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Abstract

Learning useful data representations without requiring labels is a cornerstone of
modern deep learning. Self-supervised learning methods, particularly contrastive
learning (CL), have proven successful by leveraging data augmentations to define
positive pairs. This success has prompted a number of theoretical studies to better
understand CL and investigate theoretical bounds for downstream linear probing
tasks. This work is concerned with the temporal contrastive learning (TCL) setting
where the sequential structure of the data is used instead to define positive pairs,
which is more commonly used in RL and robotics contexts. In this paper, we
adapt recent work on Spectral CL to formulate Spectral Temporal Contrastive
Learning (STCL). We discuss a population loss based on a state graph derived from
a time-homogeneous reversible Markov chain with uniform stationary distribution.
The STCL loss enables to connect the linear probing performance to the spectral
properties of the graph, and can be estimated by considering previously observed
data sequences as an ensemble of MCMC chains.

1 Introduction

In recent years, Self-Supervised Learning (SSL) has gained popularity in fields with a wealth of
unlabeled data such as computer vision and natural language processing. SSL has proven empirically
successful: linear probing of ImageNet representations learned by both contrastive and non-contrastive
SSL methods has shown surprising performance, being almost on par with supervised models [Bardes
et al., 2021]. This success has prompted some authors to investigate SSL objectives from a theoretical
perspective. Of particular interest to us is a recent work by [HaoChen et al., 2021] which formulates
a learning objective based on a data augmentation graph and applies spectral graph theory tools to
study optimal representations and derive error bounds for linear probing.

While data augmentation is perhaps the most common way of defining positive and negative pairs
in a contrastive setting, potentially any known structure over the data points can be leveraged
for contrastive learning. In particular, temporal contrastive learning (TCL) relies on the temporal
structure of the data: data points that are close in time in observed sequences are treated as positives.
Representation learning is usually achieved over a set of previously observed sequences. This
paradigm finds application for representation learning for videos [Dave et al., 2022], reinforcement
learning (RL) [Erraqabi et al., 2022], navigation [Yang et al., 2020, Morin et al., 2023], and potentially
any other setting where sequential data is available. Observe that we are interested in learning an
embedding for each observation, as opposed to learning a single embedding for the entire sequence
of observations. This work aims to adapt the theoretical findings of HaoChen et al. [2021] to the
temporal setting. Our main contributions are as follows:

1. We derive a TCL objective, which we dub Spectral Temporal Contrastive Learning (STCL);
2. STCL is based on a state graph which is itself derived from a time-homogenous reversible

Markov Chain;
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3. Under a uniform stationary distribution assumption, the STCL minimizers can be directly
characterized in terms of the eigenvectors of the state graph Laplacian, which grants access
to additional tools to bound the linear probe error.

2 Background

Self-Supervised Learning. Given an input data matrix X , self-supervised learning (SSL) can
be summarized as learning a “useful" data representation Z in the absence of clearly defined labels,
often using a deep network. In practice, usefulness is subsequently measured by using Z in some
supervised downstream task to predict some labels y using a linear model. This evaluation procedure
is known as linear probing and ensures that relevant information (i.e., y) can be recovered from Z
using a low capacity model. Naturally, y cannot be used while fitting Z.

Theoretical Works on Contrastive Learning. Arora et al. [2019] provides guarantees on a linear
classification downstream task for a representation, Z learned by contrastive learning. One of the
important assumptions of this work is that the positive pairs have the same conditional distribution,
which basically translates to the positive pairs of augmentations being conditionally independent
given the class label of the downstream task. There are some additional works Lee et al. [2020]
in this aspect that focus solely on reconstruction-based methods, where learning Z happens by
reconstructing the current input X in a lower dimensional space. In such methods, the authors
assume conditional independence with respect to latent variables, for example, when we want to
classify scenery like forests, seas, or deserts from images, we can use the background color as a
latent variable. More interestingly, they weaken this assumption and provide bounds for approximate
conditional independence( Lee et al. [2020], Theorem 4.2). Recently, Tosh et al. [2020] finds
guarantees for linear probing by assuming there exists a hidden variable such that the positive pairs
are conditionally independent given that hidden variable.

Of particular interest to our paper is the recent trend of analyzing contrastive learning through the
lens of spectral graph theory [HaoChen et al., 2021, Balestriero and LeCun, 2022]. A natural way
of manipulating positive relationships over a dataset is to treat them as edges in a graph. Let G be a
graph with the rows of X (data points) as vertices and where edges represent a positive relationship.

HaoChen et al. [2021] leverages the graph framework to propose a Spectral Contrastive Learning
objective with provable guarantees for a downstream classification task. They first introduce the
notion of population augmentation graph where X in fact consists of all possible data points and
their augmented views 1. They then formalize the following intuition: it is substantially easier to go
from one image to the other using augmentations if both images belong to the same class according to
the downstream labels y. This implies that the different subgraphs in G corresponding to the different
classes in y will have strong intra-connectivity but weak inter-connectivity, which in turn ensures
that some eigenvectors of the Laplacian of G will align with the class structure [Ng et al., 2001].

The authors then introduce their SSL objective and show that any minimizer Z∗ will correspond
to the bottom eigenvectors of the Laplacian of G , up to a left scaling transform and a right linear
transform. They then derive a bound on the linear probe error in the population setting that essentially
depends on how well the classes y turn out to be clustered in G (Theorem 3.8). They further consider
additional finite-sample generalization bounds.

The Graph Laplacian in RL. A number of papers formulate a state graph similar to ours and rely
on some elements of spectral graph theory to design learning objectives in the context of RL Machado
et al. [2017], Erraqabi et al. [2022]. LapRep [Wu et al., 2018] is particularly relevant to our work,
as it formulates a similar state graph based on a Markov chain and derives a contrastive learning
objective using the classical graph drawing objective of [Koren, 2003] as a starting point, which
should also be minimized by the Laplacian eigenvectors. Our final objective differs substantially
from the LapRep one as we rely on the matrix factorization perspective of [HaoChen et al., 2021] to
derive both the positive and the negative terms in the contrastive loss, while the LapRep negative
term is obtained by relaxing the original orthogonality constraint of graph drawing. Nevertheless, the
LapRep method would be an interesting benchmark in future empirical comparisons of STCL.

1They consider an exponentially large, but finite data space, e.g., all vectors in a subset of Rd with finite
precision representations.
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3 Spectral Temporal Contrastive Learning

This section will adapt the theory of HaoChen et al. [2021] to the temporal setting and derive the
Spectral Temporal Contrastive Loss (STCL). We will begin by defining a Markov chain and an
associated state graph G in Subsection 3.1. Using this state graph as a temporal analog of the data
augmentation graph, we will introduce the population matrix factorization loss from HaoChen et al.
[2021] in Subsection 3.2 and characterize its minimizers in terms of the eigenvectors of the normalized
graph Laplacian. Finally, Subsection 3.3 shows how a contrastive loss can estimate the population
loss without observing G using samples from the Markov Chain.

3.1 Markov Chain & State Graph Definitions

Consider a time-homogeneous Markov chain over discrete finite states S = {i}Ni=1 with transition
probabilities qij and some associated observations xi ∈ X . We further assume a unique stationary
distribution π and let ρij := πiqij . We will now build a weighted state graph G under the assumption
that the chain is reversible: ρij = ρji. Using S as vertices we define an adjacency matrix A such
that Aij = ρij . The reversibility property ensures that A is symmetric. Moreover, if the first state in
the chain is distributed according to π, then ρij can also be interpreted as a joint distribution over
transitions, with π acting as a marginal over states and q as a conditional. Computing the elements of
the diagonal degree matrix D, therefore, corresponds to marginalizing states, i.e.

Dii =
∑
j

ρij = πi =⇒ D = diag(π). (1)

Equipped with the matrix D, we can define the normalized adjacency matrix as Ā = D− 1
2AD− 1
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and the normalized Laplacian as L̄ = I − Ā. Observe that Ā and L̄ share the same eigenvectors, and
if λ is an eigenvalue of Ā then 1− λ is an eigenvalue of L̄. This fact will allow to interchangeably
use the top eigenvectors of Ā or the bottom eigenvectors L̄ in theoretical arguments.

3.2 STCL in the Population Setting

Population Objective. We consider the problem of learning vertex Euclidean representations
from the high dimensional observations X using a deep encoder f : X → Rk. In this section, we
assume knowledge of G and Ā. We further assume in the population setting that we have exactly
one observation per state, which allows to build a population representation matrix Z ∈ RN×k by
stacking f(xi) as rows. To learn our feature extractor f , we will adapt the objective from HaoChen
et al. [2021] to our Markov chain setting. Consider the low-rank matrix factorization objective

Lmf (Z) = ∥Ā−D
1
2ZZ⊤D

1
2⊤∥2F . (2)

and the minimizers Z∗ = argminZ∈RN×k Lmf (Z). The rescaling by D
1
2 effectively means that we

consider rescaled representations
√
πif(xi) in the learning objective. As we will see, this rescaling

will prove critical in the derivation of a sampling-based learning objective (Section 3.3), but will
complicate the analysis of Z∗.

The matrix factorization approach allows us to characterize the minimizers Z∗ in terms of the
eigenvectors of Ā, which in turn provides rich information on the geometry of G. Indeed, the
Eckart–Young–Mirsky Theorem [Eckart and Young, 1936] ensures that any rank k minimizer Z∗

of Equation 2 can be expressed as Z∗ = D− 1
2UkΛ

1
2

kQ where, Uk ∈ RN×k denotes the top k

eigenvectors of Ā, Λ ∈ Rk×k is the truncated diagonal matrix of the top eigenvalues, and Q ∈ Rk×k

is an orthogonal matrix. Uk can be equivalently understood as the bottom eigenvectors of L̄.

Linear Probing. Following the SSL setting, we then freeze the representations Z and perform
linear probing by minimizing a regression loss with respect to some target vector y ∈ RN :

C(w) = min
w∈Rk

∥y −Z∗w∥2

= min
w∈Rk

∥y −D− 1
2Ukw∥2

where the second line results from the fact that both Λ
1
2

k and Q are invertible, which allows to freely
reparametrize w. Linear probing can in principle reach zero error whenever y ∈ span(D− 1

2Uk).
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The matrix D− 1
2 prevents a direct connection to the spectral properties of G, since the normalized

adjacency matrix eigenvectors Uk do not directly span the space of interest. In HaoChen et al. [2021],
the authors overcome this limitation by considering a classification task. The weights in D− 1

2 are
positive and only act as temperature parameters in the softmax used by the classifier probe, with no
impact on the logit rankings. For the purpose of training a linear classifier, the authors claim that the
representation D− 1

2Uk is as useful as Uk.

Uniform Stationary Distribution. In the regression setting, D− 1
2 matters more. Observe that in

the specific case where π is uniform over S, D− 1
2 effectively acts as a scalar scaling of all dimensions

by 1√
N

. In this case, span(Uk) properly describes the set of linear tasks achievable with the learned
representation and allows to directly apply spectral graph theory. We further observe that under the
uniform π assumption, Ā = 1

NA and the normalization step does not affect the eigenvectors of the
original adjacency and Laplacian matrices.

Tasks. Describing the set of ideal linear tasks as y ∈ span(Uk) is an appealing proposition since
Uk is known to provide a Euclidean embedding that captures the geometry of G [Spielman, 2019].
To illustrate this point, we show the top eigenvectors of Ā for a ring graph in Figure 1 and a 2D grid
graph in Figure 2. Pairs of state with high transition probabilities are mapped closely in terms of
Euclidean distance. As we will further explore in our experiments in Appendix 5.1, this property can
be leveraged for state/pose prediction tasks that strongly correlate with the underlying state graph
connectivity. Uk is also known to encode the cluster structure of the graph when such clusters exist
[Ng et al., 2001]. In navigation tasks, this fact can be exploited to predict different "rooms" in the
environment and learn RL options [Machado et al., 2017].

3.3 STCL Loss Estimator

Contrastive loss. In practice, we do not have access to the graph G or all the states in S to train f .
However, it turns out that Lmf (Equation 2) can be expanded as

Lmf (Z) ∝ −2
∑
ij

ρijf(xi)
⊤f(xj) +

∑
ij

πiπj(f(xi)
⊤f(xj)

2 (3)

L(f) := −2 E
(i,j)∼ρ

[f(xi)
⊤f(xj)] + E

i∼π, j∼π
[(f(xi)

⊤f(xj))
2]. (4)

We can see a contrastive loss emerging from Equation 4: the first term pushes positive pairs sampled
from the transition joint ρ to be aligned. The second one samples “negative pairs" independently
from the stationary distribution π and is minimized whenever their representations are orthogonal.

Sampling. We cannot directly sample from π and ρ to estimate L. However, it is common to
assume in TCL settings that we have access to a previously collected set of sequences {(xm

t )Tt=1}Mm=1
which we can use to train f . Examples of this setting includes exploring an environment with a
robot [Morin et al., 2023] or pretraining on human videos for offline RL [Ma et al., 2022].

We consider the observed sequences as chains sampled from the Markov chain defined in Section 3.1.
MCMC theory suggests that a very long chain or an ensemble of chains, ideally from different
starting states, should eventually mix and allow to approximately sample from π (and from ρ by first
sampling xt from π and then sampling xt+1 from observed transitions from xt). For our experiments,
we simply treat our observations as samples from π, even if mixing is not guaranteed. We provide
early experimental results in Section 5.1.

4 Conclusion and Future Works

In this work, we extended the results of HaoChen et al. [2021] to the temporal contrastive learning
setting by considering the state graph induced by an underlying Markov chain. In future work, we
hope to leverage Lemma B.6 of HaoChen et al. [2021] —and potentially additional assumptions on
the task y and the graph G— to obtain more explicit and interpretable guarantees. Moreover, the
uniform stationary assumption is somewhat restrictive. We hope that a more general argument can
handle the left scaling by D− 1

2 to better characterize the span of the STCL minimizers. We also aim
to relax the reversibility assumption and extend the analysis to continuous state spaces.
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5 Appendix

Figure 1: Top Eigenvectors of Ā for a
Markov Chain over a ring graph with
100 states.

Figure 2: Top Eigenvectors of Ā for a
Markov Chain over a 11x10 grid graph.

5.1 Experiments

We consider 2 toy experiments. The first dataset consists of images of a 3D Teapot model rotated over
400 different angles Weinberger et al. [2004], and the downstream task is to predict the Teapot angle
pose (cos θ, sin θ). The second dataset is based on images generated by a Grid World environment,
where the probe task will be to predict the (x, y) coordinates of the agent. We collect random
trajectories with random uniform policies in both environments and train STCL with a Resnet-18
backbone and representations of dimension k = 8. As a baseline, we use PCA to extract the top
8 principal components and run the same linear probe. We visualize the outputs of the probes in
Figure 3 and their R2 metrics in Table 1.

Table 1: Coefficient of determination (R2) of a supervised linear probe for PCA, Spectral Temporal
Contrastive learning (STCL) and Ground Truth (GT). Please refer to main text for details.

PCA Probe ↑ STCL Probe ↑ GT ↑
Teapot 0.80 0.98 1.00
Grid World 0.19 0.96 1.00
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Figure 3: Outputs of the linear probe for the PCA baseline (second column) and STCL
(third column). Ground truth targets are shown in the last column.

7


	Introduction
	Background
	Spectral Temporal Contrastive Learning
	Markov Chain & State Graph Definitions
	STCL in the Population Setting
	STCL Loss Estimator

	Conclusion and Future Works
	Appendix
	Experiments


