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Abstract

Self-supervised methods such as SimCLR and MoCo are able to reach quality on
par with supervised approaches, by learning to remain invariant to applied data
augmentations. However, this invariance may be harmful to solving downstream
tasks that depend on traits affected by augmentations used during pretraining,
such as color. We propose to foster sensitivity to such characteristics in the rep-
resentation space by supplementing the projector network, a common component
of self-supervised architectures, with information about augmentations applied
to images. In order for the projector to take advantage of this auxiliary condi-
tioning when solving the SSL task, the feature extractor learns to preserve the
augmentation information in its representations. Our approach, coined Conditional
Augmentation-aware Self-supervised Learning (CASSLE), is directly applicable to
typical joint-embedding SSL methods regardless of their objective functions. We
conduct a series of experiments, which show that CASSLE improves over various
SSL methods, reaching state-of-the-art performance in multiple downstream tasks.2

1 Introduction
Contrastive methods of learning representations that remain invariant when subjected to various data
augmentations [6, 3, 11] have achieved impressive results that have greatly diminished the disparity
with representations learned in a supervised way [1]. Nevertheless, contrastive methods may perform
poorly when transferred to a downstream task that relies on features affected by augmentation [12].
For example, color jittering can result in a representation space invariant to color shifts, which would
be detrimental to the task of flower classification (see Figure 1).

In this work, we propose a new method called Conditional Augmentation-aware Self-supervised
Learning (CASSLE) that mitigates augmentation invariance of representation without neither major
changes in network architecture or modifications to the self-supervised training objective. We
propose to use the augmentation information during the SSL training as additional conditioning for
the projector network. This encourages the feature extractor network to retain information about
augmented image features in its representation. CASSLE can be applied to any joint-embedding
SSL method regardless of its objective, provided that it utilizes a projector network [4, 3, 11, 13, 5].
The outcome is a general-purpose, augmentation-aware encoder that can be directly used for any
downstream task. CASSLE presents improved results in comparison to other augmentation-aware SSL
methods, improving transferability to downstream tasks where invariance of the model representation
for specific data changes could be harmful.

∗Corresponding author: marcin.przewiezlikowski@doctoral.uj.edu.pl
2We share our codebase at https://github.com/gmum/CASSLE.
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Figure 1: Contrastive loss minimization draws the representations of augmented image views
closer in the latent space of the projector (green). This may also reduce the distance between their
feature extractor representations (blue). Thus, the representation becomes invariant to augmentation-
induced perturbations, which may hinder the performance on downstream tasks. In contrast, the
self-supervised objective of CASSLE draws together joint representations of images and their
augmentations in the projector space. By conditioning the projector with augmentation information,
image representations retain more sensitivity to perturbations in the feature extractor space. This
proves to be beneficial when solving downstream tasks.

2 Method
2.1 Preliminaries
A typical contrastive framework used in self-supervised learning consists of an augmentation function
tω and two networks: feature extractor f and projector π. Let v1 = tω1(x),v2 = tω2(x) be two
augmentations of a sample x ∼ X parameterized by ω1, ω2 ∼ Ω. The feature extractor maps
them into the embedding space, which is the representation used in downstream tasks. To make the
representation invariant to data augmentations, e1 = f(v1) is forced to be similar to e2 = f(v2).
However, instead of imposing similarity constraints directly on the embedding space of f , a projector
π transforms the embeddings into target space where the contrastive loss L is applied.

Minimizing L(π(e1), π(e2)) directly leads to reducing the distance between embeddings π(e1) and
π(e2). However, L still indirectly encourages the intermediate network representations (including
the output of the feature extractor f ) to also conform to the contrastive objective to some extent.
As a result, the feature extractor tends to erase the information about augmentation from its output
representation. This behavior may however be detrimental for certain downstream tasks (see Figures
1 and 4), which rely on features affected by augmentations. For instance, learning invariance to color
jittering through standard contrastive methods may lead to degraded performance on the downstream
task of flower recognition, which is not a color-invariant task [9, 12].

2.2 CASSLE
To overcome the above limitations of SSL, we facilitate the feature extractor to encode the information
about augmentations in its output representation. In consequence, the obtained representation will be
more informative for downstream tasks which depend on features modified by augmentations.

CASSLE achieves this goal by conditioning the projector π on the parameters of augmentations used
to perturb the input image. Specifically, we modify π so that apart from embedding e, it also receives
augmentation information ω and projects their joint representation into the space where the objective
L is imposed. We do not alter the L itself; instead, training relies on minimizing the contrastive loss
L between π(e1|ω1) and π(e2|ω2). Thus, π learns to draw e1 and e2 together in its representation
space on condition of ω1 and ω2. We construct augmentation information ω by concatenating vectors
ωaug describing the parameters of each augmentation type [8]. We condition the projector π with
ω by processing ω with a 6-layer Multilayer Perceptron and concatenating the output to the image
embeddings e before feeding them to π. We visualize the architecture of CASSLE in Figure 2.

We provide a rationale for why CASSLE preserves information about augmented features in the
representation space. Let us examine the impact of including augmentation information vectors ω on
the process of solving the contrastive pretext task by CASSLE. Since ω does not carry any information
about source images x, its potential usefulness during pretraining could only be explained by
providing knowledge of transformations tω that had been applied to x to form views v. Furthermore,
for π to act upon the knowledge of ω, feature extractor representation e = f(v) must preserve
information about features of x modified by tω .
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Figure 2: Overview of CASSLE. We extend the typical self-supervised learning approaches by
incorporating the information of augmentations applied to images into the projector network. In
CASSLE, the SSL objective is thus imposed on joint representations of images and the augmentations
that had been applied to them. This way, CASSLE enables the feature extractor to be more aware of
augmentations than the methods that do not condition the projector network.
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Figure 3: Similarities of CASSLE projector rep-
resentations when conditioned with augmentation
information from either their respective images
(green) or randomly sampled (red). Solid lines de-
note the mean values of similarities. The CASSLE
projector relies on correct augmentation informa-
tion for drawing positive image pairs together.

To demonstrate that ω is indeed meaningful
for solving the contrastive objective by our ap-
proach, we measure similarities of augmented
image views in the representation space of the
CASSLE projector in two scenarios:

1. representations of both images are con-
structed using true information about aug-
mentations that had been applied to them.

2. representation of one of the images is con-
structed by supplementing π with falsified
augmentation information.

It is evident from Figure 3 that the similarity of
representations decreases when false augmenta-
tion parameters are supplied to the projector.

In CASSLE, knowledge of information about the applied augmentations (ω) is useful for matching
pairs feature extractor representations of augmented image views (e). This in turn implies that e
indeed preserves information pertaining to data features altered by augmentation.

CASSLE can be applied to a variety of joint-embedding SSL methods, as the only practical mod-
ification it makes is changing the projector network to utilize the additional input ω, describing
the augmentations. We do not modify any other aspects of the self-supervised approaches, such as
objective functions, which is appealing from a practical perspective. Last but not least, the architecture
of the feature extractor in CASSLE is not affected by the introduced augmentation conditioning, as
we only modify the input to the projector, which is discarded after the pretraining. Just like in vanilla
SSL techniques, the feature extractor can be directly used in downstream tasks.

3 Experiments
3.1 Linear evaluation on downstream tasks

We begin the experimental analysis by addressing the most fundamental question – how does CASSLE
impact the ability of models to generalize? In order to answer it, we evaluate the performance of
pretrained networks on the downstream tasks of classification on a wide array of datasets. We follow
the linear evaluation protocol [7, 3, 8], and evaluate multiple self-supervised methods extended with
CASSLE, as well as other recently proposed extensions which increase sensitivity to augmentations [8,
2]. We find that CASSLE generally achieves the best downstream results in the vast majority of cases.

3.2 Analysis of representations formed by CASSLE
We also investigate the awareness of augmentation-induced data perturbations in the intermediate and
final representations of pretrained networks. As a proxy metric for measuring this, we report the mean
InfoNCE loss [10, 3] values under different augmentation types at subsequent stages of ResNet-50
and projectors of MoCo-v2, AugSelf [8] and CASSLE in Figure 4. Representations of CASSLE
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Table 1: Linear evaluation on downstream classification and regression tasks. CASSLE consistently
improves representations formed by vanilla SSL approaches and performs better or comparably to
other techniques of increasing sensitivity to augmentations [12, 8, 2].

Method C10 C100 Food MIT Pets Flowers Caltech Cars FGVCA DTD SUN CUB 300W

SimCLR [3]

Vanilla 81.80 61.40 56.59† 61.26† 69.10 81.58† 75.95† 31.20† 38.68† 64.99† 46.37† 28.87† 88.47†

AugSelf [8]† 84.30 63.47 60.76 63.43 71.86 86.59 79.88 36.56 42.90 66.59 48.84 34.46 88.79
AI [2] 83.90 63.10 – – 69.50 68.30 74.20 – – 53.70 – 38.60 88.00
CASSLE 85.61 64.09 61.00 63.58 71.43 85.98 80.62 37.97 42.26 67.07 49.42 33.91 89.05

MoCo-v2 [6, 4]

Vanilla 84.60 61.60 59.67 61.64 70.08 82.43 77.25 33.86 41.21 64.47 46.50 32.20 88.77†

AugSelf [8] 85.26 63.90 60.78 63.36 73.46 85.70 78.93 37.35 39.47 66.22 48.52 37.00 89.49†

AI [2] 81.30 64.60 – – 74.00 81.30 78.90 – – 68.80 – 41.40 90.00
CASSLE 86.32 65.29 61.93 63.86 72.86 86.51 79.63 38.82 42.03 66.54 49.25 36.22 88.93

feature extractor are on average more difficult to match together than those of vanilla MoCo-v2
and AugSelf [8]. This indicates that in CASSLE, the task of augmentation invariance is solved to a
larger degree by the projector, and to a smaller degree by the feature extractor, allowing it to be more
augmentation-sensitive. As shown in Section 3.1, this sensitivity helps the CASSLE feature extractor
achieve similar or better performance than its counterparts when transferred to downstream tasks.
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Figure 4: A comparison of InfoNCE loss measured on different kinds of augmentations at subsequent
stages of the ResNet-50 and projectors pretrained by vanilla, AugSelf [8] and CASSLE variants of
MoCo-v2. Feature extractor representation of CASSLE yields higher InfoNCE values which suggests
that it is more susceptible to augmentations.

4 Conclusion
In this paper, we propose a novel method for augmentation-aware self-supervised learning that
retains information about data augmentations in the representation space. To accomplish this, we
introduce the concept of the conditioned projector, which receives augmentation information while
processing the representation vector. Our solution necessitates only small architectural changes and no
additional auxiliary loss components. Therefore, the training concentrates on contrastive loss, which
enhances overall performance. We show that our solution improves on the downstream performance
of vanilla and augmentation-aware SSL techniques. Moreover, it obtains representations more
sensitive to augmentations than the baseline methods. Overall, our method offers a straightforward
and efficient approach that can be directly applied to a variety of contrastive methods, leading to
retaining information about data augmentations in their representation space and improving their
quality.
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