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Abstract

Image captioning, a fundamental task in vision-language understanding, seeks
to generate accurate natural language descriptions for provided images. Current
image captioning approaches heavily rely on high-quality image-caption pairs,
which can be hard to obtain for many domains. To address this, we introduce a self-
supervised image captioning method. After learning an initial signal from a small
labeled dataset, our method transitions to self-supervised learning on unlabeled
data, leveraging the auxiliary task of enhancing the CLIP relevance between images
and generated captions. Remarkably, despite utilizing less than 2% of the labeled
COCO dataset, our method delivers a performance comparable to state-of-the-art
models trained on the complete dataset. Human evaluations further reveal that our
method produces captions with greater distinctiveness and informativeness, two
attributes inherently challenging to achieve through supervised learning.

1 Introduction

Image captioning aims to describe images with syntactically and semantically meaningful sentences,
thereby bridging the gap between vision and language. Contemporary approaches to image captioning
are predominantly supervised and face several challenges.

Firstly, acquiring image-caption pairs is a challenging endeavor for many domains, thus it is desirable
to have a method that doesn’t need much supervision. Despite this, prevailing methods rely heavily on
extensive collections of captioned images for training. In some cases, these models even necessitate
multiple reference captions and additional annotations [Stefanini et al., 2022].

Second, the quality of reference captions can be less than ideal. As will be shown later, current
models can produce captions that match the quality of the reference captions in well-known datasets
like COCO. Nevertheless, the reliance on reference-based similarity objectives prevents these models
from surpassing this quality threshold. For example, models trained on text similarity objectives tend
to overlook specific details that set one image apart from others, as public datasets’ reference captions
typically describe only the most conspicuous and common objects [Cho et al., 2022].

In light of these challenges, our research introduces a two-stage self-supervised captioning method.
Notably, our method (1) significantly reduces dependency on reference captions through a self-
supervised mechanism, and (2) while leveraging insights from these captions, surpasses the quality
of the original reference captions in certain evaluations.

2 Method

2.1 Image Captioning with CLIP

Large research efforts have been devoted to image captioning. Typically, an image captioning method
first encodes an image into a visual representation, which is then decoded to produce the final captions.
The visual encoder extracts the representation from either classification networks [Chen et al., 2017]
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A large polar bear swim-
ming in a pool of water.

A man riding a wave on top
of a surfboard.

A city skyline and a large
body of water in the sunset.

A small brown squirrel
standing on the grass.

Figure 1: Example captions generated by our method.

[Fang et al., 2015] [Xu et al., 2015], or object detection networks [Anderson et al., 2018] [Li et al.,
2020] [Zhou et al., 2020], with the latter providing more expressive features. Some models introduce
a self-attention mechanism [Herdade et al., 2019] or Vision Transformers [Dosovitskiy et al., 2020]
to make better use of visual cues. When it comes to the textual decoder, different models use LSTM
variants [Chen et al., 2018] [Vinyals et al., 2015] or transformer-based architectures [Herdade et al.,
2019] [Luo et al., 2021]. The emergence of large language models like GPT [Brown et al., 2020]
presents promising alternatives.

Contrastive Language-Image Pre-training (CLIP) [Radford et al., 2021] leverages vision-language
pre-training on abundant image-caption pairs and produces cross-modal contextual representations.
ClipCap [Mokady et al., 2021] leverages CLIP representations for image captioning. First, it employs
CLIP’s visual encoder to generate an encoded image representation. Next, a mapping network—either
a transformer or MLP—translates the CLIP embedding to the language model space, producing a
prefix to the caption. Finally, the language model auto-regressively generates the predicted image
captions. By leveraging multimodal understanding from existing models instead of learning new
semantic entities, ClipCap produces state-of-the-art results with a simpler and faster model.

2.2 Our Method

We propose an enhancement to the ClipCap architecture to reduce its dependency on captioned
images. This is achieved by introducing an auxiliary task that aims to maximize the matching, as
determined by CLIP, between the image and the captions produced.

To integrate this auxiliary task as a direct replacement for the original training objective, we face a
challenge during optimization: The language model generates captions by sequentially predicting
each word token, which involves a probability distribution across the vocabulary for each token.
The selection of the next token typically employs either greedy decoding or beam search, both
relying on the Softmax operation. However, the discrete sampling operation following Softmax is
non-differentiable, thus interrupting the flow of gradients. To overcome this challenge, we use the
Gumbel-Softmax method [Jang et al., 2016], which provides a reparameterization trick for discrete
variables. This technique allows us to transform the non-differentiable operation into a differentiable
one, thereby enabling our gradient-based optimization on the auxiliary task.

Nonetheless, in the absence of initial signals, the generated text is purely random and incoherent. As
a result, the image-caption relevance calculated would stay extremely low. This creates a significant
challenge in further optimizing the model. Given that the search space for potential inputs is
exceptionally vast and discrete, the loss will fluctuate wildly and fail to converge. To overcome
this challenge, we introduce an initial supervised training stage before the self-supervised training
stage. This supervised stage equips the model with an essential set of preliminary signals, thereby
establishing a baseline proficiency that can be further refined during the self-supervised training stage.
An ablation study highlighting the significance of this supervised stage can be found in Appendix A.

Breaking down our methodology, during the supervised training stage, an initial signal is established
using a small dataset of 10,000 captioned images, constituting less than 2% of the standard training
division in the COCO-captions dataset [Lin et al., 2014]. For each image paired with its corresponding
caption, the captions are considered as a sequence of tokens represented as c = c1, ..., cl. Using the
CLIP model, we generate the visual embedding v. This is then transformed by our mapping network
to produce a series of prefix embeddings p = p1, . . . , pk, where each shares the same dimensionality
as the word embedding. Following this, we concatenate the prefix embeddings with the caption
embeddings, c1, . . . , ci−1, and feed the concatenation into the language model LLaMA 2 to predict
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the subsequent token ci. We either train the mapping component or finetune the LLaMA 2 using a
cross-entropy loss Lsupv = −Σl

i=1 log pθ(ci|p1, . . . , pk, c1, . . . , ci−1).

In the self-supervised training stage, each step involves two main steps. First, we employ LLaMA 2
to generate a caption, cmodel, corresponding to a specific image. Subsequently, we train the model
based on the relevance between the image and its generated caption. The loss function for this phase
is crafted to be the inverse of the image-caption relevance as evaluated by the CLIP embeddings,
represented as Lunsupv = − cos(v, cmodel).

3 Experiments

3.1 Comprehensive Evaluation

Current methods for evaluating the quality of generated text, like in image captioning, are mainly
based on comparing the text to a set of reference texts. These methods include n-gram overlap
techniques such as BLEU [Papineni et al., 2002], METEOR [Denkowski and Lavie, 2014], and
CIDEr [Vedantam et al., 2015]. There are also other metrics like SPICE [Anderson et al., 2016] and
TIGEr [Jiang et al., 2019] that go beyond simple overlap and incorporate more sophisticated models
of similarity between reference and candidate texts. These metrics operate under the belief that the
reference captions are of high quality and serve as a benchmark for the generated captions to reach.
However, our subsequent analyses indicate that many captions created by models are actually better
than reference captions, offering more precise descriptions. This suggests a need for new metrics that
do not solely rely on how close the generated caption is to a reference caption.

Recent metrics suggest using relevance scores from Vision-Language Models (VLMs) like
BERTScore [Zhang et al., 2019], ViLBERTScore [Lee et al., 2020], UMIC [Lee et al., 2021],
and CLIPScore [Hessel et al., 2021]. These VLMs, trained on large datasets, acquire a rich semantic
understanding of the relationship between images and texts. Therefore, they can evaluate captions in a
zero-shot manner. By using reference captions available in the test set, we introduce the RefCompare
Score. This metric offers a more consistent evaluation and delves deeper into understanding how a
method measures up against the reference captions. In particular, the RefCompare Score calculates
the average percentage of reference captions that have a lower CLIP relevance score for the image
than the score of the generated caption.

In this context, a RefCompare Score equal to or higher than 0.5 suggests that the model’s captions
are of comparable or better quality than the benchmark captions. As illustrated in Figure 2, top-
performing models have the ability to create captions that are not just similar, but often better in
quality than the standard references. This underscores the importance of having evaluation metrics
that measure beyond mere textual similarity.

For a comprehensive assessment, we use the traditional BLEU score along with our RefCompare
Score to compare our baseline methods and proposed approach. Acknowledging that existing metrics
might not completely reflect the subtleties of human judgment, we also conduct a human evaluation
to measure two important aspects: distinctiveness and informativeness.

3.2 Baselines and Variants of Our Method

We evaluate the performance of state-of-the-art vision-language models, notably Oscar [Li et al.,
2020] and VLP [Zhou et al., 2020], adhering to the finetuning and inference strategies described in
their respective publications.

For our method, we experiment with four variants: two that involve training the mapping network
with a frozen language model, and two that include the finetuning of the language model. The
mapping network is either architected as an MLP or a Transformer network. We refer to these as
MLP, Transformer, MLP + LLaMA finetuning, and Transformer + LLaMA finetuning.

3.3 Results

We compare our method with the Oscar and VLP baselines. It is noteworthy that our model has
fewer parameters and needs less time to train. In terms of performance, while our model yields
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Figure 2: Comparative evaluation of two state-of-the-art models against four variants of our method.

slightly lower BLEU@4 scores, similar to the supervised ClipCap method, it stands out by securing
substantially higher RefCompare Scores.

Looking at the four variants of our method, our default Transformer configuration delivers the highest
BLEU@4 score and excellent RefCompare Score, while maintaining a relatively small model size.
The MLP configuration, on the other hand, presents weaker performance, likely due to its limitation
in expressiveness. Both the MLP + LLaMA tuning and Transformer + LLaMA tuning versions
yield decent results, but they do not distinctly outperform the Transformer, even with more trainable
parameters and longer training times. This observation suggests that finetuning the language model in
conjunction with using a Transformer mapping network could lead to an excess of expressive power.

3.4 Human Evaluation

We conduct a human evaluation to assess preferences between captions generated by the Oscar model
and those produced by our method. We looked at two key aspects: how unique the captions are
and how much information they convey. For this, we sample 1000 random images from the COCO-
captions dataset and create captions using both methods. We then engage five independent evaluators
to compare the distinctiveness and informativeness of each set of captions without disclosing which
are generated by our model. The results show that our model’s captions are perceived as more
distinctive in 58.6% of the cases, and more informative in 69.2% of the cases.

We present some examples in Appendix B. As we can see, supervised methods relying on references
often employ more commonplace words in their descriptions, leading to a better match with reference
captions. In contrast, our method generates more distinct, semantically rich, and “human-like"
interpretations. While these may not always echo the phrasing of the reference captions and might
contain occasional errors, they largely resonate with human intuition and common sense. Notably,
while both the human-annotated captions and those from reference-based methods tend to focus on
describing the most prominent and frequently encountered objects, our method seeks to incorporate
additional objects within the scene, providing a more comprehensive and detailed description.

4 Conclusion

We present a self-supervised method of image captioning that leverages the auxiliary task of CLIP
relevance. Our method not only showcases remarkable performance through similarity-based metrics
but also produces state-of-the-art results in Vision-Language Model (VLM) evaluations. Unlike
existing methods, our method significantly diminishes the dependency on captioned images and
generates captions that are more distinctive, informative, and aligned with human preference.
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A More Results

Figure 3: BLEU@4 and RefCompare Scores during the self-supervised stage.

In Figure 3, we present the model’s performance in terms of BLEU@4 and RefCompare Scores during
the self-supervised training stage. Initially, the performance trails that of the supervised-only approach,
largely due to the limited size of the dataset used in the supervised phase. However, as training
progresses, we observe a notable increase in performance. While there are occasional fluctuations, the
general trajectory is upward, stabilizing after about 10 epochs. Impressively, our approach not only
narrowly exceeds the BLEU@4 score of the supervised method but also significantly outperforms it
in the RefCompare Score.

Figure 4: Final BLEU@4 and RefCompare Scores with the variation in the number of images used in
the supervised stage.

In Figure 4, we depict the relationship between the size of the labeled training dataset used during the
supervised stage and the model’s final performance. Notably, even a modest dataset of 100 images for
supervised training is sufficient to guide the model effectively through the subsequent self-supervised
stage. As we increase the size of the supervised training set, the model’s performance improves
consistently. However, beyond an approximate limit of 10,000 images, adding more training data
does not lead to a significant enhancement of the model’s performance.
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B More Examples

In Figure 5 and Figure 6, we show more examples of captions generated through our method, the
supervised method, and Oscar.

Reference A puppy rests
on the street
next to a bicycle

A traffic light
and street sign
surrounded by
buildings

A giraffe bend-
ing over while
standing on
green grass

A person up in
the air, upside
down while out-
side

A very cute cat
near a bunch of
birds

Supervised A puppy sleep-
ing on the street
(0.02)

A city in the fog
(0.68)

A giraffe that is
standing in the
grass (0.04)

A man flying
through the air
while riding a
snowboard (1)

A white cat
standing next
to a bunch of
pigeons (0.98)

Ours A white dog lay-
ing on the street
next to a bike
(0.15)

A black and
white photo of
a traffic light
(0.99)

A giraffe eating
grass in a grassy
field (0.16)

A person on
a snowboard
jumping over a
snow-covered
slope (1)

A cat approach-
ing a bunch of
pigeons (0.97)

Figure 5: Uncurated captions generated through both the supervised approach and our method for
five images in the COCO-captions dataset. RefCompare scores are shown in parentheses.

Reference A man with a
red helmet on a
small moped on
a dirt road

A young girl in-
hales with the
intent of blow-
ing out a candle

A man on a bicy-
cle riding next
to a train

A wooden
cutting board
topped with
sliced up food

A kitchen is
shown with a
variety of items
on the counters

Oscar A man riding
a motorcycle
down a dirt road
(0.22)

A woman sitting
at a table with a
plate of food (0)

A woman riding
a bike down a
street next to a
train (0.02)

A woman sitting
at a table with
a plate of food
(0.42)

A kitchen with
a sink, dish-
washer and a
window (0.41)

Ours A man riding
a motorbike on
a dirt mountain
road (0.37)

A woman is
blowing out
a candle on a
piece of cake
(0.91)

A man is riding
a bike next to a
train (0.15)

A lot of wooden
spoons on a
wooden table
(1)

A kitchen with
a sink, a stove
and a window
(0.31)

Figure 6: Uncurated captions generated through both Oscar and our method for five images in the
COCO-captions dataset. RefCompare scores are shown in parentheses.
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