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Abstract

This paper addresses the prevalent issue of label shift in an online setting with
missing labels, where data distributions change over time and obtaining timely
labels is challenging. While existing methods primarily focus on adjusting or
updating the final layer of a pre-trained classifier, we delve into the untapped
potential of enhancing feature representations using unlabeled data at test-time.
Our novel Online Label Shift adaptation with Online Feature Updates (OLS-OFU)
method harnesses self-supervised learning to refine the feature extraction process,
thus improving the prediction model. Theoretical analyses confirm that OLS-OFU
reduces algorithmic regret by capitalizing on self-supervised learning for feature
refinement. Empirical tests on CIFAR-10 and CIFAR-10C datasets, under both
online label shift and generalized label shift conditions, underscore OLS-OFU’s
effectiveness and robustness, especially in cases of domain shifts.

1 Introduction

The effectiveness of most supervised learning models relies on a key assumption that the train data and
test data share the same distribution. However, this assumption rarely holds in real-world scenarios,
giving rise to distribution shift. Prior work focused on understanding distribution shifts in offline or
batch settings, where a single shift occurs between the train and test distributions. In contrast, real-
world applications often involve test data arriving in an online fashion, and the distribution shift can
continuously evolve over time. There is another challenging issue of missing and delayed feedback
labels, where gathering labels for the streaming data in a timely manner becomes a challenging task.

To tackle distribution shift, prior work makes further assumptions on the nature of the shift, such as
label shift or covariate shift. Our work focuses on the common (generalized) label shift problem
in an online fashion with missing labels. The learner is given a fixed set of labeled training data
D0 ∼ Ptrain in advance and trains a model f0. At test-time, only a small batch of unlabelled test
data St ∼ Ptest

t arrives in an online fashion (t = 1, 2, · · · ). For online label shift, we assume
the label distribution Ptest

t (y) may change over time t while the conditional distribution stays
the same, i.e. Ptest

t (x|y) = Ptrain(x|y). The generalized label shift relaxes this assumption
by assuming there exists a transformation h of the covariate, such that the conditional distribution
Ptest
t (h(x)|y) = Ptrain(h(x)|y) stays the same. A feature extractor h exists mapping these variations
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to the same point in the latent space. The goal of the learner is to adapt to the (generalized) label shift
within the non-stationary environment, continually adjusting the model’s predictions in real time.

Existing online label shift adaptation algorithms (OLS) primarily adopt one of two strategies: either
directly reweighting of the pretrained classifier f0, or re-training only the final linear layer of f0 —
typically keeping the feature extractor frozen. Recent work has demonstrated that feature extractors
can still be improved, even during test-time and in the absence of labels. We hypothesize that a
similar effect can be leveraged in the (generalized) label shift setting and propose to improve the
feature representation during testing. In online label shift, updating the feature extractor offers two
possible advantages. First, it enables the utilization of additional unlabeled samples to enhance the
sample efficiency of the feature extractor. Second, it allows the adaptation of the feature extractor to
label shift. Latter is important because the optimal feature extractor is not necessarily independent of
the label distribution. In particular, in generalized label shift, the feature transformation h is typically
unknown, and additional unlabeled test samples can ease the learning of h.

This paper introduces the Online Label Shift adaptation with Online Feature Updates (OLS-OFU)
framework, aimed at enhancing feature representation learning in the context of online label shift
adaptation. Each instantiation of OLS-OFU incorporates a self-supervised learning method associated
with a loss function denoted as lssl and an existing online label shift adaptation (OLS) algorithm.
In each time step, it executes a modified version of OLS, updates the feature extractor through
self-supervised learning, and subsequently refines the last linear prediction layer. Theoretically, we
demonstrate that OLS-OFU reduces the loss of the overall algorithm by leveraging self-supervised
learning techniques to enhance the feature extractor, thereby improving predictions for test samples
at each time step t. Empirical evaluations on CIFAR-10 and CIFAR-10C datasets, considering both
online label shift and online generalized label shift scenarios, affirm the effectiveness of OLS-OFU.

2 Problem Setting

We start with some basic notations. Let ∆K−1 be the probability simplex. Let f : X → ∆K−1

denote a classifier. Given an input x from domain X , f(x) outputs a probabilistic prediction on K
classes. For example, f can be the output from the softmax operation after any neural network. If
we reweight a model f by a vector p ∈ RK , we refer to this model as g(·; f, p) with g denotes the
method of reweighting. For any two vectors p and q, p/q denotes the element-wise division.

Online distribution shift adaptation. When a well-trained model f0 is deployed in the real world,
it enters the test stage, which can be a sequence of time periods or time steps. The test distribution
at time step t, Ptest

t , from which test data xt is sampled, may vary over time. The challenge lies in
how to adjust the model continuously from ft−1 to ft in an online fashion to adapt to the current
distribution Ptest

t . We call this problem online distribution shift adaptation and illustrate it in
Figure ??. Given a total T steps in the online test stage, we define the average loss for any online
algorithm A through the loss of the sequence of models ft, t ∈ [T ] that are produced from A, i.e.,

L(A;Ptest
1 , · · · ,Ptest

T ) =
1

T

T∑
t=1

ℓ(ft;Ptest
t ), (1)

where ℓ(f ;P) = E(x,y)∼Pℓsup(f(x), y) and ℓsup is the loss function, for example, 0-1 loss or
cross-entropy loss for classification tasks.

In this paper, we consider a realistic but highly non-trivial case where at each time step t, only a
small batch of unlabeled samples St = {x1

t , · · · , xB
t } is received. An effective algorithm under this

scenario has to utilize information from all historical data (both train data D0, validation data D′
0 and

test data up to time t), as well as previously deployed models f0,1,··· ,t−1. We formalize the algorithm
A as:

ft := A ({S1, · · · , St−1}, {f0, f1, · · · , ft−1}, D0, D
′
0) ∀t ∈ [T ]. (2)

We particularly focus on the online (generalized) label shift adaptation.

• In online label shift, the conditional distribution Ptest
t (x|y) is invariant and equivalent to Ptrain(x|y)

for all t ∈ [T ], while the marginal distribution of the label Ptest
t (y) changes over time. This

assumption is most typical when the label y is the causal variable and and the feature x is the
observation Schölkopf et al. [2012]. Most previous methods tackle this problem by a non-trivial
reduction to the classical online learning problem. Given this, most of the online label shift
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algorithms Wu et al. [2021], Bai et al. [2022], Baby et al. [2023] study the theoretical guarantee of
the algorithm via the convergence of the regret function, either static regret or dynamic regret.

• The concept of generalized label shift, as introduced in Tachet des Combes et al. [2020], formalizes
this situation by postulating the existence of an unknown function h, such that the conditional
probability distribution P(h(x)|y) remains invariant. The primary challenge is to find this under-
lying transformation h. Building upon this, online generalized label shift assumes that, for every
time step t, the test distribution Ptest

t exhibits a form of generalized label shift from the training
distribution Ptrain, and this shift is governed by the same underlying transformation h.

3 Method

Inspired by the body of work in semi-supervised learning Grandvalet and Bengio [2004b], Lee
et al. [2013], Laine and Aila [2016], Gidaris et al. [2018], Miyato et al. [2018] and unsupervised
representation learning Chen et al. [2020a], He et al. [2019], Grill et al. [2020], He et al. [2022], self-
supervised learning (SSL) techniques emerge as promising tools for enhancing feature extraction from
unlabeled data, e.g. for image classification. In this section, we discuss how to utilize various SSL
techniques to improve the feature representation learning of existing online label shift algorithms. To
illustrate the concept, we narrow our focus to three particular SSL techniques for classification tasks:
rotation degree prediction Gidaris et al. [2018], Sun et al. [2020], entropy minimization Grandvalet
and Bengio [2004b], Wang et al. [2020] and MoCo He et al. [2019], Chen et al. [2020b, 2021]. It is
important to note that this concept extends beyond these three SSL techniques, and the incorporation
of more advanced SSL techniques has the potential to further elevate the performance. The details of
these SSL are introduced in Appendix D.10.

Method. We formally introduce Online Label Shift adaptation with Online Feature Updates (OLS-
OFU; Algorithm 1), which requires a self-supervised learning loss ℓssl and an online label shift
adaptation algorithm (OLS) (∈{ROGD Wu et al. [2021], FTH Wu et al. [2021], UOGD Bai et al.
[2022], ATLAS Bai et al. [2022], FLHFTL Baby and Wang [2022]}) that either reweights the offline
pretrained model f0 or updates the last linear layer. In the train stage, we train f0 by minimizing the
supervised and self-supervised loss together. In the test stage, OLS-OFU comprises three steps at
each time step t: (1) running the refined version of OLS, which we refer to as OLS-R, (2) updating
the feature extractor by ℓssl, (3) re-training the last linear layer. Algorithm 1 formally described the
procedure; check the details of these three steps in Appendix B.1.

Analysis for online label shift. The original OLS methods in the literature exhibit theoretical
guarantees in terms of regret convergence for online label shift setting. With the incorporation of the
additional online feature update step, OLS-OFU demonstrates analogous theoretical results; check the
details of theorems in Appendix C. By comparing the theoretical results between OLS and OLS-OFU,
we can gain insights into potential enhancements from OLS to OLS-OFU.

Analysis for online generalized label shift. Existing research in test-time training (TTT) Sun et al.
[2020], Wang et al. [2020], Liu et al. [2021], Niu et al. [2022] demonstrates that feature updates
driven by SSL align the source and target domains in feature space. When the source and target
domains achieve perfect alignment, such feature extractor effectively serves as the feature map h
as assumed in generalized label shift. Therefore, the sequence of feature extractors in f1, · · · , fT
generated by Algorithm 1 progressively approximates the underlying h. This suggests that, compared
to the original OLS, OLS with online feature updates (Algorithm 1) experiences a milder violation of
the label shift assumption within the feature space and is actually expected to have better performance
in the setting of online generalized label shift.

4 Experiment

In this section, we empirically evaluate how OLS-OFU improves the original OLS methods on both
online label shift and online generalized label shift3. The train data in the experiment is CIFAR-10
train set and the online test data is sampled from CIFAR-10 Krizhevsky et al. [2009] and CIFAR-
10C Hendrycks and Dietterich [2019] to evaluate online label shift or online generalized label shift.
We vary the shift patterns (Sinusoidal and Bernoulli shifts) and SSL techniques (rotation degree

3Code released at https://anonymous.4open.science/r/online_label_shift_with_online_feature_updates-3A1F/.
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Algorithm 1 Online label shift adaptation with online feature updates (OLS-OFU).
Require: An online label shift adaptation algorithm OLS (∈{ROGD, FTH, UOGD, ATLAS, FLHFTL}), a
self-supervised learning loss ℓssl. A pretrained model f0 and initialize f1 = f0.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, train set D0, validation set D′
0.

1. Run the revised version of OLS, that is, OLS-R, and get f ′
t+1. (See Appendix B.2 for revisions of

ROGD, FTH, UOGD, ATLAS, FLHFTL)
2. Update the feature extractor θfeatt in f ′

t+1 by

θfeatt+1 := θfeatt − η · ∇θfeatℓssl(St; f
′
t+1).

Replace the feature extractor θfeatt in f ′
t+1 by θfeatt+1 .

3. Within the feature extractor θfeatt+1 , re-train the last linear layer from random initialization by minimizing
the average loss among train data D0:

θlineart+1 := arg min
θlinear

∑
(x,y)∈D0

ℓce

(
f(x|θfeatt+1, θ

linear), y

)
.

Calibrate the model f(·|θfeatt+1, θ
linear
t+1 ) by temperature calibration using the validation set D′

0 and denote
the model after calibration as f ′′

t+1.
4. If the parameter space of OLS is a reweighting version of the prediction model (ROGD, FTH, FLHFTL),
suppose the reweighting vector in f ′

t+1 is pt+1 and we define ft+1 := g(·; f ′′
t+1, pt+1); else (UOGD,

ATLAS), we define ft+1 := f ′
t+1.

end for
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(a) Results of Sinusoidal shift on CIFAR-10 for three SSL methods in OLS-OFU

(b) Results of Sinunoidal shift on three types of corruptions in CIFAR-10C. SSL method in OLS-OFU is rotation degree prediction.
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Figure 1: Comparison of OLS-OFU and OLS in CIFAR-10 and CIFAR-10C.

prediction, entropy minimization, and MoCo) to evaluate the efficacy of the method. More details
and additional results are presented in Appendix D.

Main results. Figure 1(a) compares the performance of various OLS-OFU algorithms with their
respective OLS counterparts, under classical online label shift. Figure 1(b) presents the performance
of OLS-OFU in the context of online generalized label shift, where the test images exhibit three types
of domain shifts in CIFAR-10C — Gaussian noise, Fog, and Pixelation—with mild severity. Firstly,
the advantage of OLS over BASE and OFU in Figure 1(a) demonstrates the inherent advantages of
OLS methods in effectively addressing the online label shift problem. Some OLS methods perform
worse than OFU on CIFAR-10C as expected because the assumption of label shift no longer holds in
this generalized label shift setting. It’s worth highlighting that OLS-OFU, when integrated with three
distinct SSL methods and tested with three types of domain shifts, consistently outperforms OLS
across all six OLS methods. This underscores the importance of improving feature representation
learning within (generalized) label shift adaptation in OLS-OFU.
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A Further Related Work

Offline distribution shift and domain shift. Offline label shift and covariate shift have been studied
for many years. Some early work Saerens et al. [2002], Lin et al. [2002] assumes the knowledge of
how the distribution is shifted. Later work Shimodaira [2000], Zadrozny [2004], Huang et al. [2006],
Gretton et al. [2009], Lipton et al. [2018], Alexandari et al. [2020], Azizzadenesheli et al. [2019],
Garg et al. [2020] relaxes this assumption and estimates this knowledge from unlabeled test data.

Online distribution shift with provable guarantees. There has been several work modeling online
distribution shift as the classic online learning problem Wu et al. [2021], Bai et al. [2022], Baby et al.
[2023], Zhang et al. [2023], which leverage the classical online learning algorithms Shalev-Shwartz
[2012], Besbes et al. [2015], Baby and Wang [2022] to bound the static or dynamic regret. However,
none of them updates the feature extractor in a deep learning model but only the last linear layer or
the post-hoc linear reweighting vectors. Our proposed method OLS-OFU utilizes the deep learning
SSL to improve the feature extractor, which brings better performance.

Domain shift adaptation within online streaming data. When we consider the most authentic
online learning setup where the learner only receives the unlabeled samples, the most representative
idea is test-time training Sun et al. [2020], Wang et al. [2020], Liu et al. [2021], Niu et al. [2022],
which utilizes a (deep learning) self-supervised loss to online update the model. However, it focuses
on how to adapt to a fixed domain shifted distribution from online streaming data and is not designed
for how to adapt to continuous distribution changes during the test stage, while our algorithm
concentrates the later problem. Besides test-time training, Hoffman et al. [2014] and Mullapudi et al.
[2019] study the online domain shift for specific visual applications.

Algorithm 2 Revised ROGD for online feature updates ROGD-R. See the original version in Equation
7 and Equation 8 in Wu et al. [2021].

Require: Learning rate η.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the training label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

f ′′
t ,D′

0
f ′′
t (xt). ▷ In the original ROGD, it is f0 rather than f ′′

t .
2. Grab the weight pt from ft.
3. Update pt+1 := Proj∆K−1

[
pt − η · Jp(pt)⊤st

]
,

where Jp,f ′′
t
(pt) =

∂
∂p (1− diag(Cf ′′

t ,D0,p))|p=pt
, and let ft+1 be a reweighting version of

f ′′
t by the weight

(
pt+1[k]
q0[k]

: k = 1, · · ·K
)

▷ In the original ROGD, it is f0 rather than f ′′
t .

Output at time t: f ′
t+1.

end for

Algorithm 3 Revised FTH for online feature updates (FTH-R). See the original version in Equation 9
in Wu et al. [2021].

for t = 1, · · · , T do
Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

ft,D′
0
f ′′
t (xt). ▷ In the original FTL, it is f0 rather than f ′′

t .

2. Compute pt+1 = 1
t

∑t
τ=1 sτ

3. Let ft+1 be a reweighting version of f ′′
t by

the weight
(

pt+1[k]
q0[k]

: k = 1, · · ·K
)

▷ In the original FTL, it is f0 rather than f ′′
t .

Output at time t: f ′
t+1.

end for
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Algorithm 4 Revised UOGD for online feature updates (UOGD-R). See the original version in
Equation 9 in Bai et al. [2022].

Require: The learning rate η.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:
st =

1
|St|

∑
xt∈St

C−1
f ′′
t ,D′

0
f ′′
t (xt). ▷ In the original UOGD, it is f0 rather than f ′′

t .
2. Grab the weight wt from the last linear layer of ft.
3. Update wt+1 := wt − η · ∂

∂wJw(wt)
⊤st, where Jw(wt) =

∂
∂w (R̂1

t (w), · · · , R̂K
t (w))|w=wt

,
R̂k

t (w) =
1

|Dk
0 |
∑

(x,y)∈Dk
0
ℓce(f(x|θfeatt , θlinear = w), y), Dk

0 denotes the set of data with

label k in D0. ▷ In the original UOGD, it is θfeat0 rather than θfeatt .
4. Let ft+1 be f(·|θfeatt , wt+1).
Output at time t: f ′

t+1.
end for

Algorithm 5 Revised ATLAS for online feature updates (ATLAS-R). See the original version in
Equation 9 in Bai et al. [2022].

Require: The learning rate pool H with size N; Meta learning rate ε; ∀i ∈ [N ], p1,i = 1/N and
w1,i = θlinearf0

.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

ft,D′
0
f ′′
t (xt). ▷ In the original ATLAS, it is f0 rather than f ′′

t .

for i ∈ [N ] do
2. Update wt+1,i := wt,i − ηi · ∂

∂wJw(wt,i)
⊤st, where

Jw(wt,i) =
∂
∂w (R̂1

t (w), · · · , R̂K
t (w))|w=wt,i ,

R̂k
t (w) =

1
|Dk

0 |
∑

(x,y)∈Dk
0
ℓce(f(x|θfeatt , w), y), Dk

0 denotes the set of data

with label k in D0. ▷ In the original ATLAS, it is θfeat0 rather than θfeatt .
end for
3. Update weight pt+1 according to ppt,i

∝ exp(−ε
∑t−1

τ=1 R̂τ (wτ,i))

3. Compute wt+1 =
∑N

i=1 pt+1,iwt+1,i. Let ft+1 be f(·|θfeatt , wt+1).
Output at time t: f ′

t+1.
end for

B Additional Details of OLS-OFU

B.1 OLS-OFU Details

(1) Running the Revised OLS. First, we review common OLS methods (FLHFTL, FTH, ROGD,
UOGD, and ATLAS) and identify two specific points in the algorithm where we can employ the
updated prediction model f ′′

t (with the improved feature extractor4) to supplant the pretrained model
f0, hence enhancing the original OLS algorithm. Denote Cf,D ∈ [0, 1]K×K the confusion matrix
evaluated on dataset D for the model f with Cf,D[i, j] = P(x,y)∼D

(
argmax(f(x)) = j|y = i

)
.

At the outset, all OLS methods rely on an unbiased estimator st of the label distribution qt with
qt[y] = Ptest

t (y), where st :=
1

|St|
∑

xt∈St
C−1

f0,D0
f0(xt). This is the first point that we can replace

f0 with the improved prediction model f ′′
t to enhance the estimation of label marginal distribution.

For the second point,

4We detail how to obtain this enhanced model f ′′
t using SSL techniques in the following paragraphs.
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Algorithm 6 Revised FLHFTL for online feature updates (FLHFTL-R); See the original version in
Algorithm 2 in Baby et al. [2023].

Require: Online regression oracle ALG.
for t = 1, · · · , T do

Input at time t: Samples S1 ∪ · · · ∪ St, models {f1, · · · , ft}, and intermediate model
{f ′′

1 , · · · , f ′′
t } from step 3 in Algorithm 1, the validation set D′

0, the train label marginal
q0 := Ptrain(y).
1. Compute the unbiased estimator for label marginal distribution:

st =
1

|St|
∑

xt∈St
C−1

f ′′
t ,D′

0
f ′′
t (xt) ▷ In the original FLHFTL, it is f0 rather than f ′′

t .

2. Compute the online estimator q̃t+1 := ALG(s1, · · · , st)
3. Let f ′

t+1 be a reweighting version of f ′′
t by the weight(

q̃t+1[k]
q0[k]

: k = 1, · · ·K
)

▷ In the original FLHFTL, it is f0 rather than f ′′
t .

Output at time t: f ′
t+1.

end for

• FLHFTL and FTH subsequently employ a vector q̃t5 to reweight the initial pretrained model f0.
Now, instead of reweighting the original pretrained model f0, the algorithm reweights the improved
model f ′′

t , utilizing its enhanced predictive performance.
• ROGD, UOGD, and ATLAS initially update the model through an unbiased gradient estimator

within a hypothesis space that either includes a linear model after a fixed feature extractor in f0 or
a reweighted version of f0. Now, we have the flexibility to shift to a comparable hypothesis space,
replacing f0 with the improved model f ′′

t , and continue applying updates using the same unbiased
gradient estimator.

The revisions for ROGD, FTH, UOGD, and ATLAS can be found in Section B.2. We use f ′
t+1 to

denote the model after running the revised OLS.

(2) Updating the Feature Extractor. We now introduce how to utilize an SSL loss ℓssl to update the
feature extractor for any incoming unlabeled test data batch St at timestep t. Specifically, let θfeatt

denote the parameters of the feature extractor in f ′
t+1. The update of θfeatt+1 at time t is given by:

θfeatt+1 := θfeatt − η · ∇θfeatℓssl(St; f
′
t+1).

We replace the feature extractor in f ′
t+1 by θfeatt+1 .

(3) Re-training Last Linear Layer. Given the updated feature extractor θfeatt+1 , it is necessary to
re-train the last linear layer θlineart+1 to adapt to the new feature extractor. We start the re-raining
from random initialization, while keeping the feature extractor frozen. The train objective of θlineart+1
is to minimize the average cross-entropy loss under train data D0. We denote the model with the
frozen feature extractor θfeatt+1 as f(·|θfeatt+1, θ

linear). The objective for re-training last linear layer can
be written as follows:

θlineart+1 := arg min
θlinear

∑
(x,y)∈D0

ℓce

(
f(x|θfeatt+1, θ

linear), y

)
.

We calibrate the model f(·|θfeatt+1, θ
linear
t+1 ) by temperature calibration Guo et al. [2017] using the

validation set D′
0 and denote the model after calibration as f ′′

t+1. This re-training step is needed to
ensure the model is a calibrated model of estimating Ptrain(y|x) for any given input x.

In the end, we are going to define ft+1 for the next time step. If the parameter space of the
original OLS is a reweighting version of the prediction model (ROGD, FTH, FLHFTL), suppose the
reweighting vector in f ′

t+1 is pt+1 and we define ft+1 := g(·; f ′′
t+1, pt+1); else (UOGD, ATLAS),

we define ft+1 := f ′
t+1.

5The reweighting factor q̃t is a function of unbiased estimators s1, · · · , st in FLHFTL and FTH.
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B.2 The Revision for Previous Online Label Shift Adaptation Algorithms

The revised algorithms to be used in the main algorithm OLS-OFU (Algorithm 1) are FTH-R
(Algorithm 3), UOGD-R (Algorithm 4), ROGD-R (Algorithm 2), ATLAS-R (Algorithm 5), FLHFTL-
R (Algorithm 6).

C Theorems for OLS and Proofs

C.1 Performance Guarantee for FLHFTL-OFU

The original Online Label Shift (OLS) methods exhibit theoretical guarantees in terms of regret
convergence for online label shift setting, where Ptest

t (x|y) = Ptrain(x|y) is invariant. With
the incorporation of the additional online feature update step, OLS-OFU demonstrates analogous
theoretical results. By comparing the theoretical results between OLS and OLS-OFU, we can gain
insights into potential enhancements from OLS to OLS-OFU.
Theorem 1. [Regret convergence for FLHFTL-OFU] Suppose we choose the OLS subroutine in
Algorithm 6 to be FLH-FTL from Baby et al. [2023]. Let fflhftl−ofu

t be the output at time step t− 1
from Algorithm 1, that is g(·; f ′′

t , q̃t/q0). Let σ be the smallest among the the minimum singular
values of invertible confusion matrices {Cf ′′

1 ,D′
0
, · · ·Cf ′′

T ,D′
0
}. Then under Assumptions 1 and 2 in

Baby et al. [2023], FLHFTL-OFU has the guarantee for online label shift below:

E

[
1

T

T∑
t=1

ℓ(fflhftl−ofu
t ;Ptest

t )− 1

T

T∑
t=1

ℓ(g(·; f ′′
t , qt/q0);Ptest

t )

]
≤ O

(
K1/6V

1/3
T

σ2/3T 1/3
+

K

σ
√
T

)
,

(3)
where VT :=

∑T
t=1 ∥qt − qt−1∥1, K is the number of classes, and the expectation is taken w.r.t.

randomness in the revealed co-variates. This result is attained without prior knowledge of VT .

To ease comparison, we state the theorem for the original OLS algorithm FLHFTL.
Theorem 2. [Regret convergence for FLHFTL Baby et al. [2023]] Under Assumptions 1 and 2 in
Baby et al. [2023], FLHFTL has the guarantee for online label shift below:

E

[
1

T

T∑
t=1

ℓ(fflhftl
t ;Ptest

t )

]
− 1

T

T∑
t=1

ℓ(g(·; f0, qt/q0);Ptest
t ) ≤ O

(
K1/6V

1/3
T

σ2/3T 1/3
+

K

σ
√
T

)
, (4)

where VT :=
∑T

t=1 ∥qt − qt−1∥1, σ denotes the minimum singular value of invertible confusion
matrices Cf0,D′

0
, K is the number of classes, and the expectation is taken with respect to randomness

in the revealed co-variates. Further, this result is attained without prior knowledge of VT .

Recall that the objective function for the online label shift problem is defined as the average loss
in Equation 1. Both theorems establish the convergence of this average loss. In the event that f ′′

t
(t ∈ [T ]) from the online feature updates yield improvements:

E

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t , qt/q0);Ptest

t )

]
<

1

T

T∑
t=1

ℓ(g(·; f0, qt/q0);Ptest
t ), (5)

then it guarantees that the loss of FLHFTL-OFU will converge to a smaller value, resulting in
enhanced performance compared to FLHFTL. We substantiate this improvement through empirical
evaluation in Section 4. For other OLS algorithms such as ROGD-OFU, FTH-OFU, UOGD-OFU,
and ATLAS-OFU, a similar analysis can be derived and we present them in next subsections. The
proofs are mostly the same as the proofs for the original algorithms with small adjustments. As our
results are not straight corollaries for the original theorems, we write the full proofs here for the
completeness.

C.2 Theorem for FLHFTL-OFU

Before proving Theorem 1 (in Section C.1 ) we recall the assumption from Baby et al. [2023] for
convenience. We refer the reader to Baby et al. [2023] for justifications and further details of the
assumptions.
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Assumption 1. Assume access to the true label marginals q0 ∈ ∆K of the offline train data and
the true confusion matrix C ∈ RK×K . Further the minimum singular value σmin(C) = Ω(1) is
bounded away from zero.

Assumption 2 (Lipschitzness of loss functions). Let D be a compact and convex domain. Let rt
be any probabilistic classifier. Assume that Lt(p) := E [ℓ(g(·; rt, p/q0)|xt] is G Lipschitz with
p ∈ D ⊆ ∆K , i.e, Lt(p1)−Lt(p2) ≤ G∥p1 − p2∥2 for any p1, p2 ∈ D. The constant G need not be
known ahead of time.

Theorem 1. [Regret convergence for FLHFTL-OFU] Suppose we choose the OLS subroutine in
Algorithm 6 to be FLH-FTL from Baby et al. [2023]. Let fflhftl−ofu

t be the output at time step t− 1
from Algorithm 1, that is g(·; f ′′

t , q̃t/q0). Let σ be the smallest among the the minimum singular
values of invertible confusion matrices {Cf ′′

1 ,D′
0
, · · ·Cf ′′

T ,D′
0
}. Then under Assumptions 1 and 2 in

Baby et al. [2023], FLHFTL-OFU has the guarantee for online label shift below:

E

[
1

T

T∑
t=1

ℓ(fflhftl−ofu
t ;Ptest

t )− 1

T

T∑
t=1

ℓ(g(·; f ′′
t , qt/q0);Ptest

t )

]
≤ O

(
K1/6V

1/3
T

σ2/3T 1/3
+

K

σ
√
T

)
,

(3)
where VT :=

∑T
t=1 ∥qt − qt−1∥1, K is the number of classes, and the expectation is taken w.r.t.

randomness in the revealed co-variates. This result is attained without prior knowledge of VT .

Proof:

The algorithm in Baby et al. [2023] requires that the estimate st in Line 1 of Algorithm 6 is unbiased
estimate of the label marginal qt. Since f ′′

t in Algorithm 6 is independent of the sample St, and since
we are working under the standard label shift assumption, due to Lipton et al. [2018] we have that
C−1

f ′′
t ,D′

0
· 1
|St|

∑
xt∈St

f ′′
t (xt) forms an unbiased estimate of Ex∼P test

t
[f ′′

t (x)]. Further, from Lipton
et al. [2018], the reciprocal of standard deviation of this estimate is bounded below by minimum of
the singular values of confusion matrices {Cf ′′

1 ,D′
0
, · · ·Cf ′′

T ,D′
0
}.

Let q̃t be the estimate of the label marginal maintained by FLHFTL. By Lipschitzness, we have that

E[ℓ(fflhftl−ofu
t ;Ptest

t )− ℓ(g(·; f ′′
t , p/q0)] = E[Lt(q̃t)]− E[Lt(qt)] (6)

≤ G · E[∥q̃t − qt∥2], (7)

where the last line is via Assumption 2. Rest of the proof is identical to that of Baby et al. [2023]. We
reproduce it below for completeness.

T∑
t=1

E[ℓ(fflhftl−ofu
t ;Ptest

t )− ℓ(g(·; f ′′
t , p/q0)] ≤

T∑
t=1

G · E[∥q̃t − qt∥2] (8)

≤
T∑

t=1

G
√

E∥q̃t − qt∥22 (9)

≤ G

√√√√T

T∑
t=1

E[∥q̃t − qt∥22] (10)

= Õ

(
K1/6T 2/3V

1/3
T (1/σ

2/3
min(C)) +

√
KT/σmin(C)

)
,

(11)

where the second line is due to Jensen’s inequality, third line by Cauchy-Schwartz and last line by
Proposition 16 in Baby et al. [2023]. This finishes the proof.

Proof of Theorem 2: The proof is similar to the arguments in the proof of Theorem 1. The only
point of deviation is that we choose rt = f0 instead of f ′′

t in Assumption 2. The rest of the arguments
follow via Lipschitzness.
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C.3 Theorem for ROGD-OFU

We state the assumptions first for the later theorems. These assumptions are similar to Assumption
1-3 in Wu et al. [2021].

Assumption 3. ∀P ∈ {Ptrain,Ptest
1 , · · · ,Ptest

T }, diag(Cf,P) is differentiable with respect to f .

Assumption 4. ∀t ∈ [T ], ℓ(g(·; f ′′
t , p/q0);Ptest

t ) is convex in p, where f ′′
t is defined in Algorithm 1.

Assumption 5. supp∈∆K−1,i∈[K],t∈[T ] ∥∇pℓ(g(·; f ′′
t , p/q0);Ptest

t )∥2 is finite and bounded by L.

Theorem 3 (Regret convergence for ROGD-OFU). If we run Algorithm 1 with ROGD-R (Algorithm 2)

and η =
√

2
T

1
L , under Assumption 3, 4, 5, ROGD-OFU satisfies the guarantee

E

[
1

T

T∑
t=1

ℓ(fogd−ofu
t ;Ptest

t )

]
− min

p∈∆K

E

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

]
≤
√

2

T
L. (12)

E

[
1

T

T∑
t=1

ℓ(fogd
t ;Qt)

]
− min

p∈∆K

E

[
1

T

T∑
t=1

ℓ(g(·; p, f0, q0);Qt)

]
≤
√

2

T
L. (13)

Proof: For any fixed p,

ℓ(f rogd−ofu
t ;Ptest

t )− ℓ(g(·; f ′′
t , p/q0);Ptest

t ) = ℓ(g(·; f ′′
t , pt/q0);Ptest

t )− ℓ(g(·; f ′′
t , p/q0);Ptest

t )

≤ (pt − p) · ∇pℓ(g(·; f ′′
t , pt/q0);Ptest

t )

= (pt − p) · Jp,f ′′
t
(pt)

⊤ESt
[st|S1, · · · , St−1]

= ESt
[(pt − p) · Jp,f ′′

t
(pt)

⊤st|S1, · · · , St−1],

where the last inequality holds by the fact that (pt−p) ·Jp,f ′′
t
(pt)

⊤ is independent of {S1, · · · , St−1}.
To bound (pt − p) · Jp,f ′′

t
(pt)

⊤st,

∥pt+1 − p∥22 = ∥Prof∆K−1(pt − η · Jp,f ′′
t
(pt)

⊤st)− p∥22
≤ ∥pt − η · Jp,f ′′

t
(pt)

⊤st − p∥22
= ∥pt − p∥22 + η2∥Jp,f ′′

t
(pt)

⊤st∥22 − 2η(pt − p) · (Jp,f ′′
t
(pt)

⊤st).

This implies

(pt − p) · (Jp,f ′′
t
(pt)

⊤st) ≤
1

2η
(∥pt − p∥22 − ∥pt+1 − p∥22) +

η

2
∥Jp,f ′′

t
(pt)

⊤st∥22

Thus

ES1,··· ,ST

[
1

T

T∑
t=1

ℓ(f rogd−ofu
t ;Ptest

t )− 1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

]

≤ ES1,··· ,ST

[
1

T

T∑
t=1

1

2η
(∥pt − p∥22 − ∥pt+1 − p∥22) +

η

2
∥Jp,f ′′

t
(pt)

⊤st∥22

]

≤ 1

2ηT
∥p1 − p∥22 +

η

2T

T∑
t=1

ES1,··· ,St [∥Jp,f ′′
t
(pt)

⊤st∥22]

≤ 1

ηT
+

ηL2

2
=

√
2

T
L.

This bound holds for any p. Thus,

ES1,··· ,ST

[
1

T

T∑
t=1

ℓ(f rogd−ofu
t ;Ptest

t )

]
− min

p∈∆K−1
ES1,··· ,ST

[
1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

]
≤
√

2

T
L.
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C.4 Theorem for FTH-OFU

We begin with two assumptions.

Assumption 6. For any Ptest s.t. Ptest(x|y) = Ptrain(x|y), denote qt := (Ptest
t (y = k) : k ∈ [K])

and then
∥qt − arg min

p∈∆K−1
ℓ(g(·; f ′′

t , p/q0);Ptest)∥ ≤ δ.

Assumption 7. ∀Ptest s.t. Ptest(x|y) = Ptrain(x|y), supp ∥∇pℓ(g(·; f ′′
t , p/q0);Ptest)∥ ≤ L

Theorem 4 (Regret convergence for FTH-OFU). If we run Algorithm 1 with FTH-R (Algorithm 3)
and assume σ is no larger than the minimum singular value of invertible confusion matrices
{Cf ′′

1 ,D′
0
, · · ·Cf ′′

T ,D′
0
}, under Assumption 6 and 7 with δ = 0, FTH-OFU satisfies the guarantee that

with probability at least 1− 2KT−7 over samples S1 ∪ · · · ∪ ST ,

1

T

T∑
t=1

ℓ(f fth−ofu
t ;Ptest

t )− min
p∈∆K

1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t ) ≤ O

(
log T

T
+

1

σ

√
K log T

T

)
,

(14)
where K is the number of classes.

Proof: Denote qt := (Ptest
t (y = k) : k ∈ [K]). By the Hoeffding and union bound, we have

P

(
∀t ≤ T, ∥pt+1 −

1

t

t∑
τ=1

qτ∥ ≤
√
Kεt

)
≥ 1−

T∑
t=1

2M exp
(
−2ε2t t/σ

2
)
.

This implies that with probability at least 1−
∑T

t=1 2M exp
(
−2ε2t t/σ

2
)
, ∀p,

T∑
t=1

ℓ(pt;Ptest
t )−

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t )

≤
T∑

t=1

ℓ(g(·; f ′′
t ,

1

t

t∑
τ=1

qτ/q0);Ptest
t )−

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t ) + L
√
M ·

T∑
t=1

εt

≤
T∑

t=1

ℓ(g(·; f ′′
t ,

1

t− 1

t−1∑
τ=1

qτ/q0);Ptest
t )−

T∑
t=1

ℓ(g(·; f ′′
t ,

1

t

t∑
τ=1

qτ/q0);Ptest
t ) + L

√
M ·

T∑
t=1

εt

≤
T∑

t=1

L

∥∥∥∥∥ 1

t− 1

t−1∑
τ=1

qτ − 1

t

t∑
τ=1

qτ

∥∥∥∥∥+ L
√
M ·

T∑
t=1

εt

≤
T∑

t=1

L

t

∥∥∥∥∥ 1

t− 1

t−1∑
τ=1

qτ − qt

∥∥∥∥∥+ L
√
M ·

T∑
t=1

εt

≤
T∑

t=1

2L

t
+ L

√
M ·

T∑
t=1

εt.

If we take εt = 2σ
√

lnT
T , the above is equivalent to: with probability at least 1− 2KT−7

1

T

T∑
t=1

ℓ(pt;Ptest
t )−min

p

1

T

T∑
t=1

ℓ(g(·; f ′′
t , p/q0);Ptest

t ) ≤ 2L
lnT

T
+ 4Lσ

√
K lnT

T

C.5 Theorems for UOGD-OFU and ATLAS-OFU

Theorem 5. [Regret convergence for UOGD-OFU] Let f(·; θfeatf ′′
t

, w) denote a network with the same
feature extractor as that of f ′′

t and a last linear layer with weight w. Let fuogd−ofu = f(·; θfeatf ′′
t

, wt),
where wt is the weight maintained at round t by Algorithm 4. If we run Algorithm 1 with UOGD in
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Bai et al. [2022] and let step size be η, then under the same assumptions as Lemma 1 in Bai et al.
[2022], UOGD-OFU satisfies that

E

[
1

T

T∑
t=1

ℓ(fuogd−ofu;Ptest
t )− 1

T

T∑
t=1

min
w∈W

ℓ(f(·; θfeatf ′′
t

, w);Ptest
t )

]
≤ O

(
Kη

σ2
+

1

ηT
+

√
VT,ℓ

Tη

)
,

(15)
where VT,ℓ :=

∑T
t=2 supw∈W |ℓ(f(·; θfeatf ′′

t
, w);Ptest

t )− ℓ(f(·; θfeatf ′′
t−1

, w);Ptest
t−1)|, σ denotes the min-

imum singular value of the invertible confusion matrices {Cf ′′
1 ,D′

0
, · · ·Cf ′′

T ,D′
0
} and K is the number

of classes and the expectation is taken with respect to randomness in the revealed co-variates.

Proof Sketch: Recall that ℓ(f(·; θfeatf ′′
t

, w);Ptest
t ) := E(x,y)∼Ptest

t
ℓce

(
f(x|θfeatf ′′

t
, w), y

)
.

This guarantee follows from the arguments in Bai et al. [2022] from two basic facts below:

1. The risk ℓ(f(·; θfeatf ′′
t

, w);Ptest
t ) is convex in w over a convex and compact domain W .

2. It is possible to form unbiased estimates Ĝt(w) ∈ RK such that E[Ĝt(w)|S1:t−1] =

E((x,y)∼Ptest
t )∇wℓce

(
f(x|θfeatf ′′

t
, w), y

)
.

Hence we proceed to verify these two facts in our setup. Fact 1 is true because the cross-entropy
loss is convex in any subset of the simplex and the last linear layer weights only defines an affine
transformation which preserves convexity.

For fact 2, note that the f ′′
t only uses the data until round t − 1. So by the same arguments in Bai

et al. [2022], using the BBSE estimator defined from the classifier f ′′
t , the unbiased estimate of risk

gradient can be defined.

Let wt be the weight of the last layer maintained by UOGD at round t. Let u1:T be any sequence in
W . Consequently we have for any round,

ℓ(fuogd−ofu;Ptest
t )− ℓ(f(·; θfeatf ′′

t
, ut)) = ℓ(f(·; θfeatf ′′

t
, wt)− ℓ(f(·; θfeatf ′′

t
, ut)) (16)

≤ ⟨∇wℓ(f(·; θfeatf ′′
t

, wt), wt − ut⟩ (17)

= ⟨E[Ĝt(wt)|S1:t−1], wt − ut⟩. (18)

Rest of the proof is identical to Bai et al. [2022].
Theorem 6 (Regret convergence for ATLAS-OFU). Let f(·; θfeatf ′′

t
, w) denote a network with the same

feature extractor as that of f ′′
t and a last linear layer with weight w. Let fatlas−ofu = f(·; θfeatf ′′

t
, wt),

where wt is the weight maintained at round t by Algorithm 5. If we run Algorithm 1 with ATLAS
in Bai et al. [2022] and set up the step size pool H = {ηi = O

(
σ√
KT

)
· 2i−1|i ∈ [N ]} (N =

1+⌈ 1
2 log2(1+2T )⌉), then under the same assumptions as Lemma 1 in Bai et al. [2022], UOGD-OFU

satisfies that

E

[
1

T

T∑
t=1

ℓ(fatlas−ofu;Ptest
t )− 1

T

T∑
t=1

min
w∈W

ℓ(f(·; θfeatf ′′
t+1

, w);Ptest
t )

]
≤ O

((
K1/3

σ2/3
+ 1

)
V

1/3
T,ℓ

T 1/3
+

√
K

σ2T

)
,

(19)
where VT,ℓ :=

∑T
t=2 supw∈W |ℓ(f(·; θfeatf ′′

t
, w);Ptest

t )− ℓ(f(·; θfeatf ′′
t−1

, w);Ptest
t−1)|, σ denotes the min-

imum singular value of the invertible confusion matrices {Cf ′′
1 ,D′

0
, · · ·Cf ′′

T ,D′
0
} and K is the number

of classes and the expectation is taken with respect to randomness in the revealed co-variates.

The proof is similar to that of Theorem 5 and hence omitted.

Discussion about the assumption. In the theorems for UOGD and ATLAS, the definition of VT,ℓ

is shift severity from Ptest
t . However, in the theorems for UOGD-OFU and ATLAS-OFU above,

VT,ℓ is shift severity from both Ptest
t and θfeatf ′′

t
, which can be much larger. This might lead to harder

convergence of the regret.
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D Additional experiments

D.1 Experiment Set-Up

Dataset and shift process set-up. For online label shift, we evaluate the efficacy of our algorithm on
CIFAR-10, which has 10 categories of images. We split the original train set of CIFAR-10 into the
offline train and validation sets, which have 40,000 and 10,000 images respectively. At the online
test stage, the unlabeled batches are sampled from the test set of CIFAR-10. For online generalized
label shift, the offline train and validation sets are the same CIFAR-10 images, but the test unlabeled
batches are sampled from CIFAR-10C. CIFAR-10C is the benchmark that has the same objects in
CIFAR-10 but with multiple types of corruption. We experiment with three types of corruptions
(i.e., domain shifts): Gaussian noise, Fog and Pixelate. Besides CIFAR-10 and CIFAR-10C, we also
experiment with three additional datasets for the setting of online label shift and present the results in
Section D.4. See more details of dataset set-up in Section D.3.

We follow Bai et al. [2022] and Baby et al. [2023] to simulate the online label distribution shift in
two online shift patterns: Sinusoidal shift and Bernoulli shift. Given two label distribution vectors
q and q′, the label marginal distributions at time t is qt := αtq + (1 − αt)q

′. In Sinusoidal shift,
αt = sin iπ

L (periodic length L =
√
T , i = t mod L) while in Bernoulli shift, αt is a random bit

(either 0 or 1), where the bit switches αt = αt − 1 if the coinflip probability exceeds p = 1√
T

. The q
and q′ are 1

K (1, · · · , 1) and (1, 0, · · · , 0) in the experiment. To sample the batch test data at time t,
we first sample a batch of labels (not revealed to the learner) according to qt. Then given each label
we can sample an image from the test set, and collect this batch of images without labels as St. We
experiment with T = 1000 and batch size B = 10 at each time step, following Baby et al. [2023].

Evaluation metric. We report the average error 1
TB

∑T
t=1

∑
xt∈St

1 (ft(xt) ̸= yt), where yt ∼
Ptest
t (y|xt), to approximate 1

T

∑T
t=1 ℓ(ft;Ptest

t ) for the evaluation efficiency. This approximation is
valid for large T due to its exponential concentration rate by the Azuma–Hoeffding inequality.

Online algorithms set-up. We perform an extensive evaluation of 6 OLS algorithms in the literature:
FTFWH, FTH, ROGD, UOGD, ATLAS, and FLH-FTL. FTFWH is an empirical OLS proposed in
Wu et al. [2021]. We further report the performance of OLS-OFU (Algorithm 1) on top of each
OLS. OLS-OFU is implemented with 3 common SSL methods: rotation degree prediction, entropy
minimization, and MoCo. Additionally, we report two baseline scores. The first, denoted as Base,
uses the fixed pretrained model f0 to predict the labels at all test time steps. The second is online
feature updates (OFU) only, where at time step t we only update the features (Step 2 in Algorithm 1)
without utilizing OLS algorithms.

D.2 Additional Experiments
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Figure 2: Results on CIFAR-10C
for a high level of domain shift
severity.

How does OLS-OFU perform under high severity of domain
shift in the setting of generalized online label shift? In Figure 2,
it is clear that as the domain shift severity increases, OLS-OFU
significantly enlarges the gap compared with OLS. However, it
might be worth pointing out that neither OLS nor OLS-OFU are
better than OFU. This is because the label shift assumption is
violated so severely — even OFU cannot reduce the violation
under an acceptable level, especially when the OLS module exists
in OLS-OFU, as the adaptation to distribution shift is far off. For
results involving higher levels of severity, different corruption
types, and SSL techniques, please refer to Section D.7.

Does Equation 5 hold empirically? In Section C.1, we argued
that when the inequality in Equation 5 holds, the loss of FLHFTL-
OFU exhibits a tighter upper bound compared to FLHFTL. Fig-
ure 3 presents the RHS (corresponds to OLS) and LHS (corre-
sponds to OLS-OFU with SSL loss as rotation degree prediction)
of Equation 5. We perform the study over cross eight different settings, varying types of domain
shift and online shift pattern, which empirically validates that OLS-OFU yields improvements on the
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baseline of the regret as shown in Equation 5. Section D.8 validates this inequality for other SSL
techniques.
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Figure 3: Empirical examination for the holdness of
Equation 5. Clean denotes the experiment on CIFAR-
10. Gaussion, Fog and Pixelate denote various domain
shifts in CIFAR-10C. They are paired with two online
shift patterns: Sinusoidal and Bernoulli.

Does the order of prediction and update
matter? In the default online distribution
shift framework (Figure ??), model updates
occur after making predictions for samples
at timestep t. This raises the question of
whether the model should be updated be-
fore making predictions. We conducted
empirical evaluations for both the “predict
first” and “update first” approaches and
found no compelling evidence to favor one
over the other (additional results in Sec-
tion D.9). However, it’s noteworthy that
within the “predict first” framework, OLS
and OLS-OFU benefit from robust theoret-
ical guarantees, hence we recommend the
“predict first” approach in practical applications.

D.3 Additional details of datasets

Severity of CIFAR-10C in the experiment. For each type of corruption in CIFAR-10C, we select
a mild level and a high level of severity in the experiment section. Here we introduce the exact
parameters of mild and high levels of severity for those corruptions. For Gaussian Noise, the severity
levels for [mild, high] are [0.03, 0.07]. For Fog, the severity levels for [mild, high] are [(0.75,2.5),
(1.5,1.75)]. For Pixelate, the severity levels for [mild, high] are [0.75, 0.65].

Details of additional datasets. In addition to CIFAR-10 and CIFAR-10C, we evaluate on three
more datasets: STL10 [Coates et al., 2011], CINIC [Darlow et al., 2018], and EuroSAT [Helber et al.,
2019]. Similar to CIFAR-10, we split the original train sets of these datasets into the train set and the
validation set by the ratio 4 : 1 and use the original test sets for sampling test images in the online
test stage.

D.4 Results on Additional Datasets

Figure 4 shows the results for three additional datasets: STL10, CINIC, and EuroSAT, also with OLS-
OFU (rotation degree prediction) under sinusoidal shift setting. In-line with CIFAR-10, we observe
that OLS and OLS-OFU can perform better than Base and OFU, and OLS-OFU can outperform OLS.
We find this pattern to be more consistent for EuroSAT and STL10 than CINIC.

D.5 More Results on CIFAR-10

Figure 5 shows the results on CIFAR-10 for Bernoulli shift cross three SSL methods in OLS-OFU.
Similar to Figure 1(a), OLS-OFU within all three SSL methods outperforms all baseline methods.

D.6 More Results on CIFAR-10C

We evaluate three SSL methods in OLS-OFU on CIFAR-10C for two online shift patterns. We pick
moderately high severity levels for evaluating CIFAR-10C. In Figure 6 we can observe the consistent
improvement from OLS to OLS-OFU and the SOTA performance of OLS-OFU.

D.7 More Results on CIFAR-10C with High Severity

We evaluate three SSL methods in OLS-OFU on CIFAR-10C with high severity for two online shift
patterns. In Figure 7, we can observe when SSL in OLS-OFU is rotation degree prediction or MoCo,
the improvement from OLS to OLS-OFU is very significant but OLS-OFU cannot outperform OFU.
The conclusion is similar to the discussion for Figure 2 in Section 4. However, OLS-OFU with
SSL entropy minimization has different behavior. When the corruption of CIFAR-10C becomes
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(a) STL10 (b) CINIC (c) EuroSAT
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Figure 4: Results for additional datasets STL10, CINIC and EuroSAT.
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Figure 5: Results of Bernoulli shifts on CIFAR-10. OLS-OFU is evaluated with three SSL methods.

more severe, OLS-OFU entropy minimization shows less improvement from OLS, if we compare
the transition: Figure 6 (clean CIFAR-10), Figure 6 (CIFAR-10C with mild severity), Figure 7
(CIFAR-10C with high severity). This suggests that rotation degree prediction and MoCo are more
appropriate SSL to address the domain shift from CIFAR-10 to CIFAR-10C.

D.8 Empirical evaluation for Equation 5

Figure 8 shows the comparison between LHS (OLS-OFU) and RHS (OLS) of the inequality in
Equation 5 when the SSL in OLS-OFU is entropy minimization or MoCo. Similar to what we observe
in Figure 3, the inequality in Equation 5 holds cross 4 data settings and two online shift patterns when
OLS-OFU is implemented with entropy minimization or MoCo.

D.9 Ablation for the order of updates and predictions

In the default framework of online distribution shift as shown in Figure ??, the model updates happen
after the predictions for the samples at time step t. We would like to see if the model updated
before the predictions would bring benefit. Figure 9 shows the comparison between "predict first"
and "update first". We can observe that there is no strong evidence to demonstrate the advantage
of "predict first" or "update first" – the difference is indeed insignificant. However, because in the
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(a) Sinusoidal Shift, Rotation Degree Prediction
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(b) Bernoulli Shift, Rotation Degree Prediction
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(c) Sinusoidal Shift, Entropy Minimization
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(d) Bernoulli Shift, Entropy Minimization
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(e) Sinusoidal Shift, MoCo
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(f) Bernoulli Shift, MoCo
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Figure 6: Results of two online shift patterns on CIFAR-10C and three SSL methods in OLS-OFU.
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(a) Sinusoidal Shift, Rotation Degree Prediction

(b) Bernoulli Shift, Rotation Degree Prediction

(c) Sinusoidal Shift, Entropy Minimization
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(d) Bernoulli Shift, Entropy Minimization

����
 ��
 ���	 ����� ���	 ��
����
������ ����

�	

�


��

��

��

�	

�


��


�
��

��
��

�

��!�����������

(e) Sinusoidal Shift, MoCo

(f) Bernoulli Shift, MoCo
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Figure 7: Results of two online shift patterns on CIFAR-10C (high severity) and three SSL methods
in OLS-OFU.
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(a) Entropy minimization

(b) MoCo

Figure 8: Sanity check for the inequality E
[
1
T

∑T
t=1 ℓ(g(·; f ′′

t , qt/q0);Ptest
t )

]
<

1
T

∑T
t=1 ℓ(g(·; f0, qt/q0);Ptest

t ) (Equation 5) when SSL in OLS-OFU is entropy minimiza-
tion or MoCo.
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(a) OLS-OFU on CIFAR-10
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�
�� 
�� ���� 	��	� ���� 
���
��
������&�#�%

��

��

��

��

�	

��

�$
$#

$�
��

�


�$"#'!! ��� �&���#&�& #"����$����$�� �& #"

Figure 9: Ablation for the order of updates and predictions.

framework of "predict first" OLS and OLS-OFU enjoy strong theoretical guarantees, we recommend
"predict first" in practice.

D.10 Details of SSL Methods

Rotation degree prediction involves initially rotating a given image by a specific degree from the
set {0, 90, 180, 270} and the classifier is required to determine the degree by which the image has
been rotated. It requires another network fdeg to predict the rotation degree, sharing the same feature
extractor θfeat as f0 but with a different set of downstream layers. Its SSL loss ℓssl(S; f) is defined
as
∑

x∈S ℓce(f
deg(R(x, i)), i), where i is an integer uniformly sampled from [4], and R(x, i) is to

rotate x with degree DL[i] from a list of degrees DL = [0, 90, 180, 270].

Entropy minimization utilizes a minimum entropy regularizer, with the motivation that unlabeled
examples are mostly beneficial when classes have a small overlap. ℓssl(S; f) would be the entropy∑

x∈S

∑K
k=1 f(x)k log f(x)k.
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Figure 10: Evaluating OLS-OFU with different batch accummulations for MoCo on CIFAR-10.

Moreover, MoCo is a more advanced representation learning technique, using a query and momentum
encoder to learn representations from unlabeled data by maximizing the similarity of positive pairs
and minimizing the similarity of negative pairs. The SSL loss would be a contrastive loss (InfoNCE)
where the positive example x′ is an augmented version of x and other samples in the same time
step can be the negative examples. However, the batch size for a time step is small, e.g. 10 in our
experiment. MoCo updates with such a small batch won’t work. Thus, we experiment with MoCo by
applying a batch accumulation strategy, which we introduce next.

D.10.1 Batch accumulation for MoCo

Prior test-time training (rotation degree prediction, entropy minimization) methods operate with the
OFU framework easily, with feature extractor updates taking place in each time step. Rotation degree
prediction originates as a self-supervised training method [Gidaris et al., 2018], thus naturally we
evaluate more recent self-supervised training methods, namely MoCo [He et al., 2019, Chen et al.,
2020b, 2021]. No prior work shows how to use MoCo (or self-supervised learning in general) in a
test-time training setting. Given that self-supervised training is sensitive to batch size, the intuition is
that a larger batch size (much larger than the number of online samples available per time step) is
required to perform a valid gradient update for a MoCo checkpoint. As such, we evaluated a batch
accumulation strategy OLS-OFU (BA=τ ), where we continue evaluating online samples per time
step, but only perform the online feature update at every τ steps (having accumulated the online
samples throughout the τ steps in one batch). In particular, we perform feature extractor update every
τ = 50 steps (for 1000 steps, feature update occurs 20 times, online samples evaluation occurs 1000
times), evaluating with 10 online samples per time step, using a smaller learning rate (0.0005) but
test-time train with 10 epochs. Notice that τ = 1 is the default setting in Algorithm 1. OLS-OFU
with MoCo presented in Figure 1, Figure 5 and Figure 6 is equivalent to OLS-OFU (BA=50).

To show the necessity of large τ , we evaluate both OLS-OFU (BA=1) and OLS-OFU (BA=50) on
CIFAR-10 (Figure 10) and CIFAR-10C (Figure 11). Firstly, we can observe that OLS-OFU (BA=1)
is even worse than OLS. We hypothesize this is because small batch size of MoCo will hurt the
performance and larger batch size in MoCo is necessary. Hence, we increase τ from 1 to 50 and then
we can observe the significant improvement from OLS-OFU (BA=1) to OLS-OFU (BA=50). Now,
OLS-OFU (BA=50) can outperform OLS.

D.11 Self-training

Pseudo labelling [Lee, 2013], a common self-training technique, generates pseudo labels for unla-
belled data and uses them to update the model. Though we are not able to use ground-truth labels to
compute feature extractor updates, we can use the model at time t to make predictions with respect to
the online samples at time t, and train on the inputs with their assigned (pseudo) labels. An issue that
arises in self-training is confirmation bias, where the model repeatedly overfits to incorrect pseudo-
labels. As such, different methods can be used to select which samples will be pseudo-labelled and
used in updating the model, e.g. using data augmentation [Arazo et al., 2020], using regularization
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Figure 11: Evaluating OLS-OFU with different batch accummulations for MoCo on CIFAR-10C.

to induce confident low-entropy pseudo-labelling [Grandvalet and Bengio, 2004a], using softmax
thresholds to filter out noisy low-confidence predictions [Xie et al., 2020]. We make use of ensembles
to identify noisy low-confidence/entropy pseudo-label predictions, though other various alternatives
can also be used. In addition to OLS and OLS-OFU, we highlight the methods under comparison:

• OLS-OFU (ℓsup(·, yground-truth)): Instead of computing pseudo-labels, we make use of the
correct ground-truth labels yground-truth. Recall ℓsup is the supervised learning loss. We update
the feature extractor with the supervised loss w.r.t. ground-truth labels ℓsup(·, yground-truth).

• OLS-OFU (ℓssl + ℓsup(·, yground-truth)): Instead of computing pseudo-labels, we make use
of the correct ground-truth labels yground-truth. Recall ℓssl and ℓsup are the self-supervised
and supervised learning losses respectively. We update the feature extractor with both
the self-supervised loss ℓssl as well as the supervised loss w.r.t. ground-truth labels
ℓsup(·, yground-truth).

• OLS-OFU (ℓssl + ℓsup(·, ypseudo-label(#samples=, #FU-samples=))): Recall ℓssl and ℓsup are the
self-supervised and supervised learning losses respectively. We compute pseudo-labels
ypseudo-label), and update the feature extractor with both the self-supervised loss ℓssl as well
as the supervised loss w.r.t. pseudo-labels ℓsup(·, ypseudo-label).

How to compute pseudo-labels? We now describe the procedure to compute pseudo-labels for
ℓsup(·, ypseudo-label(#samples=, #FU-samples=)). The seed used to train our model is 4242, and we train an
additional 4 models on seeds 4343, 4545, 4646, 4747. With this ensemble of 5 models, we keep
sampling inputs at each online time step until we have #FU-samples samples, or we reach a limit
of #samples samples. We accept an input when the agreement between the ensembles exceeds a
threshold e = 1.0 (i.e. we only accept samples where all 5 ensembles agree on the label of the online
sample). In the default online learning setting, there are only #samples=10, and therefore there may
not be enough accepted samples to perform feature update with, thus we evaluate with a continuous
sampling setup, where we sample #samples=50 (and evaluate on all these samples), but only use the
first 10 samples (#FU-samples=10) to perform the feature extractor update.

Results on pseudo-labelling. First, we find that OLS-OFU (ℓssl + ℓsup(·, yground-truth)) attains
the lowest error and is the lower bound we are attaining towards. Evaluating OLS-OFU (ℓssl +
ℓsup(·, ypseudo-label(#samples=10, #FU-samples=10))), we find that the performance does not outperform OLS-
OFU, and is not near OLS-OFU (ℓssl + ℓsup(·, yground-truth)). If we set the threshold e too high, there
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(a) number of online samples: 10 (b) number of online samples: 50
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Figure 12: Results on pseudo-labelling.

may not be enough online samples to update the feature extractor. If we set the threshold e too
low, there may be too many incorrect labels and we incorrectly update our feature extractor. As
such, we would like to sample more inputs at each online time step such that we can balance this
tradeoff. We sample #samples=50 at each online time step, and update with #FU-samples ≤ 10. For
fair comparison, we also show the comparable methods in both #samples=10, #FU-samples=10 and
#samples=50, #FU-samples=50 settings.

With this sampling setup, we find that OLS-OFU (ℓssl + ℓsup(·, ypseudo-label(#samples=50, #FU-samples=10)))
can outperform both OLS-OFU (#samples=10) and OLS-OFU (#samples=50). Though it does not
exceed neither OLS-OFU (ℓssl + ℓsup(·, yground-truth)) for #samples=10 nor #samples=50, it lowers the
gap considerably.
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