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Abstract

Understanding model uncertainty is important for many applications. We propose
Bootstrap Your Own Variance (BYOV), combining Bootstrap Your Own Latent
(BYOL), a negative-free Self-Supervised Learning (SSL) algorithm, with Bayes
by Backprop (BBB), a Bayesian method for estimating model posteriors. We find
that the learned predictive std of BYOV vs. a supervised BBB model is well cap-
tured by a Gaussian distribution, providing preliminary evidence that the learned
parameter posterior is useful for label free uncertainty estimation. BYOV im-
proves upon the deterministic BYOL baseline (+2.83% test ECE, +1.03% test
Brier) and presents better calibration and reliability when tested with various aug-
mentations (eg: +2.4% test ECE, +1.2% test Brier for Salt & Pepper noise).

1 Introduction

Quantifying epistemic uncertainty (Hora, 1996) is of crucial importance as we increase the use of
machine learning models in daily applications (OpenAl, 2023; Chowdhery et al., 2023; Rombach
et al., 2022). This task is well suited for Bayesian machine learning, which replaces point estimates
of parameters with a posterior distribution that captures epistemic uncertainty about each parame-
ter’s value. While this posterior is typically intractable, we can approximate it using sampling-based
methods (Metropolis & Ulam, 1949; Neal et al., 2011; Izmailov et al., 2021) or Stochastic Vari-
ational Inference (SVI) (Hoffman et al., 2013) A Bayesian approach facilitates principled model
selection (MacKay, 1992; Lotfi et al., 2022) and provides informed decisions that minimize the
need for exhaustive hyperparameter searches (Snoek et al., 2012; Lotfi et al., 2022).

Despite its importance, the landscape of uncertainty estimation and calibration within SSL remains
relatively unexplored, with limited works addressing this critical aspect (Hendrycks et al., 2019;
Bui & Maifeld-Carucci, 2022; Gowal et al., 2021), with none taking a Bayesian approach. We
show that SVI approaches—specifically, Bayes by Backprop (BBB)—can be used to learn parameter
posteriors in SSL, despite the large scale of models and the absence of a likelihood.

The resulting parameter distributions can be used to provide uncertainty quantification in down-
stream tasks. It can also give insights about the structure of our model. Modern neural networks
are overparameterized (Hu et al., 2021) and most of the common regularisation or pruning methods
today are based only on weight magnitudes (Frankle & Carbin, 2018). We show that pruning based
on the signal to noise ratio (SNR) ratio of the parameter posterior preserves better performance than
magnitude-based pruning in SSL models, extending related findings from the supervised setting
(Graves, 2011; Blundell et al., 2015)
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1.1 Contributions

* We propose an algorithm that extends BBB to the SSL setting. Unlike most Bayesian neural
networks that work with small models and datasets (e.g., Blundell et al., 2015; Wang et al.,
2016; Wen et al., 2018), we scale BBB to Vision Transformers (Dosovitskiy et al., 2020), and
train our models on ImageNet-1k (Deng et al., 2009).

* We explore the impact of prior choices on the Bootstrap Your Own Variance (BYOV) poste-
rior, and demonstrate that the resulting uncertainty estimates are distributionally aligned with
outputs from a Bayesian supervised model.

* We compare SNR pruning (Graves, 2011) with magnitude based pruning (without retraining)
in the SSL setting — SNR pruning is up to 12% better accuracy with a 25% sparser model.
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(a) BYOL and BYOV Architecture. (b) Predictive std of supervised BBB vs BYOV.

Figure 1: (a) The standard BYOL architecture is shown in black and modifications required for BYOV are
highlighted in red. The BYOV student is parameterized with an Isotropic Gaussian approximate parameter
posterior. The teacher is the Exponential Moving Average (EMA) of the Maximum a Posteriori (MAP) stu-
dent parameters. (b) Predictive test set standard deviation for supervised BBB versus BYOV overlaid with a
Gaussian KDE fit. The predictive std relationship is well captured by a Gaussian distribution, highlighting dis-
tributional alignment. Models evaluated over the ImageNet1k test set using 1000 MC draws per sample from
the approximate parameter posterior, g(w|0). Both models are trained with the same § = 0.0 +— 1.0 schedule.

2.1 Bayes-by-Backprop

Estimation of the parameter posterior, p(w|D), is central to Bayesian learning. BBB (Blundell
et al., 2015) learns the parameters 0 of an approximate posterior, g¢(w|0), by minimizing the KL-
divergence against the true posterior. Since the KL-divergence cannot be evaluated directly, we
maximize an alternative objective called the Evidence Lower Bound (ELBO) (Dayan et al., 1995)

ELBO(0; D, w) = Eq(w|o) [log p(DIw)] - f KL (q(w[6)[|p(W)), (1)
where f > 0 is a Lagrange multiplier (Higgins et al., 2016). When f = 1, maximizing the ELBO

is equivalent to minimizing KL (q(w|0)||p(w|D)). In practice, setting f < 1, approximating a cold
posterior, improves predictive performance (Osawa et al., 2019; Wenzel et al., 2020).

2.2 Bootstrap Your Own Latent (BYOL)

BYOL is a negative-free student-teacher distillation framework that minimizes the cosine similarity
between a teacher model and an online student model (Figure 1a). The student comprises three net-
works: an encoder, a Multi-Layer Perceptron (MLP) projector, and a MLP predictor. The teacher
model is the exponential moving average of the student encoder and projector. The predictor intro-
duces an asymmetry between the branches and is a necessary component to prevent collapse (Grill
et al., 2020). BYOL is trained by inferring two different augmentations of the same image through
both the student and teacher models and minimizing the cosine similarity between the induced rep-
resentations. After training we can drop the predictor and projector networks and use the student or
teacher encoder representations for downstream tasks, such as image classification.

3 BYOV: A Bayesian SSL method

Here we describe BYOV (Figure 1a), which couples BBB with BYOL.? BYOV learns a distribution
over the parameters of the student model, and uses the student MAP to update the teacher parameters.

3We discuss our choice of BBB in Appendix B and include more implementation details in Appendix C.
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Figure 2: Prior ablation. All metrics here are for in-domain test set using the mean of the student parameter pos-
terior, p, for inference. The best BYOV models outperform the deterministic BYOL model for ECE (+2.83%)
and reliability (+1.03%), but underperform in top-1 (-0.4%), top-5 (-0.22%) and resolution (-0.57%).

BBB typically approximates the posterior distribution over weights, specified in terms of a prior
p(w) and a likelihood p(D|w). However, BYOL does not use a likelihood—our loss is based on the
cosine similarity between two representations. Instead, we estimate a generalized posterior (Bissiri
et al., 2016), p(w|D) o« p(w) exp{—L(w, D)}, where L(w, D) is an arbitrary loss term — in our
case, cosine similarity. We therefore minimize the generalized ELBO (Knoblauch et al., 2019),*

Generalized ELBO = Ey(yjg)[L(W, D)] — B KL[g(W[0)|[p(W)]. 2)

In theory, the prior p(w) captures our beliefs about parameter values. In the context of neural
networks, these priors can be hard to define (Vladimirova et al., 2019; Fortuin et al., 2022). This has
led to many Empirical Bayes methods that learn a data dependent prior (Tomczak & Welling, 2018;
Bornschein et al., 2017; Wu et al., 2018; Ramapuram et al., 2021). In this work, we consider three
priors: (i) a N(0,I) used by Blundell et al. (2015), (ii) N (ur,I), using teacher weights as a data

informed estimates for the prior means, and (iii) N (pr, X7), where X = diag(92T - éZT), using the
variance of the means (for this we keep an EMA of the second order term ézT = yézT +(1-y) pg.).

4 Results
4.1 Ablations

We explore the impact of different prior choices in Figure 2, which shows accuracy, Expected Cal-
ibration Error (ECE) (Guo et al., 2017) and Brier metrics (Gneiting & Raftery, 2007) based on the
MAP parameters, across a range of values of 5. We find using the posterior mean (obtained by MC
sampling) leads to improved results (e.g., 0.34% higher accuracy with N (0,I) prior and § = 0.3),
but is more expensive to compute.

The N (0, I) prior achieves comparable accuracy to a deterministic BYOL model, and improved ECE
and reliability. We find little difference between a NV (0, I) prior and a N'(pup, I) prior, with the former
performing slightly better. We hypothesize that this is because the overall performance of the neural
network is relatively invariant to constant shifts in the weights. However, we see notably worse
performance using N (pp, Zr). This prior actively pulls the student towards the teacher (since Xt
is typically fairly small), so we hypothesize that this prior does not encourage sufficient difference
between teacher and student. In addition, analysis of parameter logs suggest this prior leads to
training instabilities, likely because the prior is dynamically varying over training.

4.2 Exploring the posterior distribution

Since BBB explicitly evaluates the posterior over weights, we are able to explore the distribution
of posterior variance over network layers. In addition, we are able to analyse the evolution of this
uncertainty over training. In Figure 3, we plot the the mean and maximum value of the learned
standard deviation o and SNR |y|/o, over training for each layer 5. We observe that the choice of
prior makes a large difference on the learned layer-wise standard deviations. However, if we look at
the posterior SNR (Figure 3), we see more similarity across priors, particularly between N (0, I) and
N (ur, 1), supporting the idea that performance is relatively invariant to rescaling. In Appendix E,
we show that SNR trajectories remain similar under different choices of f (Figure 6).

4Note, the term generalized ELBO has been used to describe multiple modifications to the ELBO (e.g.,
Chen et al., 2018; Domke & Sheldon, 2018). We specifically refer to the form arising from the “Rule of Three”
proposed by Knoblauch et al. (2019).

5Since BBB updates the natural parameters of the parameter posterior at each step of the optimization
process, each minibatch will induce a separate weight, which we then aggregate over each dataset epoch.
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Figure 3: Prior layerwise o (left) and SNR (right) evolution. All models are trained with § : 0.0 — 1.0. Top:
layerwise std mean. Bottom: layerwise std max. The layerwise o trajectories appear different for three different
priors. By contrast, the SNR evolution dynamics (including their maximum values) follow a similar trend.

4.3 Does BYOV capture meaningful model uncertainty?

A natural question that arises is whether the learned posterior distribution captures uncertainties
that are relevant to downstream tasks. To assess this, in Figure 1b we look at the relationship
between uncertainty of the BYOV predictive distribution, and uncertainty under a supervised BBB
model. We observe that the relationship between the predictive standard deviation of both models
can be suitably captured using a Gaussian, which gives credence to using BYOV as a proxy for the
uncertainty of a supervised BBB model. We also look at how incorporating BBB impacts prediction
quality, by looking at ECE and Brier reliability score. Previous work on supervised models suggests
that BBB improves calibration and reliability (Ovadia et al., 2019). In Figure 4 (Center/Right)
we also observe improved calibration on the in-distribution data (ImageNet Test). In an out-of-
distribution task, we see improved calibration and reliability on many types of augmentation, but
notably worse reliability and calibration under shearing and Gaussian augmentations.
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Figure 4: Left: SNR vs. magnitude based pruning. Center : Relative Brier reliability between BYOV and
deterministic BYOL. Right: Relative ECE between BYOV and deterministic BYOL.

4.4 Pruning

A high posterior variance indicates that the model lacks confidence in a weight’s value. We can use
this to prune the network, removing weights where the network lacks confidence. Since network
performance can be invariant to weight scale, we follow Blundell et al. (2015) and use SNR for
pruning, keeping the xth percentile per layer. In Figure 4 (Left), we show that this achieves better
performance than magnitude-based pruning (Frankle & Carbin, 2018), with a sparser model. To
simplify our analysis, we do not retrain either model as in Frankle & Carbin (2018).

5 Conclusion

In this work, we introduce BYOV, a method to learn model uncertainty in a label free manner. We
explore posterior performance and show that the resulting layerwise SNR is a good metric for model
pruning. We show that posterior variance is correlated with that of supervised models, suggesting
the distributions can be used for approximate inference in downstream tasks.
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B Discussion — Why BBB?

We choose Bayes by Backprop (BBB) as our Bayesian estimator because of its theoretical scalability
and the findings from Ovadia et al. (2019), which highlight the competitive performance of Stochas-
tic Variational Inference (SVI) methods for uncertainty estimation. The authors demonstrate that
BBB outperforms Expectation Propagation (Minka, 2001), Monte Carlo Dropout (Gal & Ghahra-
mani, 2016), and last layer (LL) Bayesian variants (Riquelme et al., 2018) in terms of Expected
Calibration Error (ECE) (Guo et al., 2017) and Brier score (Gneiting & Raftery, 2007; Brocker,
2009).

Although BBB presents a concrete algorithm to learn posterior variances, it draws only one poste-
rior weight variate per minibatch. While being an unbiased estimate, this can potentially be high
variance. Towards that end, Flipout (Wen et al., 2018) aims to mitigate the high variance estimate
through weight perturbation. However, since Self-Supervised Learning (SSL) methods typically
rely on large batch training, we find that this negates the need for such strategies. The authors also
confirm this in Appendix E2 (Wen et al., 2018) where they train with a batch size of 8192 which is
equivalent in our setting.

C Training details

Modifications to Bootstrap Your Own Latent (BYOL) To keep consistency with the baseline
SSL method we closely follow the model architecture and hyper-parameters defined for BYOL
(Richemond et al., 2020) with alterations made to support Vision Transformers (Dosovitskiy et al.,
2020; Busbridge et al., 2023). However, naively applying BBB to BYOL does not work out-of-the-
box and required following changes:

* Removal of weight decay: BYOL default recipe includes weight decay. We remove weight
decay as it interferes with the learning dynamics when coupling BBB with BYOL. The KL
loss term already introduces a regularisation effect and explicitly pulls towards a prior.

* KL annealing: a commonly applied practice in latent variable stochastic inference is to
use a schedule for the KL divergence (Sgnderby et al., 2016). We find that this also helps
to improve the downstream tasks performance in Bootstrap Your Own Variance (BYOV)
paradigm.

In addition, we made a number of changes to the BBB algorithm, in order to encourage stability:

« Initialization of o?: When learning o? as a free parameter a non-negativity constraint
needs to be enforced, we use exponential function for this whereas Blundell et al.
(2015) uses Softplus. Log-variances are initialized with -10. Means are initialised using
trunc_normal(std=0.02) (Touvron et al., 2021). Other details: To keep consistency with
the baseline SSL. method we closely follow the model architecture and hyper-parameters
defined for BYOL (Richemond et al., 2020) with alterations made to support Vision Trans-
formers (Dosovitskiy et al., 2020; Busbridge et al., 2023).

* Scheduling . Previous work has indicated that annealing the  weight applied to the KL
term in the ELBO from zero to the desired value yields improved performance over using
a fixed value of 5. We found this to be the case in practice.
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Figure 5: Mean and standard deviation of predictive distribution under different dataset augmentations. Model
was trained with a scheduled § : 0.0 — 1.0. The standard deviation of the expectation converges to 0 and the
expectation appears stable. This is consistent across models.

D MC number of samples estimate

To evaluate the posterior predictive distribution we infer each input sample, x ~ p(x), using K draws
from the parameter posterior, {wl-}ll.(= ; ~ q(w|6). Previous work uses thirty MC draws (Maddox
et al., 2019; Lotfi et al., 2022; Daxberger et al., 2021), but does not justify the validity of this
decision. We ablate this in Figure 5 using the entire test set of ImageNetlk (50,000 samples). We
sample the posterior from one to fifty times per sample (x50 bootstrap) and evaluate the predictive
mean and standard deviation. To provide a tighter estimate, we use 1000 MC draws in Figure 1a(b).

E Exploring the posterior distribution: Additional results
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Figure 6: SNR ( |u|/o ) with different KL-f schedules. All schedules start from 0.0 and follow a single cycle
cosine to end at the § described in the title. All models present similar trajectories over training, but vary slightly
for their maximum (bottom row). The values and patterns are mostly identical between all three models. We
can see a trend for the growing bundle of lines that achieve smaller values along with increasing . These lines
correspond to the projector and predictor.
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In Section 4.2, we looked at how SNR varied across different priors, showing the layerwise SNR is
relatively invariant to the choice of prior. In Figure 6, we repeat this analysis using varying values of
the KL weight § (with a N'(0, 1) prior). We find that § has a fairly small impact on the SNR values.

F Increasing Gaussian noise

Figure 7 shows posterior predictive variances obtained at three points in the model: after the en-
coder layer; after the projector, and after the predictor heads (see Figure 1a). Each point represents
an image augmented with Gaussian noise; the color of each point represents the strength of the
augmentation. We see positive correlation between uncertainty at each location. Moreover, as the
amount of noise increases, the average variance increases, as we would expect. Meanwhile, the
variation in the variances decreases, as images become increasingly close to pure Gaussian noise,
hence, the variance become more concentrated.

Encoder VS Tracking head head variance Encoder VS Projector head variance Projector VS Predictor head variance

for different gaussian noise strength, for different gaussian noise strength, for different gaussian noise strength,
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Figure 7: Variance of latent variables from different model parts. The stonger gaussian noise is, the less
meaningful features can be extracted from the encoder, hence, the variances of predictive distribution become
more concentrated. Each point is based on M = 50 weights MC sample (App.D).

G Should the whole network be Bayesian?

Previous work has also questioned whether an entire network needs to be Bayesian (Sharma et al.,
2023; Gast & Roth, 2018; Ovadia et al., 2019). A common reason for a partial Bayesian network
is due to the incurred memory overhead used to learn the natural parameters of the distribution.
While an Isotropic Gaussian BBB doubles parameter counts, the effective memory footprint of the
model does not grow proportionally. Typically, the majority of accelerator memory is dominated by
activation gradients and not model parameters (Chen et al., 2016). After reparameterization (Mo-
hamed et al., 2020), the effective activation size is equivalent to the Maximum Likelihood Estimation
(MLE) case for every layer, thus incurring only a minimal practical overhead for being Bayesian.

In Table 1, we retrain a subset of BYOV models by keeping part of the network Bayesian. In
particular, we explore using a point estimate for all LayerNorm layers and the convolutional patcher
used in vision transformers. In contrast to previous findings we observe that using a fully Bayesian
model (Fig. 2) presents the best performance amongst the class of BBB models.

BBB Prior Bstart  Pena  top-17T top-5 T
conversion Type (student) (student)

No Conv N(0,1) 0.0 1.0 73.68 91.43

BBB N (ur, 1) 73.97 91.52

N(pp, X7) 69.73 88.74

Linear N(0,1) 0.0 1.0 73.62 91.12

Only BBB N(up, 1) 74.23 91.48

N(0,1) 1.0 1.0 72.60 90.92

N(up 1) 72.69 91.03

No BBB (baseline) 75.97 92.40

Table 1: All metrics are computed on the in-domain test set and uses the posterior mean, , for inference.
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H Contributions

All authors contributed to writing this paper, designing the experiments, discussing results at each
stage of the project.

Preliminary work Formulation of BBB coupled with SSL developed by Polina Turishcheva, Ja-
son Ramapuram and Sinead Williamson. Idea refined in discussions with Dan Busbridge, Eeshan
Dhekane and Russ Webb.

Generalized ELBO formulation Relationship of ELBO to the generalized posterior and related
formulations developed by Sinead Williamson (Section 2.1, Section 3).

Pruning Experiments written by Polina Turishcheva in discussions with Russ Webb (Figure 4)-
Left.

Briar reliability and ECE analysis Conducted by Polina Turishcheva (Figure 4 - Center, Right
and Figure 7).

Layerwise variance and SNR exploration Conducted by Polina Turishcheva in discussions with
Sinead Williamson and Jason Ramapuram (Figure 3, Figure 6).

Monte Carlo Variance Estimates Preliminary explorations into Monte Carlo repeats (Figure 5)
and estimating predictive distribution done by Polina Turishcheva in discussions with Sinead
Williamson and suggestions from Dan Busbridge and Russ Webb (Figure 7). Large sample Monte-
Carlo estimate experiment (Figure 1b) and improvements noted in Section 4.1 for top-1 done by
Jason Ramapuram.

Data dependent priors Discussions between Jason Ramapuram, Polina Turishcheva, Sinead
Williamson and Dan Busbridge led to exploring various priors (Figure 2). Code written by Jason
Ramapuram and validated by Eeshan Dhekane.

Should the whole network be Bayesian? Explored by Jason Ramapuram in discussions with
Polina Turishcheva and Sinead Williamson (Appendix G).

Implementation details Code for baseline BYOL ViT written by Jason Ramapuram. BYOV im-
plementation written by Polina Turishcheva and Jason Ramapuram. Reviewed by Eeshan Dhekane.
Tikz wizardry done by Dan Busbridge.
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