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Abstract

Chen and He [2020] states that self-supervised pre-training can be performed
without contrastive learning (CL) (i.e., using negative pairs). Rather, the proposed
approach (SimSiam) merely maximizes the similarity between two transformations
of the same example. Interestingly, even though a global optimum for this task is
to collapse SimSiam into a constant function ignoring input, Chen and He [2020]
argues that, in practice, the training converges to non-global optima yielding useful
representations of the input. A key component is a stop-gradient (SG) operation
which, if not used, causes SimSiam to quickly collapse to the global optimum. In
this work, we investigate whether SG is genuinely indispensable or if satisfactory
outcomes can be achieved by better exploring the loss landscape. Namely, we
keep the loss landscape intact by not changing SimSiam’s architecture, and explore
it with SGHMC Chen et al. [2014], a sampling method known for efficiently
covering distant regions of the posterior distribution. Our empirical finding is that
the proposed samples of the posterior never reach collapsed points for properly
chosen step-sizes of SGHMC, indicating a large room for future optimization
methods other than SG that could avoid collapse. Although SGHMC turns out not
as effective as SG for improving accuracy in the downstream task, we believe our
results beg more investigation about the actual necessity of SG.

1 Introduction

In recent years, self-supervised representation (SSL) learning research has obtained breakthrough
results with contrastive learning (CL) methods based on instance discrimination Chen et al. [2020],
Wu et al. [2018], He et al. [2019], Jaiswal et al. [2020], enabling SOTA results in downstream
evaluation tasks, like Imagenet classification. Said methods discover a feature mapping ϕ : Rn → Rd

for an instance xi ∈ Rn, such that ϕ(Ta(xi)) is similar to ϕ(Tb(xi)), with Ta,b : Rn → Rn

representing an augmented view of xi, and Ta,b ∼ T (T ), where T (T ) defines a distribution over
transformations, with prior assumption that Ta,b preserve the overall semantics of xi. Such model is
often referred to as siamese, as it learns over 2 parallel projections with the same encoder. One of the
issues in obtaining ϕ is avoiding a collapsed representation, where ϕ(.) trivially learns a constant
mapping for all xi, thus obtaining a useless representation. To avoid this, these methods employ
negative pairs for learning ϕ(.): the loss pushes apart ϕ(Ta(xi)) and ϕ(Tb(xj)), for i ̸= j.

Surprisingly, Grill et al. [2020], Chen and He [2020] employed the same kind of siamese encoder
structure as CL methods like SimCLR, but using only positive samples for similarity. It was later
found by Chen and He [2020] that the fundamental components of these methods were a “prediction
head” network p : Rd → Rd mapping from the encoding obtained with one mapping (source) to
the encoding in the parallel mapping (target), with the similarity measurement performed between
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the output of p(.) and the target mapping. The other key aspect was using a stop-gradient (SG)
operation in the target encoding, thus stopping the gradient flux for the encoding of that respective
transformation. Precisely, for source and target encodings ϕ(Ta(xi)) = Za and ϕ(Tb(xi)) = Zb,
respectively, the similarity loss Lsim for i-th instance is computed as Lsim = −p(Za) · sg(Zb),
where sg marks the SG operation on the target, and both Za and Zb are l2 normalized.

Some recent works Tian et al. [2021], Zhang et al. [2022], Wen and Li [2022] have tried to explain how
collapse avoidance is possible in SimSiam. Specifically, Zhang et al. [2022] studied the decomposition
of the gradient of SimSiam loss without predictor and why removing it leads to collapse. The negative
of this gradient can be derived as −∂(−Zasg(Zb))

∂Za
= Zb. Then, this term can be decomposed into a

center vector oz and a residual vector rb, such that oz := E[Za] = E[Zb] (estimated by mean over
minibatch) and rb := Zb − oz . In short, the authors conjectured (with empirical demonstration) that
methods which introduce negative samples or, in the case of SimSiam, asymmetrical architecture,
add an extra gradient component that contains oz in a negative direction, thus decreasing the amount
of oz in Zb (de-centering effect). Collapse happens precisely when the ratio of oz in Zb, given
by ||oz||/||Zb||, approaches 1 (recall Zb is l2 normalized). So, a gradient that goes in the opposite
direction of oz would prevent it. Another even more recent work was Wen and Li [2022], which
provided an alternative explanation via a statistical analysis of the feature learning dynamics of the
prediction head. In short, their analysis identifies two effects that help to avoid collapse. 1) the
substitution effect where the prediction head decreases the learning speed of a strong feature in other
neurons after it is learned in a single neuron; 2) the acceleration effect where the strong features
accelerate the learning of weaker features in substituted neurons. Our work contrasts with Tian et al.
[2021], Zhang et al. [2022], Wen and Li [2022] in that we focus our study on the SG operation alone.

Our goal in this work is to isolate the effects of optimization, and for this we keep the predictor intact
to preserve the original loss landscape in SimSiam. The SG operation determines which minimum
SimSiam lands into, while introducing (removing) the predictor introduces (removes) particular
minimum regions. By modifying only SG, we can investigate its role as an optimization component.
Our method is to replace the regular optimization by posterior sampling, which can better characterize
the full loss landscape and circumvent potential optimization biases governing the optimization in
SimSiam without SG. We choose Stochastic Gradient Hamiltonian Monte-Carlo (SGHMC) Chen
et al. [2014] as a sampling method, which is optimal for complex tasks in high-dimensions, where
running standard HMC Brooks et al. [2011] is prohibitively expensive. We empirically reveal that
SGHMC is sufficient to prevent collapse, although it’s not effective for raising the accuracy in the
downstream task. We do not claim that SGHMC should replace SG, but, instead, that posterior
sampling being able to avoid collapse should encourage future investigation on whether SG is really
an essential component of SimSiam and related SSL methods. Our contributions are the folowing:

• We perform posterior sampling on SimSiam with SGHMC, which to the best of our knowl-
edge is the first attempt of posterior sampling over SSL methods similar to SimSiam,
adapting the similarity loss to be modeled as a likelihood, necessary for posterior sampling.

• We perform experiments under several sampling scenarios of SimSiam without SG training
on CIFAR-10, demonstrating that most proposed samples never reach collapsing regions.

2 Method

2.1 Stochastic Gradient Hamiltonian Monte-Carlo

HMC is a powerful MCMC sampling technique that models sampling from a target distribution P
(typically a posterior) as a system governed by Hamiltonian dynamics. For a model parameterized by
W , points in P (the parameter space) are modeled with a potential energy U(W ), and “velocities”
auxiliary variables Φ are modeled as kinetic energy. This simulation enables proposals of distant
states, with high acceptance probability after a Metropolis-Hastings correction. However, each
HMC samples requires computing gradients for the potential energy over the entire dataset, which is
prohibitively expensive for complex distributions. Chen et al. [2014] corrects convergence issues
introduced by the noise in stochastic gradients for HMC, enabling a cheaper sampling cost. SGHMC
follows the system of stochastic differential equations in Eq. 1:{

dW = M−1Φdt

dΦ =−∇U(W )dt−CM−1Φdt+N (0, 2(C − B̂)dt) +N (0, 2Bdt)
(1)
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where M is the “mass” matrix (often identity) in standard HMC modeling the correlations directions
of movement, B is the gradient noise, B̂ an arbitrary estimate for B (typically 0), C a friction
term for correcting the noise. Eq. 1 can be discretized by the leapfrog numerical integrator, with
Bdt → 0 as step sizes ϵ → 0, and C dominating the updates. Our implementation of SGHMC uses
the “kick-drift-kick” version of leapfrog, and is summarized in Algorithm 1 in the Appendix.

2.2 Adapting SimSiam to SGHMC

Our goal is to employ SGHMC to generate samples of the posterior defined over the parameters of
SimSiam (parameters for both the encoder and predictor networks). In typical Bayesian inference
methods, like supervised classification, the required likelihood is present in the loss via negative
log-likelihood. However, this isn’t the case here. Instead, SimSiam seeks to maximize the cosine
similarity by minimizing a negative similarity loss. Therefore, we need a method to model our
similarity loss as likelihood. Once modeled, we can then use it as the Potential energy U(W) for
SGHMC. Besides, we need to ensure that U(W) is always positive, as the notion of energy relies on
this assumption. Our solution is to enforce that the LSimSiam behaves as a negative of a probability,
that is, ranging from [-1,0] instead of [-1, 1], while still being computed as negative cosine similarity.
SimSiam’s symmetrized loss is defined as LSimSiam = −1/2 (Pa · sg (Zb) + Pb · sg (Za)), And to
enforce it always stays in [-1,0], we convert it to a slightly different version:

LSimSiamAbs = −1

2
(|Pa · sg (Zb) |+ |Pb · sg (Za) |) (2)

That is, we take the absolute value of each pair of cosine similarities, forcing each to lie in [0,1],
and hence the negative to lie in [-1, 0]. We have empirically observed that the cosine similarity
between two projections of SimSiam rarely stays negative (typically occurring in the initial stages
of the training). Which means that, in practice, LSimSiamAbs is almost the same as LSimSiam.
Thus, with LSimSiamAbs guaranteed to be in [−1, 0], we treat it as the negative of a probability
in a negative log-likelihood scenario. With this view, we can define our potential energy function
as U(W) = −log(−LSimSiamAbs). And it is clear our model of U(W) always stays positive.
Intuitively, regions with small U(W) behave much like in typical HMC sampling, where a small
potential energy is associated with small loss. Specifically, in our case, a small U(W) is associated
with a small LSimSiamAbs, with the global minimum U(W) = 0 occurring at LSimSiamAbs = −1.
For a classification scenario on some data D, U(W) = 0 would be result from −P (D|W) = −1,
which is analogous to our problem, as the classification loss minimizes the negative likelihood, while
our loss minimizes the negative similarity.

3 Results

Our experimental setup for this section is described as follows. For dataset, we use the 50000
training examples of CIFAR-10 for training SimSiam’s SSL task. The 10000 examples test set is
used for measuring k-NN-accuracy (with k-NN being trained also with the 50000 training set). The
transformations applied to input pairs are the same as described in Chen and He [2020]. We sample
minibatch sizes of 512. For architecture, we use a vanilla CNN architecture for SimSiam’s encoder,
while the prediction head is modeled by an MLP with 1 hidden layer (see appendix for more details).
For experiments without SG, we simply do not use sg(.) in Equation 2.

3.1 Main Results

In Figure 1 we depict k-NN accuracy (k=200) for 16 experiments of SGHMC without the SG
operation. Each experiment varies the number of leapfrogs m choosing from {1, 2, 3, 5} and step-size
ϵ choosing from {10−1, 10−2, 10−3, 10−4}. For all experiments, we used an identity matrix for the
“mass” covariance matrix M , and a friction covariance matrix C such that M−1Cϵ = 0.01I (a
setting adopted by the authors of SGHMC for classification with bayesian neural networks). We
observe here that all runs avoid collapse, except the ones using ϵ = 0.1 (an unrealistic high ϵ), whose
collapse can be inferred by the k-NN accuracy reaching 10 % (no better than random). Even then,
these few occurrences of collapse only happened after more than 10000 samples, indicating SGHMC
was still able to explore extensive areas of the posterior without finding collapsed points.
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(a) 1 leapfrog per sample (b) 2 leapfrogs per sample (c) 3 leapfrogs per sample (d) 5 leapfrogs per sample

Figure 1: k-NN Accuracy for each SimSiam parameter sample obtained with SGHMC, across 50 k
sample proposals, using varying number of leapfrogs: 1 (a), 2 (b), 3 (c), 5 (d), with each subfigure
depicting 4 plots for different step sizes.

3.2 SGHMC on pretrained SimSiam

(a) SimSiam w/o SG (b) SGHMC w/o SG

Figure 2: k-NN accuracy measurements
considering an already pretrained SimSiam
model for 800 epochs. In a) we train Sim-
Siam for additional epochs, but removing
SG, and for base learning rates η ∈ {3 ·
10−2, 3 · 10−3}. In b), we run SGHMC (3
leapfrogs) with SG removed, considering step-
size ϵ ∈ {10−1, 10−2, 10−3, 10−4, 10−5}.

In Figure 2, we consider an already pretrained Sim-
Siam model following the standard setting (original
hyperparameters and SG enabled), and measure how
performing SGHMC with SG removed affects the ac-
curacy, as well as how the standard SimSiam training
after disabling SG would perform. In Figure 2 a) we
can observe how the k-NN accuracy of SimSiam with
SG removed quickly collapses from the optimal pre-
trained state at 80 % accuracy, remaining stationary
around the usual initial state of 40 %, and then fully
collapsing to the completely random state of 10%.
The sharp decline from 80 % to 40 %, which took
place in the very first epoch, strongly suggests how
volatile the optimum loss region for high accuracy
obtained by standard SimSiam (it should be noted
that SimSiam uses warmup of 10 epochs, linearly
increasing from 0 to the base learning rate, i.e., for a
base learning rate η = 0.03, the learning rate in the
first epoch starts at 0.003). In Figure 2 b), our ex-
periments with SGHMC show the proposed samples
quickly decaying to the 40 % accuracy region, except
when using exceptionally small step-size ϵ = 10−6.
However, all step sizes ϵ were sufficient to resist total collapse for much longer than SimSiam with
SG removed in Figure 2 a) under all learning rates η, with the only collapse for SGHMC occurring
around 13k samples for the unusually high step-size ϵ = 10−2. For comparison, each epoch in
SimSiam contains around 100 gradient updates, while each step in 3-leapfrogs SGHMC contains 5
gradient updates. So, SimSiam without SG reached total collapse at around 4000 gradient updates (40
epochs), while SGHMC with the highest step-size did it only after around 75000 gradient updates.

4 Conclusion

SGHMC is known for its capacity of making high likelihood proposals that are far apart from each
other, thus making it one of the optimal sampling approaches for navigating extensive distances in the
loss landscape. In this work we have demonstrated that posterior sampling over SimSiam, performed
by SGHMC, shows a low propensity of collapse, under varying hyperparameters settings. Moreover,
we’ve shown that SimSiam with SG removed collapses much faster than any situation where SGHMC
is used. Our results provide insights about the possibility of moving around the loss landscapce by
simultaneously avoiding collapse and removing SG.
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A Supplementary Material

A.1 SGHMC algorithm

Our implementation of SGHMC algorithm uses the “kick-drift-kick” version of leapfrog integrator,
as described by Algorithm 1.

Algorithm 1 Single Step Sampling of Stochastic Gradient Hamiltonian Monte-Carlo

Require: Previous sample Wt, Size of Leapfrog Step ϵ, Number of Leapfrog Steps L, “Mass” matrix
M , Friction C

Ensure: New sample Wt+1

Φ0 ∼ N (0,M)
X0 = Wt

for l = 0, · · · , L− 1 do
Φ(

l+ 1
2

)
ϵ
= (1− ϵCM−1)Φlϵ − ϵ

2
∂U(W )
∂W

∣∣∣
W=Xlϵ

+N (0, 2Cϵ)

X(l+1)ϵ = Xlϵ + ϵM−1Φ(
l+ 1

2

)
ϵ

Φ(l+1)ϵ = (1− ϵCM−1)Φ(
l+ 1

2

)
ϵ
− ϵ

2
∂U(W )
∂W

∣∣∣
W=X(l+1)ϵ

+N (0, 2Cϵ)

end for
Wt+1 = Wt

A.2 Architecture details

SimSiam’s Encoder + projector:

• Conv1: 3x32, 3x3 kernel, stride 1, padding 1, ReLU activation.
• Conv2: 32x64, 3x3 kernel, stride 1, padding 1, ReLU activation.
• MaxPool1: 2x2 kernel, stride 2, output: 64x16x16.
• BatchNorm1: 64 channels.
• Conv3: 64x128, 3x3 kernel, stride 1, padding 1, ReLU activation.
• Conv4: 128x128, 3x3 kernel, stride 1, padding 1, ReLU activation.
• MaxPool2: 2x2 kernel, stride 2, output: 128x8x8.
• BatchNorm2: 128 channels.
• Conv5: 128x256, 3x3 kernel, stride 1, padding 1, ReLU activation.
• Conv6: 256x256, 3x3 kernel, stride 1, padding 1, ReLU activation.
• MaxPool3: 2x2 kernel, stride 2, output: 256x4x4.
• BatchNorm3: 256 channels.
• Fully Connected (Linear): 256x4x4 input, 128 output, ReLU activation.

SimSiam’s Predictor:

• Linear: 128x64.
• BatchNorm: 64 channels + ReLU activation.
• Linear: 64x128.
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A.3 Potential Energy Measurements for experiments in Figure 1

(a) 1 leapfrog per sample (b) 2 leapfrogs per sample

(c) 3 leapfrogs per sample (d) 5 leapfrogs per sample

Figure 3: Potential Energy Loss measurements for each SGHMC parameter sample in each experiment
of Figure 1: across 50 k sample proposals, using varying number of leapfrogs: 1 (a), 2 (b), 3 (c), 5
(d), with each subfigure depicting 4 plots for different step sizes.
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A.4 SGHMC Experiments With Different Hyperparameters

(a) ϵ = 0.001 (b) ϵ = 0.01

Figure 4: Additional SGHMC experiments varying the standard deviation of the velocities. In the
main results shown previously in Figure 1, we fixed the standard deviation at 1.0. Here, we choose it
from {0.1, 0.01}. Additionally, we try try different combinations of α = M−1Cϵ, a hyperparameter
modeling the relation of M ,C, ϵ. As mentioned in the main experiments, in Figure 4 we used
α = M−1Cϵ = 0.01I . Here, we choose α from {0.1, 0.01}. We fix leapfrog steps to 3 for all
experiments. a) uses learning rate ϵ = 0.001 while b) uses ϵ = 0.01. Results displayed for 2000
SGHMC samples. No evidence of collapse was found for any experiment, indicating that varying the
strength of the velocities deviation isn’t critical for the conclusions obtained in the paper.
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A.5 Energy Loss on Original SimSiam Training

(a) k-NN accuracy per epoch (b) Loss measurements

Figure 5: Training metrics for SimSiam adapted to our Energy loss, with variations in optimization
hyperparameters, including SG removal.

In Figure 5 we depict the metrics for 400 epochs of SimSiam’s training on CIFAR-10, with our
proposed CNN architecture and modified energy loss given by U(W) = −log(−LSimSiamAbs).
The results are for 5 optimization scenarios: 1) original training setting containing optimization
tricks described in Chen and He [2020] (stop-gradient, 10 epochs warmup, cosine decaying loss
after warmup, 0.9 momentum SGD); 2) without warmup epochs; 3) without momentum; 4) without
warmup epochs and cosine decay; 5) without stop-gradient. Figure 5 a) depicts k-NN-accuracy for
first 400 epochs and Figure 5 b) depicts the loss measurement over the first 14000 gradient updates.
The reason we show all this scenarios is to understand the role of each optimization component in the
performance (not just SG), in order to form a better comparisons with our SGHMC method, that lacks
all these optimization particularities. We conclude that the energy loss doesn’t affect the original
SimSiam results, so our observed experiments with SGHMC aren’t caused by this modification in the
loss when computing the gradients. Besides, the particular optimization hyperparameters, especially
momentum, of SimSiam play a important role in aiding SG to perform better in k-NN accuracy.
So, the absence of these hyperparameters in SGHMC could potentially be hindering SGHMC from
exploring regions of higher k-NN-accuracy in our experiments described in Figure 1.
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