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Abstract

In this paper, we explore SSL-EY (Self-Supervised Learning with an Eckhart-
Young characterisation), a novel self-supervised learning loss function directly
inspired by Deep Canonical Correlation Analysis (DCCA). Our key insight is that
maximizing the correlation of learned representations can serve as an effective
and interpretable objective in self-supervised learning. We demonstrate that SSL-
EY not only strengthens the theoretical underpinning of existing methods, such
as Barlow Twins and VICReg, but also performs competitively on benchmark
datasets.

1 Introduction

Self-Supervised Learning (SSL) methods have reached the state of the art in tasks such as image
classification [4]. These methods can learn robust data representations without the need for explicit
labels or supervision. Recently, a family of SSL methods that are closely aligned with Canonical
Correlation Analysis (CCA) has garnered interest. This family notably includes Barlow Twins [23],
VICReg [6], and W-MSE [11] and they aim to transform a pair of data views into similar represen-
tations, similar to the objective of CCA. Similarly, some generative approaches to SSL[18] bear a
striking resemblance to Probabilistic CCA[3]. These connections have started to be explored in [5].

Deep CCA [2] secured a runner-up position for the test-of-time award at ICML 2023 [13]. However,
its direct application has been limited in large datasets due to biased gradients in the stochastic
minibatch setting. There have since been proposals to scale-up Deep CCA in the stochastic case
with adaptive whitening [22] and regularization [8], but these techniques are highly sensitive to
hyperparameter tuning.

This work expands on recent work [9], which introduced a new SSL loss function based on Deep
CCA. This loss function has no tuning parameters in its objective and is interpretable via sums
of squared correlations. Moreover, the learnt representations are provably full rank in the linear
setting, in contrast to VICReg and Barlow twins [9]; they therefore do not suffer from collapse
in the deep setting2. In Section 4, we demonstrate the practicality of our method by applying our

∗Equal contribution.
2Reasoning through a heuristic argument, with empirical support.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



loss function to the standard CIFAR-10 and CIFAR-100 benchmarks. We match the state-of-the-
art in terms of accuracy while using the default hyperparameters from a fully optimized Barlow
Twins model. Additionally, we experiment with varying the projector size to demonstrate that, when
directly optimizing for CCA, we can achieve the same performance with a much smaller embedding
size and even eliminate the need for a projector altogether.

2 Background: A Unified Approach to CCA and SSL Family

Multi-view setting: The initial motivation for this work was from a multi-view learning setting
where there are I different sets of observations, referred to as ‘views’3, corresponding to the same
individuals. We seek to learn lower dimensional representations of the data that reflect the infor-
mation shared between the different views and can be used for various downstream tasks, such as
classification or similarity preservation. To formalise this setting, we model observations as realisa-
tions of a collection of vector-valued random variables X(i) ∈ RDi for i ∈ {1, . . . , I} and seek to
learn K-dimensional representations of the form:

Z(i) = f (i)(X(i); θ(i)), (1)

where each function f (i) is differentiable in its parameters θ(i) for any given input X(i). For sim-
plicity, we will only consider the two-view case I = 2 for the rest of this work, but we note that the
approach immediately generalises to any number of views I , see [9].

An unbiased loss function for stochastic CCA: It is well known that CCA [7] can be defined by
the solution to the generalized eigenvalue problem (GEP) Au = λBu where:

A =

(
0 Cov(X(1), X(2))

Cov(X(2), X(1)) 0

)
, B =

(
Var(X(1)) 0

0 Var(X(2))

)
, u =

(
u(1)

u(2)

)
. (2)

By applying the Eckhart–Young inequality [20] to the eigen-decomposition of B91/2AB91/2, [9]
showed that top-eigenspaces of GEPs can be characterised as minimising the ‘Eckhart-Young’ loss:

LEY(U) := trace
(
−2UTAU +

(
UTBU

) (
UTBU

))
(3)

where the columns of U ∈ RD×K span a K-dimensional subspace of RD associated with the top-K
eigenvalues. Applying this characterisation to eq. (2) in the linear case Z(i) = U (i)TX(i) motivates
the following loss for CCA that can immediately be generalised to the Deep (and Multiview) setting:

LEY(θ) = −2 traceC(θ) + ∥V (θ)∥2F . (4)

where C(θ) =
∑

i ̸=j Cov(Z
(i), Z(j)), and V (θ) =

∑
i Var(Z

(i)) are sums of between-view and
within-view variances respectively.

Siamese Networks and Shared Weights in SSL: Siamese networks are commonly used in uni-
modal SSL. In these setups, an original input datum X(0) is typically modified by a pair of indepen-
dent random augmentations to obtain a pair of augmented views (X(1), X(2)). These pass through
identical encoders to form embeddings (Z(1), Z(2)); i.e. we have f (1) = f (2) = f and have shared
weights θ(1) = θ(2) = θ in eq. (1).

Classical CCA does not assume shared weights between different views, but does recover shared
weights if pairs of data are generated by independent random augmentations as above; the same is
true of VICReg in the linear case [9]. Weight sharing can therefore be seen as helpful regularisation,
which is why we suggest using it in this setting.

Joint Embedding for SSL and the Role of the Projector: Many recent SSL methods, including
Barlow Twins and VICReg, use an encoder-projector setup, as illustrated in Figure 1. Input data
is mapped through an encoder g to obtain representations; these representations are then mapped
through a projector4 h to form (typically) higher-dimensional embeddings. Crucially, it is the repre-
sentations that are used for downstream tasks, while the embeddings are used to train the model.

3Yes, there are I (eye) views
4Sometimes alternatively called an expander.
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Encoder-projector architectures have had impressive empirical success, but despite recent work
[17, 14], there is relatively little understanding of why they perform so well.

Figure 1: A schematic diagram of the architecture used by Joint Embedding methods which include
VICReg, and Barlow Twins

3 Our Approach: Deep CCA with Shared Weights

Building on these insights, we propose a novel approach that directly applies Deep CCA (DCCA)
with shared weights to SSL.

Unbiased estimates: since empirical covariance matrices are unbiased, we can construct unbiased
estimates to C, V from a batch of transformed variables Z = (Z(1),Z(2))5 via

Ĉ(θ)[Z] = Ĉov(Z(1),Z(2)) + Ĉov(Z(2),Z(1)), V̂ (θ)[Z] = V̂ar(Z(1)) + V̂ar(Z(2)) (5)

Then if Z,Z′ are two independent batches of transformed variables6, the batch loss

L̂EY[Z,Z
′] := −2 trace Ĉ[Z] + ⟨V̂ [Z], V̂ [Z′]⟩F (6)

gives an unbiased estimate of LEY(θ). Our approach has the following interesting properties:

• Interpretable Loss: The negative of the loss value is precisely the sum of squared canon-
ical correlations between the pair of embeddings (under mild conditions [9]). This can be
used as an interpretable metric for the quality of a representation and the saturation of the
embedding space (i.e. if the correlations are all perfect then we have capacity to learn more
information).

• Provably full rank embeddings: The embeddings are provably full rank in the linear case,
unlike VICReg and Barlow twins [9]; they are therefore also full rank in general in the deep
case, so do not suffer from collapse.

4 Experiments with CIFAR-10 and CIFAR-100

We benchmark our self-supervised learning algorithm, SSL-EY, against Barlow Twins and VICReg
on CIFAR-10 and CIFAR-100 [15]. Each dataset contains 60,000 labeled images, distributed over
10 classes for CIFAR-10 and 100 classes for CIFAR-100.

We adopt a standard experimental design as detailed in [21]. We employ the sololearn library [10],
which provides optimized setups for several SSL algorithms, including VICReg and Barlow Twins.
All methods utilize a ResNet-18 encoder and a bi-layer projector network with 2048 hidden units
and 2048 output units. Training is conducted over 1,000 epochs with batches of 256 images. For
SSL-EY, we use hyperparameters that are optimized for Barlow Twins; our aim is not to outperform
but to demonstrate the robustness of our method7. We evaluate performance using a linear probe on
the learned representations and report both Top-1 and Top-5 accuracies on the validation set. For
additional details, please refer to the supplementary material C.

Competitive Performance Without Hyperparameter Tuning: SSL-EY performs competitively
against Barlow Twins and VICReg, as demonstrated in Table 1. Importantly, this performance is
achieved using the default hyperparameters optimized for Barlow Twins, in contrast to the heavily
optimized settings employed for Barlow Twins and VICReg.

Model Convergence: The Learning curves in Figure 2 indicate that the performance variation at
1,000 epochs in table 1 mainly results from optimization noise and speed of convergence is similar.

5We adopt bold notation to represent matrices of samples from the distribution.
6With corresponding Z(1)′,Z(2)′

7This was largely due to computational constraints; we hope to explore further optimisation in future work.
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Smaller Projector or None at All: One key motivation for projectors is to prevent excessive col-
lapse of meaningful information. Because SSL-EY learns does not suffer from collapse, we had a
prior that it may be more robust to projector size, and perhaps even to removing the projector al-
together. For this reason, in another set of experiments, we explored varying the projector’s output
dimensions from 2048 to 64 and removing the projector completely while holding the encoder output
size constant. Figure 3a demonstrates that SSL-EY maintains good performance even with a smaller
projector, making the representations more efficient than Barlow Twins and VICReg (they contain
the same amount of useful information for the classification task in much fewer dimensions). While
Figure 3a shows the strong performance of Barlow Twins and VICReg at larger projector sizes for
this task, we would argue that our objective is more robust to this design choice, potentially offering
a more reliable choice for practitioners employing SSL to unfamiliar datasets. At the bottom of
Table 1, we further highlight the efficiency of SSL-EY by showing that our model performs simi-
larly when we have no projector (just using the a 2048 dimensional representation), suggesting that
SSL-EY is less reliant on this architecture8. In contrast, we show in appendix B.1 that Barlow Twins
and VICReg’s performance drops substantially without the use of a projector.

LEY is an informative metric: Figure 3b offers two key insights. First, it shows that the EY
loss, which provides an unbiased estimate of the canonical correlations of the embeddings, is
closely related to classification accuracy. This suggests that maximizing canonical correlation is
a promising pretext task for self-supervised learning. Second, the figure reveals that even a reduced-
dimensionality projector output (64 dimensions) has not reached its full capacity by 1,000 epochs.
Specifically, the sum of squared canonical correlations reaches 46, out of a maximum possible value
of 64. This indicates that there is still room for further optimization, implying that SSL-EY’s rep-
resentations have not yet saturated their capacity for capturing meaningful information. Lastly, the
evolution of the correlation, as measured by LEY, offers a novel way of monitoring model training
even without the need for a separate validation task like classification, and could potentially elimi-
nate the requirement for a validation set altogether. This is a particularly interesting direction given
recent work on the stepwise eigenvalue behavior of the representations in SSL models [19].

Method CIFAR-10 Top-1 CIFAR-10 Top-5 CIFAR-100 Top-1 CIFAR-100 Top-5
Barlow Twins 92.1 99.73 71.38 92.32
VICReg 91.68 99.66 68.56 90.76
SSL-EY 91.43 99.75 67.52 90.17
SSL-EY No Proj. 90.98 99.69 65.21 88.09

Table 1: Performance comparison of SSL methods on CIFAR-10 and CIFAR-100.

Figure 2: Learning curves for SSL-EY, Barlow Twins, and VICReg on CIFAR-100, showing perfor-
mance across 1,000 epochs.

8We note that W-MSE, a close relative of our work, also didn’t use a projector despite its use being seem-
ingly ubiquitous
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(a) (b)

Figure 3: (a) Performance of SSL-EY with reduced projector size compared to Barlow Twins and
VICReg. (b) SSL-EY’s learned embeddings indicate untapped representation capacity.

5 Dicussion

In this paper, we introduced a novel self-supervised learning loss function inspired by advancements
in Deep Canonical Correlation Analysis. Our method, SSL-EY, not only theoretically maximizes the
correlation of learned representations but also competes favorably with existing methods like Barlow
Twins and VICReg on benchmark datasets. We demonstrated that our loss function can serve as an
interpretable metric for representation quality and as a stopping criterion for model training, thereby
simplifying the learning process.

A downside of our approach is that in theory it requires two independent samples at each iteration
to achieve unbiased updates and therefore incurs a small additional computational cost - although in
practice we found that with large enough minibatches this independence could be dropped9.

Future work will fully benchmark the performance of our proposed objective across diverse tasks
and with complete tuning of optimizer parameters including learning rates. We are particularly
excited by the use of different modalities and dropping the shared weights; in effect applying (deep)
CCA to the increasingly available large multimodal datasets[16]. We also hope to explore the use
of LEY as a validation metric for downstream computer vision tasks using similar experiments to
[1, 12].
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A Pseudo-Code

The version of SSL-EY in algorithm 1 is designed to integrate seamlessly into solo-learn, offering
support for distributed training.

Algorithm 1: Solo-Learn Loss function for distributed SSL-EY in Python
# Define the SSL-EY loss function
# Input: Projected features from two views
def SSL EY(z1, z2):

# Get the minibatch size and feature dimension
N, D = z1.size()
# Compute the covariance matrix from the concatenated features
C = torch.cov(torch.hstack((z1, z2)).T)
# Average the covariance matrix across all processes if distributed
training is enabled
if dist.is available() and dist.is initialized():

dist.all reduce(C)
world size = dist.get world size()
C /= world size

# Extract symmetric and anti-symmetric blocks of C
A = C[:D, D:] + C[D:, :D]
B = C[:D, :D] + C[D:, D:]
# Return the SSL-EY loss value
return -torch.trace(2 * A - B @ B)
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B Further Experiments and Figures

B.1 No Projector

We conducted the same experiment as in the main text for Barlow Twins and VICReg, applying the
linear probe to the projector and encoder outputs. In contrast to SSL-EY, both Barlow Twins and
VICReg showed a significant drop in performance when the projector was removed, as reflected
in the classification metrics. Despite the similarities in the underlying motivations across all three
methods, the necessity of a projector for Barlow Twins and VICReg remains an open question. Our
results suggest that a projector may not be a mandatory component for correlation-based models, at
least in the context of our proposed method.

CIFAR-10 CIFAR-100

Method Output Top-1 Top-5 Top-1 Top-5

Barlow Twins Projector 92.1 99.73 71.38 92.32
Barlow Twins No Projector 89.99 99.21 63.51 86.99

VICReg Projector 91.68 99.66 68.56 90.76
VICReg No Projector 90.99 99.46 63.82 86.39

SSL-EY Projector 91.43 99.75 67.52 90.17
SSL-EY No Projector 90.98 99.69 65.21 88.09

Table 2: SSL methods on CIFAR-10 and CIFAR-100 using 2048 unit projectors.

B.2 Robustness of our objective to Different Augmentation schemes

We used VICReg augmentations and Barlow Twins augmentations with each of our proposed meth-
ods. We found that performance was similar and therefore confirms that differences in performance
across Barlow Twins, VICReg, and our two methods is driven by differences in the objective.

CIFAR-10 CIFAR-100

Method Augmentation Top-1 Top-5 Top-1 Top-5

SSL-EY Barlow Twins 89.49 99.54 65.62 89.00
SSL-EY VICReg 90.43 99.62 64.34 87.89

Table 3: SSL methods on CIFAR-10 and CIFAR-100 using different augmentations.

B.3 Additional Figures and Experiments on CIFAR-10

The following set of figures serves as an extension of the figures and experiments conducted on
CIFAR-100, as described in the main text. These experiments on CIFAR-10 provide additional
validation of our primary claims.

B.3.1 Model Convergence CIFAR-10

In Figure 4, the learning curves for SSL-EY, Barlow Twins, and VICReg on CIFAR-10 are shown.
Similar to our observations in CIFAR-100, all models exhibit comparable convergence trends across
1,000 epochs.
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Figure 4: Learning curves for SSL-EY, Barlow Twins, and VICReg on CIFAR-10, showing perfor-
mance across 1,000 epochs.

B.3.2 Projector Dimension Experiments for CIFAR-10

Figure 5 mirrors the projector dimension experiments that were initially conducted on CIFAR-100.
Once again, we find that SSL-EY maintains robust performance even when the projector dimensions
are reduced, contrasting with Barlow Twins and VICReg, whose performance degrades in such
conditions.

(a) (b)

Figure 5: (a) Performance of SSL-EY with reduced projector size compared to Barlow Twins and
VICReg. (b) SSL-EY’s learned embeddings indicate untapped representation capacity.
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C Reproducibility and Experiment Details

In this section, we provide a comprehensive overview of the experimental settings and configurations
employed in our self-supervised experiments.

As previously stated, we adopt the standard setup from solo-learn’s pretraining scripts. For the
backbone network, we use ResNet-18. The projector network features hidden dimensions and output
dimensions both set to 2048. We utilize the LARS optimizer with a learning rate of 0.3 for the
backbone and 0.1 for the classifier. The batch size is configured to 256, and the weight decay is
set to 1 × 10−4. Additional optimizer parameters include setting ‘clip lr‘ to True, η to 0.02, and
‘exclude bias n norm‘ to True. A warmup cosine scheduler is used for learning rate scheduling.
The models are trained for 1000 epochs and computations are performed with a numerical precision
of 16 bits.

VICReg and Barlow Twins: Both models employ similar data augmentations, specified in Tables
4 and 5. In table 4 we show the shared augmentations while in table 5 we show the differences. Note
that Barlow Twins uses two different augmentations with 50% probability each.

Augmentation Parameters
ColorJitter brightness = 0.4, contrast = 0.4, saturation = 0.2, hue = 0.1, prob = 0.8
Grayscale prob = 0.2
HorizontalFlip prob = 0.5
CropSize 32

Table 4: Shared augmentations for VICReg and Barlow Twins

Augmentation VICReg Barlow Twins (crop 1) Barlow Twins (crop 2)
RandomResizedCrop Yes Yes Yes
crop min scale 0.2 0.08 0.08
crop max scale 1.0 1.0 1.0
Solarization Yes No Yes

prob = 0.1 prob = 0.0 prob = 0.2
NumCrops 2 1 1

Table 5: Different augmentations for VICReg and Barlow Twins
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