755

three methods. Specifically, the GCD baseline [7] only uses the labels in a feature-space supervised756

contrastive loss. However, in addition to this, SimGCD [30] and µGCD also use the labels in a757

standard cross-entropy loss in order to train part of a linear classifier, g.758

We further note the high level similarity between SimGCD and µGCD, in that both train parametric759

classifiers with a pseudo-label loss. While SimGCD uses different views passed to the same model760

to generate pseudo-labels for each other (similarly to SWaV [9]), µGCD uses pseudo-labels from a761

‘teacher’ network to train a ‘student’ (similarly to mean-teachers [36]).762

This is in keeping with trends in related fields, which find that there exists a small kernel of method-763

ologies — e.g., mean-teachers [36], cosine classifiers [40], entropy regularization [18] — which are764

robust across many tasks [14, 27, 41], but that finding a strong recipe for a specific problem is critical.765

We find this to be true in supervised classification [25, 58, 59], self-supervised learning [14, 24], and766

semi-supervised learning [18, 36, 39]. Our use of mean-teachers to provide classifier pseudo-labels,767

as well as careful choice of model initialization and data augmentation, yields a performant µGCD768

algorithm for category discovery.769

G Further Implementation Details770

When re-implementing prior work, we aim to follow the hyper-parameters of the GCD baseline [7]771

and SimGCD [30], and use the same settings for our method. We occasionally find that tuned772

hyper-parameters are beneficial in some settings, which we detail below.773
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Learning rates. We swept learning rates at factors of 10 for all methods and architectures. When774

training models from scratch (ResNet18 on Clevr-4) or when finetuning a DINO/DINOv2 model [14,775

29] on the SSB, we found a learning rate of 0.1 to be optimal. When finetuning an MAE [26] or776

DINOv2 model on Clevr-4, we found it better to lower the learning rate to 0.01. All learning rates are777

decayed from their initial value by a factor of 10−3 throughout training with a cosine schedule.778

Loss hyper-parameters. For the tradeoff between the unsupervised and supervised components of779

the losses, λ1 is set to 0.35 for all methods. For the entropy regularization, we follow SimGCD and780

use λ2 = 1.0 for FGVC-Aircraft and Stanford Cars, and λ2 = 2.0 for all other datasets. We swept781

to find better settings for this term on Clevr-4, but did not find any setting to consistently improve782

results. We also train with L2 weight decay, set to 10e−4 for all models.783

Student and teacher temperatures. Following [14], we set the temperature of the student and784

teacher to τS = 0.1 and τT = 0.04 respectively, for both our method and SimGCD. This gives785

the teacher ‘sharper’ (more confident) predictions than the student. We further follow the teacher-786

temperature warmup schedule from [14], also used in SimGCD, where the teacher temperature is787

decreased from 0.07 to 0.04 in the first 30 epochs of training. On Herbarium19 [35] (which has788

many more categories than the other evaluations, see appendix E.3), we use a teacher temperature of789

2× 10−3 (warmed up from 3.5× 10−3 over 10 epochs).790

Teacher Momentum Schedule. In µGCD, at each iteration, the teacher’s parameters are linearly791

interpolated between the teacher’s current parameters and the student’s, with the interpolation (‘decay’792

or ‘momentum’) changing over time following [38], as: ω(t) = ωT − (1− ωbase)(cos(
πt
T ) + 1)/2.793

Here T is the total number of epochs and t is the current epoch. We use ωT = 0.999 ≈ 1 and794

ωbase = 0.7. We note for clarity that, though the momentum parameter is dictated by the epoch795

number, the teacher update happens at each gradient step.796

Augmentations. On Clevr-4 we use an augmentation comprising of RandomHorizontalFlip797

and RandomRotation. On the SSB [17], we use RandomHorizontalFlip and798

RandomCrop. We use these augmentations for all methods, and for µGCD use these augmentations799

to pass views to the ‘teacher’. An important part of our method on the SSB is to design strong aug-800

mentations to pass to the student. Our ‘strong augmentation’ adds aggressive RandomResizeCrop,801

as well as solarization and Gaussian blurring [24] (see appendix D.6 for details). On Clevr-4, due802

to the relatively simple nature of the images, strong augmentations can destroy the semantic image803

content; for instance color jitter and aggressive cropping degrade performance on color and count804

respectively. We find it helpful to pass Cutout [60] to the teacher on the color taxonomy, and texture805

benefits from the strong augmentation defined above.806

Training time. Following the original implementations, we train all SimGCD [30] and GCD base-807

line [7] models for 200 epochs, which we find sufficient for the losses (and validation performance)808

to plateau. For our method, we randomly initialize a classifier on a model which has been trained809

with the GCD baseline loss, and further finetune for another 100 epochs. On our hardware (either an810

NVIDIA P40 or M40) we found training to take roughly 15 hours for SSB datasets, and around 4811

hours for a Clevr-4 experiment.812

Early stopping. We note that GCD is a transductive setting, or a clustering problem, where models813

are trained (in an unsupervised fashion) on the data used for evaluation, DU . As such, an important814

criterion is which metric to use to select the best model. SimGCD [30] and the GCD baseline [7] use815

the performance on a validation set of images from the labeled categories. While this is a reasonable816

choice for the baseline, we found it can lead to underestimated performance for SimGCD on some817

datasets. For SimGCD, we instead found it better to simply take the model at the end of training.818

For µGCD, we instead propose to choose the model with the minimum unsupervised loss on the819

unlabeled set.820

Other details: When finetuning pre-trained transformer models – DINO [14], DINOv2 [29] or821

MAE [26] – we finetune the last transformer block of the model. For Clevr-4, when training a822

ResNet18, we finetune the whole model. Finally, for the µGCD failure case of shape, we suggest823

in appendix D.2 that µGCD can get stuck in local optima if its initialization is already very strong.824

As such, in this case, we initialize the linear head with k-means centroids, reduce the learning rate825

and teacher temperature to 0.01, and set ωbase to 0.9.826
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H Related Work827

Representation learning. The common goal of self-, semi- and unsupervised learning is to learn828

representations with minimal labelled data. A popular technique is contrastive learning [24, 27],829

which encourages representations of different augmentations of the same training sample to be similar.830

Contrastive methods are typically either based on: InfoNCE [31] (e.g., MoCo [37] and SimCLR [24]);831

or online pseudo-labelling (e.g., SWaV [9] and DINO [14]). Almost all contrastive learning methods832

now adopt a variant of these techniques [18, 41, 61, 62]. Another important component in many833

pseudo-labelling based methods is ‘mean-teachers’ [36] (or momentum encoders [37]), in which a834

‘teacher’ network providing pseudo-labels is maintained as the moving average of a ‘student’ model.835

Other learning methods include cross-stitch [63], context-prediction [64], and reconstruction [26]. In836

this work, we use mean-teachers to build a strong recipe for GCD.837

Attribute learning. We propose a new synthetic dataset which contains multiple taxonomies based838

on various attributes. Attribute learning has a long history in computer vision, including real-world839

datasets such as the Visual Genome [65], with millions of attribute annotations, and VAW, with840

600 attributes types [66]. Furthermore, the disentanglement literature [67–69] often uses synthetic841

attribute datasets for investigation [70, 71]. We find it necessary to develop a new dataset, Clevr-842

4, for category discovery as real-world datasets have either: noisy/incomplete attributes for each843

image [65, 72]; or contain sensitive information (e.g. contain faces) [73]. We find existing synthetic844

datasets unsuitable as they do not have enough categorical attributes which represent ‘semantic’845

factors, with attributes often describing continuous ‘nuisance’ factors such as object location or846

camera pose [70, 71, 74].847

Category Discovery. Novel Category Discovery (NCD) was initially formalized in [20]. It differs848

from GCD as the unlabelled images are known to be drawn from a disjoint set of categories to the849

labelled ones [42, 44, 57, 75, 76]. This is different from unsupervised clustering [10, 77], which850

clusters unlabelled data without reference to labels at all. It is also distinct from semi-supervised851

learning [18, 36, 39], where unlabelled images come from the same set of categories as the labelled852

data. GCD [7, 8] was recently proposed as a challenging task in which assumptions about the classes853

in the unlabelled data are largely removed: images in the unlabelled data may belong to the labelled854

classes or to new ones [30, 43, 46, 47]. We particularly highlight concurrent work in SimGCD [30],855

which reports the best current performance on standard GCD benchmarks. Our method differs from856

SimGCD by the adoption of a mean-teacher [36] to provide more stable pseudo-labels training,857

and by careful consideration of model initialization and data augmentations. [46] also adopt a858

momentum-encoder, though only for a set of class prototypes rather than in a mean-teacher setup.859

H.1 Clevr-4: connections to real-world and disentanglement datasets860

Datasets with different granularities. When multiple taxonomies are defined in exisiting datasets,861

they are most often specified only at different granularites, for instance in CIFAR100 [19], FGVC-862

Aircraft [22] and iNaturalist [78]. While recognition at different granularites is related to our task –863

and was explored in [79] – the constituent taxonomies are not statistically independent, as the Clevr-4864

splits are. We note that, given the number of categories in each taxonomy, an unsupervised model865

could in principal solve the clustering problem at the different granularities.866

CUB-200-2011 [48]. Fei et al. [45] discuss the existence of alternate, but valid, clusterings of images867

from fine-grained datasets like CUB [48] – e.g., based on pose or background. We note that the CUB868

‘Birds’ dataset presents an opportunity for constructing an interesting dataset for category discovery.869

Each image in CUB is labelled for presence (or absence) of each of 312 attributes, where these870

attributes come from different attribute types. Each attribute type (e.g., ‘bill shape’, ‘breast color’)871

provides a different taxonomy with respect to which to cluster the data. However, we found these872

attribute annotations are too noisy to yield meaningful conclusions.873

Disentanglement datasets. We suggest that Clevr-4 is also a useful benchmark for disentanglement874

research [67, 68]. This research field aims to learn models such that the ground-truth data generating875

factors (i.e., attributes of an object) are encoded in different subspaces of the image representation.876

The current CLEVR dataset [12] cannot be used easily for this, as its images contain multiple objects,877

each with different attributes. Instead, in Clevr-4, all objects share the same attributes, allowing each878

image to be fully parameterized by the object shape, texture, color and count. Furthermore, compared879

to synthetic datasets for disentanglement [71], Clevr-4 contains more categorical taxonomies, as well880

as more classes within those taxonomies.881
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Finally, we note that there exist other extensions of the CLEVR dataset [12], such as ClevrTex [80],882

Super-CLEVR [81] and CLEVR-X [82], which also add new textures and/or categories to the original883

datasets. However these datasets cannot be used for category discovery (or disentanglement) research884

as, unlike in Clevr-4, they contain scenes with objects of differing attributes. As such, each image885

cannot be parameterized with respect to the object attributes in a way which gives rise to clear886

taxonomies.887

Other related fields The GCD task and the Clevr-4 dataset are related to a number of other machine888

learning sub-fields. Conditional Similarity research [83–85] aims to learn different embedding889

functions given different conditions. For instance, the GeneCIS benchmark [83] evaluates the890

ability of models to retrieve different images given a query and different conditioning text prompt.891

Meanwhile, the multiple clustering [86, 87] and self-supervised learning [88, 89] fields investigate892

the how different choices of data augmentation result in different clusterings of the data. The893

self-supervised field particularly aims to understand why these inductive biases result in different894

generalization properties [90–92].895

We hope that Clevr-4 can be complementary to these works, and provide a test-bed for controlled896

experimentation of these research questions.897

H.2 µGCD method.898

We note here that the idea of momentum encoders has been widely used in representation learning [37,899

38, 47], semi-supervised learning [36, 41], or to update class prototypes in category discovery [46, 93].900

We use a mean-teacher model end-to-end, for the backbone representation and the classification head.901

We highlight that, similar to a rich vein of literature in related fields [14, 18, 24, 25, 58, 59], our goal902

is to find a specific recipe for the GCD task.903
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