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Abstract

Human visual recognition system shows astonishing capability of compressing1

visual information into a set of tokens containing rich representations without label2

supervision. One critical driving principle behind it is perceptual grouping [1, 2, 3].3

Despite being widely used in computer vision in the early 2010s, it remains a4

mystery whether perceptual grouping can be leveraged to derive a neural visual5

recognition backbone that generates as powerful representations. In this paper, we6

propose the Perceptual Group Tokenizer, a model that entirely relies on grouping7

operations to extract visual features and perform self-supervised representation8

learning, where a series of grouping operations are used to iteratively hypothe-9

size the context for pixels or superpixels to refine feature representations. We10

show that the proposed model can achieve competitive performance compared11

to state-of-the-art vision architectures, and inherits desirable properties including12

adaptive computation without re-training, and interpretability. Specifically, Percep-13

tual Group Tokenizer achieves 79.7% on ImageNet-1K self-supervised learning14

benchmark with linear probe, marking a new progress under this paradigm.15

1 Introduction16

Visual recognition mechanisms matter. The pursuit of advanced vision algorithms that encode17

an image to meaningful representations dates back to late 80s, with two paradigms marking the18

progress over the past 40 years: feature detection [4, 5, 6, 7] and perceptual grouping [8, 9, 10],19

where feature detection focuses on specific distinctive patterns, while perceptual grouping considers20

similarities among all pixels to produce a compact set of tokens as proxies for image representation.21

Ever since the surge of deep learning, feature detection has predominated the vision field and22

become the main rationale in representation learning backbone designs and made impressive strides23

[11, 12, 6, 13, 14, 15, 7]. The success of the former paradigm is, although striking, raising the24

question of whether perceptual grouping can also be used as the driving principle to construct a visual25

recognition model.26

Different from detecting and selecting distinctive features, perceptual grouping emphasizes on27

learning feature space where similarity of all pixels can be effectively measured [9, 10]. With such a28

feature space, semantically meaningful objects and regions can be easily discovered with a simple29

grouping algorithm and used as a compact set to represent an image [9, 10, 16]. This indicates that30

image understanding is essentially “pixel space tokenization”, and being able to produce generalizable31

feature representations is connected to whether correct contextual pixels are binded together [17, 18].32

The intriguing properties of perceptual grouping, including natural object discovery, deep connections33

with information theory and compression [19], and association with biological vision system [3]34

or cognitive science explanations [1], have led to a strong revive recently under deep learning35

frameworks [16, 20, 21, 22, 23]. However, these methods are either still focusing on small or toy36
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Figure 1: Perceptual Group Tokenizer takes in a sequence of patches (or pixels), generates high-
dimensional embedding vectors for all patches, then them passes through a series of grouping layers
to refine the embedding vectors as feature representations. Each grouping layer performs K rounds
of binding from input tokens to group tokens. To consider various grouping possibilities, multiple
grouping heads are adopted. Each group token provides a useful context for input tokens for feature
refinement. The final output of the model contains refined input token, group tokens, and assignments
between input tokens and groups tokens.

datasets [16, 24, 23], or used as a side add-on component [21] to strengthen the existing vision37

architectures for increased interpretability. Whether perceptual grouping can be used to build models38

and learn representations that are as informative and expressive as those learned by state-of-the-art39

vision architectures remains an open question.40

In this paper, we propose Perceptual Group Tokenizer, a model trained under self-supervised learning41

framework and building visual representation entirely relying on perceptual grouping operations.42

Given an image, the core of our model is to understand each pixel or patch through hypothesizing43

its contexts with grouping operations. Starting from given input patches, the grouping operation44

performs iterative binding process onto a set of randomly sampled group tokens to determine the45

affinity groups based on similarities. The group tokens are then used as hypothesized contexts to refine46

the feature representation for the image. We show that applying this simple principle can already47

produce expressive representations and works well on self-supervised large dataset pretraining.48

Compared to self attention, why can grouping operation work? Analyzing the rationale behind49

it, we build connections from grouping operation to self attention, showing that, if group tokens50

are treated as communication channels, self attention can potentially automatically emerge during51

learning processes as a special case, while the grouping operation can produce even richer interactions52

among tokens. Under this viewpoint, ViT [25] can be considered as a grouping backbone, with a53

fixed number of grouping slots depending on number of input tokens, and the binding is achieved54

through stacking more than one layer with non-shared weights. This provides one explanation on55

why grouping mechanism can be effective on visual representation learning and has the potential to56

be a promising competitive paradigm for vision architecture designs.57

The primary contribution of this work is proposing a new architecture derived purely by perceptual58

grouping that achieves competitive performance compared to other state-of-the-art architectures59

on self-supervised learning benchmarks, contributing to a new paradigm of developing vision60

architectures. We thoroughly analyze the design space of perceptual grouping backbones, show the61

capability of adaptive computation without re-training, and visualize the grouping process which62

produces semantically meaningful bindings among patch tokens.63

2 Models64

In this section, we introduce Perceptual Group Tokenizer (PGT), a visual recognition architecture65

entirely driven by perceptual grouping principles. We discuss the core operations for grouping66

in section 2.1 and the building blocks network architectures in section 2.2 in the main paper, and67

self-supervision loss and more discussion in section 4.1.2 and 4.1.3 in the supplementary material.68

2



2.1 Perceptual grouping69

We start with introducing notations for our method. Given an image x ∈ RH×W×C , we first reshape70

it as a sequence of small patches1. Each patch xp ∈ Rh×w×c has spatial shape h×w, where h� H71

and w � W , leading to N = HW
hw number of patches per image. To represent a patch, we embed72

it into a high-dimensional vector h ∈ Rd. The set of embedded tokens {hi}N is referred as input73

tokens in later parts, and used as inputs for the following grouping blocks.74

Feature refinement through hypothesizing contexts. One pixel does not have meanings without75

putting it into contexts. At a high level, image understanding or feature learning is equivalent to76

binding the correct contextual pixels at all locations. The core idea of our model is to generate77

many (e.g. over-complete w.r.t number of objects in the image) hypothesized contexts and use the78

hypothesized contexts as cues to refine the feature representation of each patch. This process is79

achieved through a grouping module. Given input tokens {hi}N , the grouping module starts from a80

set of random samples (referred as group tokens) from a Gaussian distribution, then performs binding81

process to aggregate information from input tokens to the group tokens, and ends up with a set of82

group tokens c∗ = {c∗j}Mj=1 representing hypothesized contexts among input tokens. The relation83

between hi and cj is soft assigment, indicating how likely an input token belongs to that context.84

Note that there are often various ways of generating groupings for an image, e.g. different semantics,85

colors, textures, etc., we propose the “multi-grouping operation” to hypothesize rich contexts for86

tokens. The overall model is shown in figure 1.87

Multi-grouping operation. The building block of our model is the multi-grouping operation G,88

which contains multiple heads to perform the binding process in parallel. This design encourages the89

model to consider multiple ways of generating groups under different projection spaces. Each head90

owns a separate Gaussian distribution with learnable means and variance, similar to [26, 16]. Starting91

from a set of randomly sampled initial group tokens c(0)HEAD ∼ p(µHEAD,σHEAD), the grouping operation92

uses doubly normalized attention weights to aggregate information from h, and the produced group93

tokens c(1)HEAD are used for the next round binding. The attention normalization and feature projection94

are performed in all heads separately.95

c
(1)
HEAD = G(c(0)HEAD,h; θ) (1)

· · ·
c∗HEAD = c

(K)
HEAD = G(c(K−1)

HEAD ,h; θ) (2)

where after K steps the final group tokens c∗ = c(K) is obtained, and θ is learnable parameters in G.96

The grouping operator is summarized in algorithm 1.97

Implicit differentiation. The iterative grouping process unrolls K steps per operation and leads to98

heavy burden in the training computation graph. Instead of explicitly backpropagating through the99

unrolled graph, we follow [24] and treat the multi-grouping process as a fixed point iteration per head.100

The gradient in the backpropagation is approximated using first-order Neumann series.101

2.2 Network architecture102

Similar to standard ViT, our model refines the hidden representation h using L model layers. We use103

hl to denote the representation after each layer, and explain the design in this section.104

Grouping layer. Each grouping layer takes in hl−1 as input, and uses the grouping operation in105

equation 1 to generate group tokens c∗HEAD = {c∗j,HEAD}Mj=1. To use the group tokens to provide106

context for each hl−1
i , we perform another attention operation to obtain the attention matrix (only107

normalized over group token axis) A ∈ RN×M representing the assignment from input tokens to108

group tokens, and aggregate the feature back to the input token space:109

hl
HEAD = A[c∗1,HEAD; c

∗
2,HEAD; ...; c

∗
M,HEAD] (3)

hl = Linear([hl
HEAD1

; ...hl
HEADH

]) (4)

hl = hl−1 + MLP(hl) (5)
1We use 4×4 patches as inputs in this work. Note that our method is generalizable to either pure pixels or

other forms of superpixels given a proper patch-to-vector embedding layer.
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Method Arch Param. Linear probe (top-1 acc)

SCLR [31] RN50W4 375 76.8
SwAV [32] RN50W2 93 77.3
BYOL [32] RN50W2 93 77.4
DINO [29] ViT-B/16 85 78.2
SwAV [32] RN50W5 586 78.5
BYOL [32] RN50W4 375 78.6
iBOT [33] ViT-B/16 85 79.5
BYOL [32] RN200W2 250 79.6

SCLRv2 [34] RN152w3+SK 794 79.8
DINO [29] ViT-B/8 85 80.1

BEiTv2 [35] ViT-B/16 85 80.1
Ours (PGT-B-256) PGT-B 70 79.3
Ours (PGT-B-384) PGT-B 70 79.4
Ours (PGT-B-512) PGT-B 70 79.6
Ours (PGT-B-768) PGT-B 70 79.7

Table 1: Comparison with strong baselines on ImageNet-1K under linear probe evaluation protocal.
PGT-X represents X number of group tokens per grouping layer in inference (same trained model
with 256 tokens is used). Our model achieves 79.7%, competitive with state-of-the-art vision
backbones, and outperforms ResNet architecrures.

This layer definition follows the standard ViT layer as close as possible, where features from each110

head are aggregated through concatenation and a linear layer transformation. Each token h is further111

refined using a follow up multi-layer perceptron.112

Grouping blocks. Similar to previous architecture designs [6, 27]. we define blocks for the model.113

One block contains multiple grouping layers that share the same hyperparameters setups, i.e. number114

of group tokens, group token dimensions. The full model contains three grouping blocks. This115

increases the flexibility when exploring model design spaces.116

See more detials in sections 4.1.2 and 4.1.3 in the supplementary material.117

3 Experiments118

We evaluate the representation learned by our model on standard benchmarks, specifically ImageNet-119

1K dataset. Summarized in the main paper in section 3.1. In the supplementary material, we also120

thoroughly explore and analyze the design space of perceptual group tokenizer in section 4.2.2, show121

the adaptive computation ability in section 4.2.3, demonstrate the generalization ability on semantic122

segmentation in section 4.2.4, and visualize the learned attention in section 4.2.5.123

3.1 Main results124

Setup. The widely-adopted standard benchmark for evaluating self-supervised learning methods125

is ImageNet ILSVRC-2012 (ImageNet-1K) [28]. Performance of models are measured by top-1126

classification accuracy. The pre-trained backbones are frozen, with a linear classifier trained on top.127

For fair comparison, we follow the standard data augmentation used in [29], with the same number of128

global views and local views. The model is optimized using AdamW [30] with learning rate 0.0005129

and 1024 batch size for 600 epochs, trained with TPUv5 for 21k core hrs (512 cores for 41 hrs).130

We use 4×4 patches as image tokens, which keeps as much details as possible while maintaining131

reasonable computation costs. For machines, we use TPUv5 to run experiments.132

The main results are summarized in table 3.1. We mainly compare with ResNet and ViT backbones,133

the two main stream vision architectures to show that perceptual grouping architecture can also134

achieve competitive results on the challenging ImageNet-1K benchmark. Although our model is135

trained with 256 group tokens, the model can use different numbers of group tokens in inference (more136

experiments in 4.2.2). We evalaute PGT with 256, 384, 512, and 768 number of group tokens and137

observe that with PGT-768 the model can achieve 79.7% top-1 accuracy, showing the self-supervised138

learned feature of PGT is as good as the ViT architecture.139
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4 Supplementary Material244

4.1 More about models245

4.1.1 Algorithm246

We provide the pseudo code for the perceptual grouping algorithm as below.247

Algorithm 1 Multi-grouping operation.
def multi_grouping(h_key, h_value, steps, mu, sigma, num_tokens, num_heads):
""" Input tensors:

h_key and h_value are projected multi-head tensors with shape [num_heads x N x d].
"""
# Initial M group tokens.
group_tokens = Normal(mean=mu, std=sigma, nsamples=num_tokens)
group_tokens = group_tokens.reshape(num_heads, num_tokens, d) #[num_heads x M x d]

# Binding process.
for step in range(steps):
# Implicit differentiation.
if step == steps - 1:
group_tokens = stop_gradient(group_tokens)

# Attention operation for group assignment.
attn_matrix = attention(group_tokens, h_key) #[num_heads x N x M]
attn_matrix /= attn_matrix.sum(-2, keep_dim=True)
h_updates = einsum("hij,hid->hjd", attn_matrix, h_value) #[num_heads x M x d]
group_tokens = gru_cell(h_updates, group_tokens)
# Grouped mlp/layernorm performs independent mlp/layernorm for each head.
group_tokens = grouped_mlp(grouped_layer_norm(group_tokens)) + group_tokens

return group_tokens

4.1.2 Self-supervision loss248

Following the student-teacher self-supervision loss [29, 36], we use a moving average of online249

network (student model) as the teacher model to perform representation learning. To summarize250

group tokens outputed from the final layer, we use one multi-head attention layer with a learnable251

token to attend to all group tokens. The produced single vector is treated as the feature representation252

for the image and is input to the loss function.253

4.1.3 Discussion254

…

Bind

Communication channels

Pairwise self attention Grouping operation

Figure 2: Operation comparison.

Our proposed model, perceptual group tokenizer, is free255

of self attention operation and relies purely on grouping256

operations. In this section, we link the grouping process257

to several techniques and discuss the rationale on why the258

model can be effective on representation learning.259

Group tokens as “communication channels”. The core260

of feature representation learning is how information is ex-261

changed among pixels. In perceptual grouping backbones,262

we can consider the set of group tokens as communication channels, where information from different263

input tokens are aggregated in various ways. Each group token represents a high-order channel that264

links input tokens with high affinity under certain projected space to exchange information among265

them. As a thought experiment, if each input token is solely assigned to a different group token266

(given enough group tokens), then the perceptual grouping layer is equivalent to one self attention267

layer (up to some engineering design difference). While self attention layers mainly rely on pairwise268

communications, grouping operation, hypothetically, can automatically learn and emerge both pair-269

wise and higher-order information exchange through the group token communication channels. This270

can also be linked to traditional factor graphs in probabilistic graphical models. Through the lens of271

that, grouping is forming factor nodes automatically through the learning processes. Under properly272

designed loss and grouping operation, it has the potential to be more effective if adopting a per-layer273

comparison between self attention and grouping operation.274

Efficiency. Due to the flexibility in customizing number of group tokens (controlled by initial275

number of samples), grouping operation does not require a strict O(N2) operation and is O(NM)276
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Descend Flat Ascend

Token size
[
576, 384, 192

] [
384, 384, 384

] [
192, 384, 576

]
Accuracy 62.0 63.1 63.4

Token shape
[
192, 128, 64

] [
128, 128, 128

] [
64, 128, 192

]
Accuracy 63.6 63.7 63.1

Table 2: Exploring the design choices for PGT. Token size: dimensions for group tokens in three
grouping blocks. Token shape: number of tokens for group tokens in three grouping blocks. Accuracy
measured on ImageNet-1K under linear probe protocal. Results indicate progressively large group
token dimensions with flat or descend number of tokens arrangements work the best.

on complexity. Furthermore, we show that even in inference time, number of group tokens can be277

adaptively customized, given an already trained model.278

4.2 More about experiments279

4.2.1 Main results280

Architecture details. In the experiments, we mainly evaluate two variants of PGT: the main model281

and a tiny version for exploring design choices. On the ImageNet-1K benchmark, we report the282

numbers of our main model. Three grouping blocks are used, with 10 grouping layers in each block.283

The dimension for input token is 384, with 256 group tokens per layer. The dimensions for group284

tokens are 98, 192, and 288 for the three blocks, respectively. There are 6 grouping heads used. For285

number of grouping iterations, we observe three rounds are enough. The MLP hidden size for each286

layer is 384 as well, i.e. MLP multiplication factor is 1. The final multihead attention layer uses a287

learnable token with 2048 dimensions to summarize all group tokens outputs from the model.288

4.2.2 Ablations289

To explore design choices of PGT, we adopt a tiny version with 3 blocks, 2 layer in each block (6290

layers in total), 256 hidden size for input tokens, and 3 number of grouping iterations. The learnable291

token in MAP head has 512 dimensions. There are around 10M parameters in a PGT-tiny model.292

Group token layouts. Given a fixed number of budget on group tokens, we explore three choices on293

how they should be arranged across grouping blocks and layers: descend, flat and ascend. Intuitively,294

more group tokens will have higher capacity of capturing smaller parts and detailed visual features,295

while less group tokens are more prone to carry global information. As shown in table 4.2.2 bottom296

row, flat or descend number of group tokens performs the best. In practice, we find that using flat297

(same number of group tokens in three grouping blocks) version has better stability in training.298

Group token dimension shapes. Similar to token number arrangements, we explore how group299

token dimensions should be set. Under three choices, progressively increasing the dimension size in300

the later layers performs the best, shown in first row of table 4.2.2. This also aligns with the intuition301

that later layers contain more information and requires higher capacity to represent groups.302

Multi-grouping vs single grouping. We further tests whether multi-head grouping helps improve303

performance. As a fair comparison, we use 6 heads and 128 group tokens per head for multi-grouping304

model, and 1 head with 6×128 group tokens for the single grouping model. We find that adopting305

multi-head design can improve the performance from 62.2% to 66.3%, a 4.1% accuracy boosts,306

showing that having multiple heads indeed helps with representation learning.307

Grouping distribution entropy. Will grouping process collapse to some specific group token308

during training? We visualize the entropy of marginal distribution over tokens p(c) and conditional309

distribution p(c|x) in figure 3 and 4. Interestingly, we observe that conditional probability, i.e.310

the assignment to group tokens, tends to become more certain during training, while the marginal311

distribution remains having descend entropy. This indicates that collapse does not happen in the312

self-supervised training process.313
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Figure 3: The entropy curves of marginal distribution p(c) grouping across different layers.

Figure 4: The entropy curves of conditional distribution p(c|x) grouping across different layers.

4.2.3 Out-of-distribution adaptive computation314

One surprising and powerful ability of PGT is adaptive computation. Because the initial group tokens315

are sampled from a Gaussian distribution, the number of group tokens can be flexibly customized316

in inference time given a trained model. This leads to an out-of-distribution adaptive computation317

ability customizable according to needs, e.g. computation or tasks. We mainly test PGT-Tiny with a318

grid evaluation of different number of group tokens used in training and inference. PGT-B model319

with 256 group tokens is also tested under different inference token budgets. Results are summarized320

in table 4.2.3. Our model shows strong out-of-distribution generalizability, indicated by the results.321

Surprisingly, with more number of tokens, the performance can be increased. When using the larger322

main model PGT-B to perform adaptive inference, with only 12.5% of the number of group tokens323

compared to training, the performance can still be maintained at 71.18% with only a 8% drop on324

top-1 accuracy.325

4.2.4 Semantic segmentation on ADE20k326

To evaluate the generalizability of pretrained feature produced by PGT, we test the transfer perfor-327

mance of semantic segmentation with ADE20k. Following the standard setup, we finetune our model328

with the same data augmentation for 128 epoch. The baseline method uses DINO + ViT-B/16, and329

is fine-tuned with a SETR-PUP segmentation head [37]. For our model, we only add one linear330

classification layer after the pre-trained PGT for fine-tuning. To adapt to more objects and complex331

scenes in the segmentation datasets, we use 1024 group tokens for inference, benefiting from the332

adaptive computation ability of our model. We find that our model (PGT-B + Linear) can obtain333

44.5% on mean IoU while the baseline (ViT-B/16 + SETR-PUP) achieves 44.1% [38], leading to a334

0.4% improvements.335
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tr/inf 16 32 64 128 256 384

PGT-Ti-16 57.44 (×1 ) 58.28 (×2) 58.49 (×4) 58.47 (×8) 58.48(×16 ) 58.39 (×24)
PGT-Ti-32 57.33 (× 1

2 ) 59.86 (×1) 60.82 (×2) 61.01 (×4) 60.99 (×8) 60.89 (×12)
PGT-Ti-64 53.02 (× 1

4 ) 59.20 (× 1
2 ) 61.68 (×1) 62.55 (×2) 62.91 (×4) 62.92 (×6)

PGT-Ti-128 44.86 (× 1
8 ) 56.63 (× 1

4 ) 61.80 (× 1
2 ) 63.88 (×1) 64.66 (×2) 64.82 (×3)

PGT-Ti-256 27.20 (× 1
16 ) 47.35 (× 1

8 ) 58.80 (× 1
4 ) 63.32 (× 1

2 ) 65.13 (×1) 65.52 (× 3
2 )

PGT-Ti-384 26.09 (× 1
24 ) 43.02 (× 1

12 ) 55.35 (× 1
6 ) 61.67 (× 1

3 ) 64.57 (× 2
3 ) 65.50 (×1)

PGT-B-256 58.18 (× 1
16 ) 71.18 (× 1

8 ) 76.51 (× 1
4 ) 78.39 (× 1

2 ) 79.16 (×1) 79.47 (× 3
2 )

Table 3: Out-of-distribution adaptive computation by selecting different numbers of initially sampled
tokens. Row: number of tokens used for training. Column: number of tokens used for inference. Top-
1 accuracy is reported under linear evaluation protocol using ImageNet-1K. The reported performance
of first six rows is obtained using a tiny version of PGT, and last row is the main model. Number of
group tokens is the same for underlined numbers in training and inference. Bold numbers are the
best results.

4.2.5 Grouping visualization336

We further visualize the generated attention maps during grouping processes to inspect the behaviour337

of grouping operations. In figure 5, the patch to group token attention maps across all grouping338

iterations are shown. We find that even the first iteration step can sometimes generate meaningful339

attention maps. With more iterations, attention maps are more focused on meaningful regions. Figure340

6 shows attention maps across different layers of PGT-B. We observe that early layers tend to capture341

fine-grained elements, while the last layer focuses on semantic information. Multiple grouping heads342

are indeed capturing various ways of grouping image features, for example, in the first image, first343

group focuses on color and lights, second head relies on spatial cues, while the last one potentially344

captures textures.345

Grouping iterations

Figure 5: Attention maps produced along grouping processes in the last layer of PGT.

4.3 Conclusion346

In this paper, we propose Perceptual Group Tokenizer (PGT), a new visual recognition architecture347

entirely built through perceptual grouping principles. The proposed model shows strong performance348

on self-supervised learning benchmark ImageNet-1K with linear probe evaluation, and has desirable349

properties such as adaptive computation and interpretability in each operation. This work potentially350

opens a new paradigm for designing visual recognition backbones and hopes to inspire more research351

progress along this direction. One limitation of the proposed model is its relatively expensive352

computation cost due to iterative binding processes. This can be potentially addressed by other353

grouping operations, for example grouping operations with closed-form solutions. We leave this to354

future works.355
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Grouping head 1 Grouping head 2 Grouping head 3

L0

L29

L1

L29

L2

L29

Figure 6: Visualization of attention maps of each group tokens across layers and grouping head. L
indicates layer indices. Five group tokens for each grouping head. Smaller images are for early layers,
arranged as five group tokens per grouping head. Zoom in for better viewing. Large images are for
the last layer.
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