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Abstract

Recent work on object-centric world models aim to factorize representations in
terms of objects in a completely unsupervised or self-supervised manner. Such
world models are hypothesized to be a key component to address the generalization
problem. While self-supervision has shown improved performance however, OOD
generalization has not been systematically and explicitly tested. In this paper, we
conduct an extensive study on the generalization properties of contrastive world
model. We systematically test the model under a number of different OOD general-
ization scenarios such as extrapolation to new object attributes, introducing new
conjunctions or new attributes. Our experiments show that the contrastive world
model fails to generalize under the different OOD tests and the drop in performance
depends on the extent to which the samples are OOD. When visualizing the transi-
tion updates and convolutional feature maps, we observe that any changes in object
attributes (such as previously unseen colors, shapes, or conjunctions of color and
shape) breaks down the factorization of object representations. Overall, our work
highlights the importance of object-centric representations for generalization and
current models are limited in their capacity to learn such representations required
for human-level generalization.

1 Introduction

One of the main challenges in Al is to learn high-level causal variables from low-level variables like
pixels in images that enable generalization. Learning world models [5} 7,19, |19] in a self-supervised
manner might be a key component for generalization [10]. Such world models also form a core
component of human cognition [3]. A number of studies in cognitive psychology and neuroscience
[13L 116} 20]] show that world models aid in generalization and robust learning. For example, infants
learn about the physical properties of objects as entities that behave consistently over time and are
able to re-apply their knowledge to new scenarios involving previously unseen objects [14]. Thus,
learning object-centric world models in a self-supervised manner seem to be a key component of
cognition that allow humans to predict and generalize to novel situations.

A desirable property of world models is their potential ability to generalize to novel objects as
observed in infants [[15]. While contrastive world models [8] have been previously evaluated for their
prediction performance, very few studies have tested their effectiveness for generalization to novel
data samples. In a recent study [1]], world models are shown to have generalization abilities beyond
their training environment or number of objects. This study evaluates generalization in terms of single
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Figure 1: A) Model architecture of object-centric world model used in our experiments. The world
model consists of an object encoder with slot architecture and followed by a Graph Neural Network
as the transition model. B) Datasets used to evaluate models for out-of-distribution generalization.
The grid based 2D shapes, 3D blocks and 3 body dataset are visualized. C) Illustration of the
generalization tests on 2D shapes dataset - i) I[[D:training and testing data are the same, ii) New
conjunction : Testing on novel color-shape combinations not seen during training, iii) Extrapolation
: Testing for a new shape or new color different from the training dataset and iv) New dimension -
Either variation in shape or color is seen during training while the testing contain variation in both
shape and color.

scenario such as novel task and also under different environmental conditions. However in this study
it is assumed that the input image is factored into constituent objects by an object detection module.
This, however is not a thorough test of generalization for world models. Our aim is to conduct an
exhaustive evaluation of the generalization abilities of contrastive world models under a number of
different OOD conditions.

In our experiments, we train a contrastive structured world model (CSWM) on a next step prediction
task given an input observation and an associated action. The models are trained on different datasets -
2D shapes, 3D blocks and 3-body dataset [6]. The trained models are then tested for different types of
generalization. We find that: (1) Object-centric world models are unable to factorize representations
under OOD; and (2) the drop in generalization performance depends on the number of time steps and
number of objects that are OOD. Overall, our findings challenge the notion that contrastive learning
of object-centric world models potentially help with OOD generalization and this requires design of
novel learning paradigm to preserve factorization of representations critical for generalization.

2 Related work

In [[12] it has been shown that learning disentangled representations requires an inductive bias in the
model architecture and the data. Other studies have shown its relation to fairness [[L1], its usefulness
for downstream tasks that enable quicker learning from fewer samples [18]]. Few studies also study
its relation to generalization. [4] demonstrates that learning disentangled representations is a good
predictor for out-of-distribution task performance. However, in the same study, they also show that
VAE-based approaches [12]] do not learn to disentangle complex datasets, which instead requires
increased model capacity. In another study, [[L7] investigate the ability of disentangled representations
to generalize under OOD conditions. However none of these studies have investigated generalization
performance of contrastive world models.

3 Results

3.1 Model evaluation on IID data

The evaluation of CSWM model on the 2D shapes IID data shows perfect factorization of object-level
representations as shown in Figure 2. Given the perfect factorization, CSWM model achieves perfect
performance on IID data.
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Figure 2: Understanding the factorization of representations: A) visualization of the activation maps
from the convolutional backbone on 2D shapes dataset of both CSWM and AE. Each map corresponds
to an object from the input image which indicates to what extent the encoder is able to factorize the
representation space as per objects. B) Visualization of convolutional maps on 3D blocks dataset of
both CSWM and AE models. C) Each plot is the state transitions when only one object is moved in
the environment.

3.2 Out-of-distribution evaluation

To test the hypothesis whether object-centric representations generalize to novel data, we evaluate
the models prediction performance under OOD settings by changing the attributes (shape or color)
of objects in the dataset. Given that the CSWM outperforms other slot-based models, we evaluate
CSWM for OOD prediction performance. For each generalization test, we also vary the number of
objects with attributes changed in the test set.

Figure 3 shows the CSWM performance under different types of generalization on the 2D shapes
dataset. We observe that for all types of generalization, the performance deteriorates. The prediction
performance depends to what extent the test samples are OOD: as more the number of objects are
changed, the performance worsened. Additionally, we also notice that the performance degrades over
longer time-steps. Single-step prediction performance on OOD remains close to IID, especially with
only one object changed. However, for higher time steps (5 and 10 time steps) there is a considerable
drop in performance. Similarly the CSWM model fails to generalize to 3D blocks and 3 body dataset
(Figure 4).

The drop in OOD performance of the model indicates that either the convolution encoder doesn’t
factorize the representations or that the transition model fails to update the state representation
accurately. To identify we run a qualitative analysis on both the encoder representations and the
transition updates. As in the IID analysis, we visualize the convolution filters to see if the objects
are factored under the OOD conditions. Figure 3B shows the output from the convolution layers
of the CSWM object encoder trained on 2D shapes dataset. Unlike in IID, each convolution map
does not correspond to a distinct object in the input image. We observe that the convolution map
activations mixes mask corresponding to multiple objects. The CSWM model is thus unable to
factorize object-level representation under all the different OOD settings. Given that the factorization
breaks down, the transition model can no longer correctly identify the right object to update its state.
This is indeed the case, as shown in Figure 2C. We visualize the transition updates such that for
each subplot of observations the same object is acted upon. In OOD conditions, we observe that
the transition model updates the state for multiple objects in each observation, even though the true
prediction is for the transition model to update the state of just one object in an observation. This is
in contrast to IID scenario where we observed that one object state was updated for every observation.
The failure in accurate factorization of representations results in inaccurate transition updates as seen
in the low prediction performance.

Overall, the slot mechanism of CSWM model is unable to factorize the representations when attributes
of the object are changed during test time, resulting in poor prediction performance.
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Figure 3: Evaluation of CSWM model under OOD generalization. A) H@1 prediction performance
of the model under different types and extent of OOD. B) Visualization of convolutional maps of
the model corresponding to each generalization test. C) Transition updates corresponding to each
generalization test.

3D blocks 3 body physics
Extrapolation (color)  m 1step Extrapolation (size) g 1sep

9 5 Step 100 5 Step
I W 10 Step W 10 Step
8
c
©
£
T 50 50
Q
c
o
©
N
s
2
0 0
8 0 1 2 3 0 1 2 3
Degree of OOD (number of objects) Degree of OOD (number of objects)

Figure 4: OOD generalization performance of CSWM on 3D blocks and 3 body dataset.

4 Discussion

In this paper, we find that the tested world model is unable to generalize to novel data which can be
attributed to the breakdown in factorization of representations. While we aim to conduct an exhaustive
evaluation to understand the generalization properties of slot-based models, there are limitations
regarding datasets and models. The datasets used in the study are based on synthetic images and have
relatively simple object dynamics. As regards to the model, there are other approaches to building
object-centric models that we did not test. A number of approaches use generative models [2] to
build object-centric representations.
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Experimental details

In this section, we provide an overview of the setup and experiments we conduct. We first introduce
the datasets, model architecture, and evaluation metrics used in the study. Finally, we outline the task
and experiments on which the models’ predictive performance is evaluated.



A.1 Data

Our experiments use three different datasets — 2D Shape, 3D blocks, and 3 body physics dataset. 2D
shapes is a 5x5 grid world consisting of 5 different randomly placed different objects. The overall
size of the grid is 50x50. Each object of size 10x10 can only occupy an empty location in the gird
and has a unique combination of shape and color. When an action takes places, one object is moved
by one position (Fig 1B) and the object cannot be moved if the location is occupied by another object
or outside the grid. The 3D blocks dataset is also a block pushing environment, similar to the one
used in [8]]. The rendering component is changed with different perspective and partial occlusions,
making it a slightly challenging task. The 3-body environment is an interacting system based on
classical gravitational dynamics [6] without any actions. The input to the model is two consecutive
images of 50x50 that implicitly contains the velocity information.

To generate an experience buffer for training, we initialize the environment by uniformly sampling
objects at random locations. At every time step, we provide state observations as 50 x 50 x 3 tensors
with RGB color channels, normalized to [0, 1]. We randomly sample an object-specific action.
Actions are provided as a 4-dimensional one-hot vector (if an action is applied) that encodes the
directional movement of a particular object. Else it is represented as a vector of zeros if no action is
applied to a particular object. Note that only a single object receives an action per time step.

A.2 Model architecture

The world model as illustrated in Figure 1A comprises an object encoder and a transition model. For
the contrastive structured world model (CSWM), we follow the architectural details as given in [S§]].
The object encoder is a convolutional neural network and the transition model is a Graph Neural
Network. The transition model accepts a factored latent state and the action vector to predict the next
latent state by outputting the transition update as a residual. The network models pairwise interactions
between latent state factors (corresponding to objects in the environment) using a fully-connected
node network and an edge network. Both are implemented as MLPs with one hidden layer. The edge
network outputs an embedding for each directed edge and then aggregated using the node network in
order to update the state of each node. Finally, the graph neural network outputs a vector of updated
factors. Finally we also use a standard Autoencoder (AE) in our experiments.

A.3 Task evaluation

We use standard metrics used for evaluating world models directly in latent space. We ask the model
to predict the representation of state given an observation and action. The true state representation
(obtained from the true observation by taking action in the environment) is compared against the
predicted state representation against reference states stored in a buffer. This measure is the Hits
at Rank 1 (H@1) and Mean reciprocal rank (MRR). We only report Hits at Rank 1 (H@1) in our
experiments.

A.4 Experiments

In our experiments we use the contrastive structured world model (CSWM) [8]] as illustrated in Figure
1A. Our experiments use three different datasets — 2D Shape, 3D blocks, and 3 body physics dataset.
For the OOD evaluation, we test the model under three types of generalization conditions (Figure
1C) 1) Extrapolation - object with either a new a color or shape previously unseen during training
is introduced ii) New conjunction - object with a unique shape-color combination unseen during
training but either the shape or color seen during training iii) New dimension - either shape or color
variation is introduced in testing.
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