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Abstract

Joint embedding (JE) architectures have emerged as a promising avenue for ac-
quiring transferable data representations. A key obstacle to using JE methods,
however, is the inherent challenge of evaluating learned representations without
access to a downstream task, and an annotated dataset. Without efficient and re-
liable evaluation, it is difficult to iterate on architectural and training choices for
JE methods. In this paper, we introduce LiDAR (Linear Discriminant Analysis
Rank), a metric designed to measure the quality of representations within JE archi-
tectures. Our metric addresses several shortcomings of recent approaches based
on feature covariance rank by discriminating between informative and uninforma-
tive features. In essence, LiDAR quantifies the rank of the Linear Discriminant
Analysis (LDA) matrix associated with the surrogate SSL task—a measure that
intuitively captures the information content as it pertains to solving the SSL task.
We empirically demonstrate that LiDAR significantly surpasses naive rank based
approaches in its predictive power of optimal hyperparameters. Our proposed cri-
terion presents a more robust and intuitive means of assessing the quality of rep-
resentations within JE architectures, which we hope facilitates broader adoption
of these powerful techniques in various domains.

1 Introduction

In recent years, self-supervised learning (SSL) has emerged as a pivotal technique for pretraining
representations on extensive, unlabeled datasets, thus effectively alleviating the often burdensome
labeling requirements (Chen et al., 2020; Assran et al., 2023; Chen & He, 2020; Caron et al., 2021;
Bardes et al., 2021; Caron et al., 2018, 2020; Baevski et al., 2022; Zbontar et al., 2021; He et al.,
2021; HaoChen et al., 2021; Grill et al., 2020). However, despite the remarkable progress made in
SSL, assessing the quality of representations acquired through this method remains an open problem.
This challenge is further amplified when considering Joint Embedding (JE) architectures, which
notoriously suffer from uninterpretable loss curves that offer little clue to assess the progression of
training. The conventional and widely adopted approach involves evaluating model performance
by employing these representations in downstream tasks. Nevertheless, when the objective is to
learn versatile representations applicable across diverse domains, this method demands substantial
investments of time and resources to comprehensively evaluate performance across a multitude of
tasks and datasets. Alternatively, limiting assessments to only a few datasets and tasks undermines
confidence in the evaluation process.

As a result, a fundamental question arises: Can we effectively evaluate the quality of learned repre-
sentations without relying on explicit downstream task evaluations? Addressing this inquiry neces-
sitates the precise definition of ”quality” in the context of representations. Subsequently, we must
explore statistical estimators capable of quantifying this quality without depending on downstream
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evaluations. Beyond its theoretical implications, such a metric holds significant practical value, as it
aids in model selection and the development of novel SSL algorithms.

Recent literature has introduced metrics that share a common foundation, relying on statistics de-
rived from the empirical covariance matrices taken at different layers of the model (Garrido et al.,
2022; Agrawal et al., 2022b). Notably, the recently introduced RankMe (Garrido et al., 2022) method
shows that the rank of the embeddings (closely related to the rank of the feature covariance) cor-
relates surprisingly well with downstream performance, demonstrating SOTA results in label free
hyperparameter selection. W refer the interested reader to Appendix A for the definition and details
of RankMe. In this paper, we build upon RankMe by proposing a simple modification to the feature
covariance matrix on which the rank is calculated, which significantly and consistently improves its
predictive power of downstream performance. Our method, which we refer to as LiDAR, is moti-
vated by a simple observation: the covariance spectrum can be easily and arbitrarily manipulated,
and this manipulation is often encouraged by implicit or explicit regularizations in the SSL objec-
tives. Consequently, a representation with a full rank covariance matrix may result from spurious
factors rather than representing rich semantic features. As a result, even though methods such as
RankMe demonstrate impressive results, we show that non-trivial additional gains can be had rather
effortlessly. We summarize our contributions in the following: a) We introduce LiDAR, a method for
assessing representation quality of JE SSL objectives, and theoretically motivate it. LiDAR uses the
SSL objective in its definition, providing a more intuitive and robust metric for assessing SSL repre-
sentations. b) We conduct a comprehensive set of experiments spanning multiple JE architectures,
both Transformer (Dosovitskiy et al., 2021) and ResNet He et al. (2016) based backbones. These
include contrastive and regularized methods, as well as newer models such as I-JEPA (Assran et al.,
2023) and data2vec (Baevski et al., 2022), which leverage masking techniques. We demonstrate that
the LiDAR metric correlates significantly and consistently higher with downstream linear probing
performance than RankMe as measured by both the Spearman Rank and Kendall rank correlation
coefficient or Kendall’s τ . c) We show that LiDAR demonstrates consistently strong performance
in hyperparameter selection, outperforming RankMe. We further demonstrate this capability in ran-
domized trials, where multiple hyperparameters are varied simultaneously.

2 Method

Our method is based on linear discriminant analysis (Bishop, 2007), a classical label-aware dimen-
sionality reduction and classification algorithm which we adopt to the multi-view setting common
in the SSL literature. Absent downstream task and labels, we use clean samples as surrogate classes.
For an input distribution D, consider a generic JE architecture with an embedding function e. For
any clean input x, let Dx denote a conditional distribution over all transformed 2 inputs given x.
Define µx = Ex̃∼Dx

[e(x̃)] and µ = Ex∼D[µx]. we define the generalized covariance Σlidar by:

Σlidar(e) = Σw(e)
− 1

2Σb(e)Σw(e)
− 1

2 (1)

where Σb(e) = Ex∼D

[
(µx − µ) (µx − µ)

⊤
]
,Σw(e) = Ex∼DEx̃∼Dx

[
(e(x̃)− µx) (e(x̃)− µx)

⊤
]
+

δIp and δ is a small positive constant, and Ip is the identity matrix of dimension p. Let λ = λ1, ..., λp
be the eigenvalues of Σlidar, then LiDAR is defined by applying the smooth rank measure introduced
in (Roy & Vetterli, 2007) on Σlidar :

LiDAR(e) = exp
(
−
∑
i

pi log pi

)
, pi = ( λi/∥λ∥1) + ϵ (2)

where ϵ is a small positive constant. In practice, we use unbiased estimates of Σw,Σb using hyper-
parameters n, q where n is the numbers of surrogate classes (clean samples), and q is the number of
transformed samples per class. Note that, as in classical LDA, the eigenvalues λ1, ..., λp measure
variance along discriminative directions. Hence, LiDAR(e) takes into account the SSL objective that
is being optimized, and ignores directions of variability in e that are useless in solving the SSL task.
We postulate the existence of such directions, as JE techniques implicitly or explicitly incorporate
measures to preserve representations from collapsing. In simpler terms, some variations in e may
not necessarily arise from high-level semantic features driven by the SSL objective, but rather from
arbitrary attributes influenced by regularization. This phenomenon can clearly be seen in I-JEPA and

2Data augmentations, or otherwise data points which are treated as positive samples
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Figure 1: ViT-Base architecture trained with I-JEPA (Assran et al., 2023) by varying the target mask
scale hyperparametr. We observe that (1) RankMe correlates poorly with downstream performance
for most models, with the exception of the worst performing model, and (2) LiDAR correlates highly
with downstream performance for all models.

Table 1: I-JEPA: Kendall’s τ coefficient between effective ranks of RankMe, RankMe (aug.) and
LiDAR and linear probe accuracy. Hyperparameters include learning rate, weight decay, target and
context mask scales varied via grid or random search. Table 9 shows a breakdown for grid search.

Hyperparameter RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
Search (Student) (Student) (Teacher) (Teacher)

Grid 0.5830 0.7513 0.8159 0.5713 0.6828
Random 0.8314 0.8989 0.8434 0.8487 0.8616

data2vec, where the rank of a representation inflates early on in training, only to rapidly diminish,
with peak downstream performance occurring far from the point of maximal rank. This makes any
standard data covariance rank based measures extremely limited in their ability to spot the point of
optimal performance in a training run. In contrast, LiDAR initiates at a much lower rank and steadily
ascends, more closely aligning with downstream linear probing performance, as depicted in Figure 1
and Figure 14. We delve deeper into the theoretical rationale behind LiDAR in Appendix B.

3 Experimental Results

We present experimental results that show that he LiDAR metric correlates surprisingly well with
downstream performance, as measured by linear probing. In the vast majority of experiments, we see
a significant improvement over RankMe in terms of the Kendall’s τ and Spearman’s rank correlation
to the oracle, and an improved performance in hyperparameter selection. Due to space constraints,
we defer the reader to Appendix C and Appendix E for a comprehensive view of experimental
details, supplementary empirical results, and additional figures. In the main text, we have included
a representative selection to provide an overview.

Tables 1 and 2 present a comprehensive analysis of the results obtained for the I-JEPA. The evalua-
tion involves a comparison between LiDAR, assessed on both the teacher and student branches, and
RankMe, with and without data augmentation, alongside the oracle reference. We observe a general
trend where LiDAR applied on the student branch correlates much higher with the oracle than the
teacher branch. Overall we observe significant outperformance of LiDAR over RankMe applied on
clean and augmented inputs for all hyperparameters tested. A noteworthy observation from Table
2 is that RankMe, when coupled with data augmentation to compute the feature covariance matrix,

Table 2: I-JEPA: Linear probe accuracy recovered by RankMe and LiDAR on ImageNet-1K dataset.
Hyperparameters set via grid search. Table 10 shows detailed breakdown for grid search.

Hyperparameter ImageNet Oracle RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
Search (Student) (Student) (Teacher) (Teacher)

Grid 70.5800 59.8960 67.8680 67.8680 59.8960 67.5420
Random 68.9840 53.3700 53.3700 61.1760 53.3700 66.8880

3



can match LiDAR’s performance for the best-selected model, albeit trailing significantly when data
augmentation is not employed. Table 1 and Table 2 present results from randomized trials where
hyperparameters are randomly sampled within predefined ranges. In these trials, a consistent trend
of LiDAR outperforming both versions of RankMe is evident, as can also be seen in Figure 2. Tables
13a and 13b in the appendix extend our analysis to the data2vec model, and the findings parallel
those observed for I-JEPA. Notably, LiDAR consistently selects more performant hyperparameters
than both variants of RankMe, narrowly missing oracle-level performance.
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Figure 2: I-JEPA: ViT-Base architecture
trained on Imagenet-1K with 20 sets of hy-
perparameters drawn uniformly at random.
Each point represents a checkpoint while the
⋄ marker represents the model selected by
each metric. We observe that (1) LiDAR out-
performs RankMe (Table 1), (2) augmented-
RankMe, our variant of RankMe, shows the
highest correlation (Table 1), and (3) remark-
ably LiDAR outperforms the other methods
in selecting hyperparameters by recovering
the highest downstream performance.

Table 3 summarizes our results for VICReg (Bardes
et al., 2021) and SimCLR (Chen et al., 2020). This
table reports metrics calculated at at the end of
training process, i.e., after 100 epochs of train-
ing. We observe significantly higher correlations
with the oracle performance. Performance over
additional checkpoints are presented in Table 7.
It’s worth highlighting that, with VICReg, LiDAR
achieves optimal results when applied to the repre-
sentation rather than the embedding, as embedding-
based evaluations result in dramatic performance
degradation, a phenomenon aligning with the non-
monotonic relationship between rank and perfor-
mance reported by (Garrido et al., 2022). This illus-
trates that high rank is a necessary but not a sufficient
condition for high performance. Further validation
of LiDAR’s efficacy in hyperparameter selection is
provided in Appendix Table 5, where the method
achieves results that are within a fraction of a per-
centage point from oracle-level performance across
all considered hyperparameters.

Table 3 also reports results for SimCLR, a widely
used contrastive self-supervised learning method.
The evaluation centers on the final checkpoint ob-
tained after 100 training epochs. Table 3a reveals
that LiDAR consistently demonstrates the highest correlation among the three metrics under scrutiny.
Moreover, Table 3b confirms that LiDAR consistently selects the most optimal hyperparameters
among the three methods considered. Lastly, Table 17 lists the results for a ViT-Small trained with
DINO (Caron et al., 2021) on ImageNet-1K dataset. We observe that LiDAR evaluated with both the
teacher and student branches show stronger correlation than RankMe.

4 Conclusion

We introduce LiDAR, a novel approach to evaluate self-supervised learning models, which builds
upon the foundation laid by RankMe. We experimentally demonstrate LiDAR’s utility over
covariance-rank-based approaches, enabling accurate and label-independent assessment of learned
representations in SSL. Our method provides a powerful tool for practitioners seeking to efficiently
optimize their models in data-scarce environments, and we hope it can be integrated into the standard
toolkit of model evaluation in self-supervised learning.

Table 3: SimCLR and VICReg: Performance of RankMe, augmented-RankMe and LiDAR on
ImageNet-1K dataset at the end of training.

(a) Kendall’s τ correlation coefficient.

SSL RankMe RankMe LiDAR
Method (aug. dataset)

SimCLR 0.4982 0.5761 0.8167
VICReg 0.2056 0.3790 0.8105

(b) Linear probe accuracy.

SSL ImageNet Oracle RankMe RankMe LiDAR
Method (aug. dataset)

SimCLR 59.14 56.46 57.83 58.93
VICReg 64.74 63.95 63.95 64.71
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A Preliminaries

A.1 Self Supervised Learning

The main goal of self supervised pre-training is to learn a general purpose data representation f(x)
that is transferable to a large variety of downstream tasks. Informally, the degree of transferability
of f can be measured by how easy it is to learn a downstream task given f . In practice, a set
of downstream tasks {Tj} are used to asses the transferability of f by training additional readout
networks ϕj on top of f . That is, a successful pre-training scheme involves finding f such that there
exists ”simple” functions ϕj , such that ϕj ◦ f solves Tj to a reasonable degree, and ϕj are ”easy”
to learn 3. In the popular linear probing protocol, a linear readout functions ϕj is used to assess the
quality of f . For the remainder of the paper we restrict our investigations to linear probing.

A.2 Joint Embedding Architectures

A common paradigm in the current practice of SSL is the multi-view setting. In its simple form,
a pair of inputs are processed by a JE architecture, where each input is encoded separately by a
(possibly shared) encoder. The SSL objective is then tasked with learning a representation such that
”compatible” pairs that share semantic information are easily predictive of the each other, perhaps
with the help of a latent variable. Various methods in the literature fall under this general category,
which mostly differ by how compatible inputs are sampled, and how they avoid representational
collapse. We can formally define a JE architecture with an encoder 4 f(x) : X → Rd and a
projector function 5 ψ(f) : Rd → Rp. We adopt the terminology in (Garrido et al., 2022), and
refer to the output of the encoder f as a representation, and the output of the composed encoder
and projector e = ψ ◦ f as an embedding. A common theme among most JE SSL objectives is
that they seek to learn embedding functions that produce similar embeddings for compatible views,
which are typically generated by various forms of data augmentation. However, more recent JE
architecture somewhat depart from this paradigm by using input masking, and introducing latent
variables in the projector function ψ. For example, in I-JEPA (Assran et al., 2023) and data2vec
(Baevski et al., 2022), x̃ and x represent partially masked and unmasked inputs respectively, and
ψ(f ; z) is tasked with predicting the parts of the representation f(x) given spatial locations provided
by z. For simplicity and without loss of generality, we remove the explicit notation z in the definition
of ψ. Note that, absent any input reconstruction loss, JE architectures potentially promote more
abstract representations by filtering fine grained pixel level information. However, without an input
reconstruction term, the loss used is often uninformative of the actual metric of interest, which
is the zero or few shot transfer of the learned representation to downstream tasks. Compounding
this challenge, extended training durations can significantly deteriorate representation quality, even
when employing a set of hyperparameters with proven performance, as illustrated in Figure 1. In
such cases, finding an appropriate early stopping criterion is critical.

Dimensional Collapse JE architectures are prone to various forms of representation dimension
collapse, which can manifest in different flavors (Ziyin et al., 2022; Jing et al., 2021; Hua et al.,
2021). In contrastive methods, dimensional collapse occurs when learning results in an excessively
low dimensional representations in a way that hinders downstream performance. Regularized meth-
ods, when insufficiently regularized either implicitly or explicitly, can theoretically suffer complete
collapse, where the learned representation trivializes to a constant. However, beyond such a rough
categorization of the training process to partial or complete collapse, recent literature alludes to a
more nuanced observation that, in some settings, the feature covariance eigenspectrum can be used
to accurately gauge the quality of the learned representation as it pertains to downstream perfor-
mance.

A.2.1 Embeddings and Feature Covariance Eigenspectrum

Recent developments in the evaluation of JE-SSL representations have introduced methods that
leverage information derived from the spectrum of either the representations or the embeddings

3We use the terms ”simple” and ”easy to learn” here loosely as requiring few samples
4The encoder function need not be shared between views, however for simplicity and without loss of gen-

erality we assume it is
5Some SSL methods do not use a projector function, in which we can assume it is the identity function
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(RankMe, Garrido et al. (2022) or from the spectrum of the covariance matrix, α-Req, Agrawal et al.
(2022a)). Garrido et al. (2022) who propose a new measure named RankMe and demonstrate that
this measure, when applied across different hyperparameter configurations, exhibits a strong corre-
lation with downstream performance across various settings and tasks. In order to define RankMe,
we start with a dataset {xi}ni=1 drawn iid from some input distribution D, and an embedding func-
tion e(x) ∈ Rd that produces an embedding matrix Z with dimensions (n, d) whose singular values
are denoted as σ = σ1, σ2, ...σmin(n,d). These singular values reveal insights into the nature of the
mapping function f(x). RankMe (Garrido et al., 2022) introduced a soft measure of effective rank
expressed as exp(−

∑p
i=1 pi log pi), where pi = σi

∥σ∥1
+ ϵ, and ϵ represents a small constant.

In a related work, α-Req (Agrawal et al., 2022a) uses insights from infinite dimensional spaces
to argue that the eigenspectrum of representations, i.e., eigenspectrum of the feature covariance
should decay at an ideal rate of λi ∼ O(i−1) where λi is the ith eigenvalue of the covariance
matrix. However, it’s essential to note that any condition imposed on the eigenspectrum alone may
not be sufficient to ascertain the representational power of the mapping function f . This limitation
arises from the fact that a simple linear mapping, such as f(x) =Wx with a weight matrix W , can
manipulate the covariance matrix’s spectrum arbitrarily. Additionally, even a random mapping could
exhibit a high effective rank without necessarily translating into significant downstream performance
improvements. Notably, (Li et al., 2022) showed that the loss value and covariance spectrum can
be used in tandem to predict performance. However, their method requires training a classifier
on offline data, making it highly inefficient as an unsupervised method. LiDAR follows a similar
intuition with a more efficient and effective formulation: A representation with a high effective
rank, when coupled with a low objective loss, points to successful training. To balance the two
terms we leverage a discriminative method from classical statistics, repurposed to SSL settings.

B Theoretical Motivation

In this section we illustrate a heuristic as to why we might expect LiDAR to outperform previous
methods relying on the covariance spectrum. As an exemplary JE SSL method, we consider the
VICreg objective, which is comprised of three terms:

LVIRreg = λLinv︸ ︷︷ ︸
Invariance

+µLvar + νLcov︸ ︷︷ ︸
Regularization

(3)

where λ, µ, ν are hyperparameters, and Linv,Lvar,Lcov are the invariance, variance and covariance
terms computed over a minibatch. In this objective, the regularization term which is comprised
of the variance and covariance terms explicitly encourages the embedding function’s covariance
to be of high rank, while the invariance term insures that compatible pairs are mapped to similar
embeddings. We highlight that a low regularization loss is achievable by random embeddings, which
might be high rank, but devoid of any utility as for downstream tasks. A measure of representation
quality which is based on covariance rank alone would therefore, theoretically, fail to capture this
failure case, as it only pertains to the regularization term. Indeed, balancing the hyperparameters
λ, µ, ν is necessary to prevent superficially inflating the covariance rank. On the other hand, LiDAR
is invariant to information that is not used to discriminate between surrogate classes in the SSL
objective. To make this point concrete, consider a (centered) embedding function e(x) : Rd → Rp,
a random independent noise vector µ ∈ Rr such that E[µ] = 0,E[µµ⊤] = Σµ ∈ Rr×r, and
consider the (random) embedding functions ẽ(x) = [e(x)⊤, µ⊤]⊤ : Rd → Rp+r. Naturally, when
measuring the downstream performance of e, ẽ, we expect that e should not be worse than ẽ. (in
practice performance is measure on the representation f , however for the sake of a clean argument
we will ignore this technicality). In turn, this should, ideally, translate to LiDAR(ẽ) ≤ LiDAR(e).
LiDAR (unlike covariance spectrum based approaches) indeed captures this property, as illustrated
in the following proposition:
Proposition 1. Let D denote a distribution over inputs x ∈ Rd, let Dx denote a conditional distri-
bution of transformed inputs given x. Let λ = λ1, ..., λp be the eigenvalues of Σlidar(e). Assume that
∥λ∥∞
∥λ∥1

< 1 − exp[−1] and set constants ϵ, δ such that ϵ < 1 − ∥λ∥∞
∥λ∥1

, and δ < (exp[−1] − ϵ)∥λ∥1.
Then, it holds that:

LiDAR(ẽ) ≤ LiDAR(e) exp
[
− 2p log

( ∥λ∥1
∥λ∥1 + rδ

)
− rδ

∥λ∥1
log(

δ

∥λ∥1
)
]

(4)
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Proof. From the independence of the noise vector µ, it is easy to see that:

Σb(ẽ) =

(
Σb(e) 0
0 0

)
, Σw(ẽ) =

(
Σw(e) 0

0 Σµ

)
, Σlidar(ẽ) =

(
Σlidar(e) 0

0 δIr

)
(5)

Then, we have that:

LiDAR(ẽ) = exp
[
−

p∑
i=1

( λi
∥λ∥1 + rδ

+ ϵ
)
log

( λi
∥λ∥1 + rδ

+ ϵ
)
+R

]
(6)

where:

R = exp
[
− r

( δ

∥λ∥1 + rδ
+ ϵ

)
log

( δ

∥λ∥1 + rδ
+ ϵ

)]
(7)

≤ exp
[
− rδ

∥λ∥1
log(

δ

∥λ∥1
)
]

(8)

where we used the fact that δ
∥λ∥1+rδ + ϵ < exp[−1] by assumption to deduce the maximum of the

function |x| in the interval x ∈ (0, exp[−1]). Note that:

exp
[
−

p∑
i=1

( λi
∥λ∥1 + rδ

+ ϵ
)
log

( λi
∥λ∥1 + rδ

+ ϵ
)]

(9)

= exp
[
−

p∑
i=1

( λi
∥λ∥1 + δr

+ ϵ
)
log

( λi
∥λ∥1

+ ϵ
)

(10)

−
p∑

i=1

( λi
∥λ∥1 + δr

+ ϵ
)
log

( λi

∥λ∥1+rδ + ϵ

λi

∥λ∥1
+ ϵ

)]
(11)

Since ∀i, λi

∥λ∥1
+ ϵ < 1 by assumption, we have:

exp
[
−

p∑
i=1

( λi
∥λ∥1 + δr

+ ϵ
)
log

( λi
∥λ∥1

+ ϵ
)]

(12)

≤ exp
[
−

p∑
i=1

( λi
∥λ∥1

+ ϵ
)
log

( λi
∥λ∥1

+ ϵ
)]

= LiDAR(e) (13)

hence we can write:

exp
[
−

p∑
i=1

( λi
∥λ∥1 + rδ

+ ϵ
)
log

( λi
∥λ∥1 + rδ

+ ϵ
)]

(14)

≤ LiDAR(e) exp
[
− p

(
1 + ϵ

)
min
i

log
( λi

∥λ∥1+rδ + ϵ

λi

∥λ∥1
+ ϵ

)]
(15)

≤ LiDAR(e) exp
[
− 2p log

( ∥λ∥1
∥λ∥1 + rδ

)]
(16)

Combining equations 8 and 16, we get the result:

LiDAR(ẽ) ≤ LiDAR(e) exp
[
− 2p log

( ∥λ∥1
∥λ∥1 + rδ

)
− rδ

∥λ∥1
log(

δ

∥λ∥1
)
]

(17)

Note that an immediate consequence of Proposition 1 is that for δ << ∥λ∥1 we have that
LiDAR(ẽ) ≤ LiDAR.
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Eigenspectrum Decay As additional motivation, we invoke the arguments made in (Stringer et al.,
2019) and later expanded in (Agrawal et al., 2022b) on the optimal eigenspectrum decay rate in an
infinite dimensional embedding space, given by λi ∼ Θ(i−1). In (Stringer et al., 2019), it was shown
that a slower decay rate would necessarily imply a non-smooth kernel function, which, in turn, im-
plies a non-monotonic relationship between rank and downstream performance. LiDAR circumvents
this issue by implementing whitening operation through the inverse of Σw. This, in theory, permits
the attainment of both a smooth embedding and the flexibility for eigenvalue decay in ΣLDA to occur
at a very gradual rate. It is essential to acknowledge, however, that while the smoothness can be
maintained, an excessively high LDA rank may, in theory, have adverse consequences on down-
stream performance, owing to other underlying factors. We, therefore, defer a more comprehensive
theoretical exploration of the implications of LiDAR to future research endeavors.

C Experimental Details

LiDAR is intended to serve as a proxy metric to compare the quality of representation as they relate
to downstream performance. This task is intrinsically challenging due to the inherent uncertainty
associated with the nature of the downstream task. In this paper, we focus on downstream classifi-
cation tasks, employing the widely adopted linear probing protocol. A robust metric in this sense is
one that consistently replicates the downstream performance ranking observed with a ground truth
oracle across a set of pre-trained models. As in existing solutions, we only compare models from
the same class, each one pre-trained using a different set of predefined hyperparameters. It is impor-
tant to emphasize that a linear correlation between the metric and the oracle is not implied, hence
we resort to established statistical tests which assess the strength and direction of the monotonic
relationship between two variables. In other words, we seek to measure how well the relationship
between two variables, the metric and the oracle, can be described using a monotonic function. We
note that such evaluations go beyond simply picking the best model according the metric of interest
out of a set of models, due to possible outliers in the set.

Spearman’s rank correlation coefficient The Spearman correlation coefficient (Spearman, 1987,
1961) is essentially the Pearson correlation coefficient computed on the ranked values of two vari-
ables. While Pearson’s correlation assesses linear relationships, Spearman’s correlation evaluates
monotonic relationships, which can be linear or non-linear in nature. In cases where there are no
duplicate data values, a perfect Spearman correlation of either +1 or -1 indicates that each of the vari-
ables exhibits a flawless monotonic relationship with the other, forming a perfect monotone function.
Given two sequences of real numbers X = x1, ..., xn and Y = y1, ..., yn and their corresponding
ranking R(X), R(Y ), the Spearman correlation coefficient is given by:

rs = 1−
d
∑

i(R(xi)−R(yi))
2

n(n2 − 1)
(18)

Kendall’s Tau rank correlation coefficient The Kendall’s Tau correlation coefficient (Kendall,
1938b,a) is another popular alternative the to Spearman rank correlation, and is known to be superior
when the sample size is small and has many tied ranks. The Kendall’s Tau coefficient uses concor-
dant and discordant pairs in its measure. For indices j > i, the pairs {xi, xj} ∈ X, {yi, yj} ∈ Y are
said to be concordant if the sort order of both pairs agree, otherwise they are said to be discordant.
Let C and D denote the number of concordant and discordant pairs in X,Y then the Kendall’s τ is
given by |C −D|/(C +D).

Top ranking model In similar spirit to (Garrido et al., 2022), as an additional evaluation we report
the top ranking model given a metric of interest, and its downstream performance, and compare it to
the optimal model according to the oracle. This protocol can be seen as a noisy estimate of Kendall’s
Tau rank correlation coefficient.

C.0.1 Models, Hyperparameters and Data

We use 5 different multiview JE SSL methods, spanning contrastive and regularized methods, as
well as ResNet and transformer based. We use I-JEPA (Assran et al., 2023) and data2vec (Baevski
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et al., 2022) as representative of more recent masking based approaches that are not reliant on do-
main specific data augmentation. We use SimCLR (Chen et al., 2020) as a representative of con-
trastive methods, while we use DINO (Caron et al., 2021) as an example of self-distillation method
and VICReg (Bardes et al., 2021) as representatives of regularized methods. Note that I-JEPA and
data2vec use Transformer based encoders by design. We use a vision transformer (ViT) (Dosovit-
skiy et al., 2021) based encoder for DINO as well, and ResNet-50 (He et al., 2016) based encoders
for SimCLR and VICReg. We vary different hyperparameters per method. The varied hyperpa-
rameters range from optimization related ones such as learning rate, and weight decay, architecture
specific hyperparameters such as softmax temperature, and data augmentation and masking based
hyperparameters. We stress that some SSL objectives such as I-JEPA and data2vec, which rely on
specific forms of input masking, are extremely sensitive to the the masking hyperparameters, hence
providing an important testbed for LiDAR. We highlight the drawback of conducting a grid search
over a single hyperparameter, due to the fact that all the remaining frozen ones are typically highly
optimized to the task, offering a somewhat contrived testbed. Hence, in addition to a standard grid
search, we use random search over all hyperparameters. This is done by uniformly sampling each
hyperparameter from a fixed range, providing a better cover for the space. We use the Imagenet-1k
dataset (Russakovsky et al., 2015) for all experiments. We use the train split as the source dataset
for pretraining and linear probing, and use the test split as the target dataset. For each pretrained
checkpoint, we train a linear probe on the train split, which we denote as the oracle, and record its
test performance on the test split.

C.0.2 Implementation Considerations

The implementation of LiDAR entails computing empirical approximations to Σw,Σb, which differs
from one SSL method to another due to the inherent differences in the way input pairs are sampled.
As a general rule, for each SSL method we use its own input transformations without alterations. In
asymmetrical architectures, we compare both branches, denoted as the ”student” and the ”teacher”
for evaluation. In transformer based architectures (as employed by design in I-JEPA, data2vec)
we pool the final embedding/representation to produce vectors. For methods such as I-JEPA and
data2vec, computing the RankMe score on the embeddings is not a straightforward task. This is due
to the fact that the projector function’s task in both does not serve as a representation expander, rather
it serves as a conditional predictor, predicting masked representations, conditioned on the spacial
locations of the masked patches. For these methods, we evaluate RankMe on the student or teacher
encoder instead. For SimCLR and VICReg, we copy the implementation details from (Garrido
et al., 2022). All model are trained for a maximum of 300 epochs. Finally, in our analysis within
the context of RankMe, we have noticed that utilizing the same data augmentations for both training
and feature covariance matrix computation consistently leads to improved performance. In our
experiments, we provide empirical results for both ”vanilla” and augmented RankMe as baselines.

C.1 Compute Considerations

While calculating the LiDAR score is a straightforward and computationally efficient procedure, it
does introduce an additional computational load when compared to standard covariance estimation.
This additional load arises from the need to perform matrix inversion in Σ−0.5

w , which can be, theo-
retically, time-consuming when dealing with high-dimensional embeddings. In our experiments, we
have observed that this computational overhead is generally inconsequential for all tested models. It
tends to be overshadowed by the computational demands of the forward process required to generate
the features. Nonetheless, we note the following trivial bound on the rank of Σlidar:

Rank(Σlidar) ≤ min
(
Rank(Σw),Rank(Σb)

)
(19)

Since the rank of Rank(Σb) is bounded by the number of surrogate classes used n (number of ”clean”
samples used to sample), simple dimensionality reduction can be used when p >> n to reduce the
rank of Σw before inversion, without any loss in performance. We find in our experiments that
n = 1k, q = 50 is sufficient to saturate performance, with the exception of VICreg, which required
n = 5k (and q = 10 to maintain a total of 50 features).
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D Limitations

While we observe LiDAR significantly improves upon RankMe in most experiments, it is important
to emphasize its drawbacks. Notably, we have observed instances where the LiDAR metric exhibits
a negative correlation with probe accuracy, particularly pronounced in scenarios like VICReg when
dealing with higher dimensional embeddings. This phenomenon underscores the intrinsic complex-
ity of the relationship between rank, however it is measured, and downstream task performance.
It serves as a reminder that these two factors are not necessarily causally linked; a high rank does
not guarantee superior performance. Moreover, it’s essential to acknowledge the computational
overhead associated with calculating the LiDAR metric, which often involves the inversion of high-
dimensional matrices. This computational complexity adds to the method’s overall computational
cost. Consequently, the feasibility of incorporating LiDAR as a loss signal for pretraining should
be carefully considered, as it could be prohibitively expensive to naively evaluate at each iteration
of the training process. Due to the sheer volume of experiments and necessary compute, we focus
solely on linear probing in this work, using Imagenet-1K train-test split as source and target datasets.
We expect LiDAR’s impressive performance to carry over to nonlinear probing protocols, as well as
OOD domains, however we relegate such investigations to future work. Lastly, it’s worth noting that
our approach is contingent on the sampling strategy for positive pairs x and x̃ which varies among
methods, making cross-method comparisons challenging.
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E Implementation Details

E.1 VICReg

VICReg (Bardes et al., 2021) proposes an explicit regularization to prevent dimensional collapse in
self-supervised learning methods. VICReg (Bardes et al., 2021) consists of the standard invariance
term, a variance term to encourage networks to not suffer from dimensional collapse and a covriance
term that encourages the covariance matrix of embeddings to be approximately diagonal. Let zi ∈
Rd denote the features from a neural network. The variance term is given by:

var(Z) =
1

d

d−1∑
j=0

max (0, 1− S (zj , ϵ)) (20)

where S (x, ϵ) denotes the standard deviation and ϵ is a small value to prevent numerical instability.
The covariance term is given by:

c(Z) =
1

d

∑
i ̸=j

[C(Z]
2
i,j (21)

while the invariance term is the L2 distance between the usual positive data pairs used to optimize
the network. The complete loss function used to optimize a network in VICReg is given by:

L (Z,Z ′) =
λ

n

∑
i

∥zi − zj∥+ µ [var (Z) + var (Z ′)] + ν [c (Z) + c (Z ′)] (22)

where λ, µ and ν are hyperparameters that control the contribution from the invariance, standard
deviation and covariance terms respectively.

We use the reference implementation 6 provided by Bardes et al. (2021) to train a ResNet-50 (He
et al., 2016) backbone on Imagenet-1K dataset (Russakovsky et al., 2015). The projector used is
a standard multi-layer perceptron (MLP) with dimensions 8192-8192-8192. We train a ResNet-50
with VICReg for 100 epochs using hyperparameters and training protocol described in (Bardes
et al., 2021). The trained backbone is probed by trianing a classifier on the frozen features of the
backbone. We use a setup that is described in RankMe including data preprocessing and optimizer-
related hyperparameters to train a probe for 30 epochs. We use 32 hyperparametr sets that include
described in Garrido et al. (2022) in our experiments.

We use ImageNet-1K (Russakovsky et al., 2015) training data as our source dataset for self-
supervised learning (SSL). We use 10000 images from the source dataset, i.e., ImageNet-1K training
split and 10 augmentations per image to construct a labeled dataset needed to calculate LiDAR and
augmented-Rankme . We use 25600 images from the source dataset to calculate RankMe. All
pipelines that calculate various metrics employ the exact data augmentation pipeline used for SSL
pretraining. The results for VICReg are as follows:

• We calculate the LiDAR, RankMe, augmented-RankMe for the final checkpoint after SSL
training. Figure 3 shows a scatter plot of the 32 checkpoints where we plot the various
effective rank metrics versus probe accuracy.

• We calculate the effective rank metrics on checkpoints collected every 20 epochs during
training. Figure 4 shows the evolution of the metrics during training.

• Table 4 shows the correlations estimated via Spearman rank correlation and Kendall’s τ
correlation tests for all checkpoints collected during training.

6https://github.com/facebookresearch/vicreg
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Figure 3: VICReg: Performance of VICReg representations measured by RankMe and LiDAR.
Each point refers to a checkpoint evaluated after 100 epochs of self-supervised pretraining. LiDAR
shows strong correlation

Correlation RankMe RankMe LiDAR
(aug. dataset)

Spearman rank 0.3174 0.5209 0.9161
Kendall’s τ 0.2056 0.3790 0.8105

Table 4: VICReg: Compare RankMe and LiDAR using Spearman Rank correlation and Kendall’s
τ correlation measures after 100 epochs of training. VICReg representations are used to estimate
RankMe and LiDAR for the 32 hyperparameter sets considered in our experiments. The hyper-
paramter values are identical to the values considered by (Garrido et al., 2022)

Metric cov. inv. LR WD

Imagenet Oracle 64.7380 62.7800 63.9500 61.6500
RankMe 64.5400 59.5400 63.9500 59.5200

RankMe (aug. dataset) 64.5400 59.5400 63.9500 59.5200
LiDAR 64.7080 62.5720 63.9500 59.5200

Table 5: VICReg: Linear probe accuracy recovered by RankMe, augmented-RankMe and LiDAR
on ImageNet-1K dataset at the end of training. The metrics presented above are calculated with
representations

Epoch RankMe RankMe LiDAR
(aug. dataset)

20 0.6081 0.6466 0.6957
40 0.4315 0.5949 0.8699
60 0.4065 0.5381 0.8809
80 0.3904 0.5905 0.9032

100 0.3174 0.5209 0.9161

(a) VICReg: Spearman Rank coefficient

Epoch RankMe RankMe LiDAR
(aug. dataset)

20 0.4476 0.4718 0.5323
40 0.2984 0.4597 0.7097
60 0.2702 0.3750 0.7218
80 0.2823 0.4435 0.7823

100 0.2056 0.3790 0.8105

(b) VICReg: Kendall’s τ coefficient

Table 6: VICReg: Correlation between effective rank estiamted by RankMe and LiDAR and probe
accuracy evolution during training. Each row corresponds to a checkpoint collected at epoch speci-
fied in the table.
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(a) 1 training epoch (b) 20 training epochs

(c) 40 training epochs (d) 60 training epochs

(e) 80 training epochs (f) 100 training epochs

Figure 4: VICReg: Performance of VICReg representations measured by RankMe and LiDAR.
Each point represents a row of hyperparameters among the 32 sets of hyperparameters consdiered in
our experiments. The hyperparamter values are identical to the values considered by (Garrido et al.,
2022)
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Epoch RankMe RankMe LiDAR
(aug. dataset)

20 0.6081 0.6466 0.6957
40 0.4315 0.5949 0.8699
60 0.4065 0.5381 0.8809
80 0.3904 0.5905 0.9032

100 0.3174 0.5209 0.9161

(a) VICReg: Spearman Rank coefficient

Epoch RankMe RankMe LiDAR
(aug. dataset)

20 0.4476 0.4718 0.5323
40 0.2984 0.4597 0.7097
60 0.2702 0.3750 0.7218
80 0.2823 0.4435 0.7823

100 0.2056 0.3790 0.8105

(b) VICReg: Kendall’s τ coefficient

Table 7: VICReg: Correlation between effective rank estimated by RankMe and LiDAR and probe
accuracy evolution during training. Each row corresponds to a checkpoint collected at epoch speci-
fied in the table.

Metric cov. inv. LR WD

Imagenet Oracle 64.7380 62.7800 63.9500 61.6500
RankMe 64.5400 59.5400 63.9500 59.5200

RankMe (aug. dataset) 64.5400 59.5400 63.9500 59.5200
LiDAR 64.7080 62.5720 63.9500 59.5200

Table 8: VICReg: (b) Linear probe accuracy recovered by RankMe, augmented-RankMe and LiDAR
on ImageNet-1K dataset at the end of training. The metrics presented above are calculated with
representations.
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E.2 I-JEPA

Image-based Joint-Embedding Predictive Architecture (I-JEPA) (Assran et al., 2023) is a recently
proposed non-generative approach to learn semantically strong representations in a self-supervised
manner. I-JEPA splits an image into a context block and several target blocks and uses the con-
text block to predict the target blocks. Note that each block is composed of image patches. The
core innovation in I-JEPA is the design of a masking strategy that is shown to lead to semanti-
cally strong representations when used in conjunction with Vision Transformers (ViTs) (Dosovit-
skiy et al., 2021). I-JEPA uses a ViT to encode the non-masked context patches and another ViT
to predict the encodings for the masked out target patches. The target representations are provided
by a target encoder which is an exponential moving average (EMA) version of the context encoder.
In this work we refer to the context encoder as the student encoder and the target encoder as the
teacher and use these terms interchangeably in our presentation. The loss function is applied to the
embeddings that are output by the student and the teacher and is given by:

1

M

M∑
n=1

∑
i∈Bi

∥yi − ŷi∥2 (23)

whereM denotes the number of target blocks, Bi denotes a set of block indices in a target and y and
ŷ denote the embeddings provided by the student and the teacher respectively. The asymmetry in-
troduced due to student and teacher encoders allows I-JEPA to avoid representation collapse (Assran
et al., 2023).

In order to apply LiDAR for I-JEPA Assran et al. (2023) we create a labeled dataset by first se-
lecting a fixed number of images at random and treat each image as a class. We then apply the
masking approach proposed in I-JEPA (Assran et al., 2023) to create multiple instances of a class
to create a labeled dataset needed to calcualte the linear discriminant analysis matrix for LiDAR.
The embeddings y and ŷ described in 23 are used as inputs to estimate Student and Teacher LiDAR
measures. We use the output of the student encoder to calculate RankMe measure. As described
in Section C.0.2 the embeddings y and |haty are used to calculate the augmented RankMe metric
which is denoted as RankMe (aug.) in the results. We use 1000 images and 50 augmentations to
construct the labeled dataset for LiDAR and augmented-RankMe while we use 10000 image samples
for RankMe. Self-supervised training is run for 600 epochs with an effective batch size of 2048 us-
ing the training protocol described in I-JEPA (Assran et al., 2023). The downstream task consists of
linear probing frozen representations on the ImageNet-1K dataset (Russakovsky et al., 2015). The
probe is optimized with Adam (Kingma & Ba, 2015) optimizer for 20 epochs with a starting learn-
ing rate of 0.01 and a step learning rate schedule where the base learning rate is dropped by a factor
10 after 15 epochs. The following hyperparamter sets are used in our experiments to empirically
estimate the performance of RankMe augmented-RankMe and LiDAR:

• Learning rate from 0.001, 0.002, 0.004, 0.006 and 0.008. Figure 5, Figure 6 show the re-
sults of experiments where we vary the learning rate parameter alone. Table 11 and Ta-
ble 1 show the rank correlation coefficients while Table 2 show the accuracy recovered by
RankMe and LiDAR.

• Weight decay from 0.05, 0.1, 0.2and 0.4. Figure 7, Figure 8 show the results of experiments
where we vary the weight decay parameter alone. Note that the weight decay is kept fixed
throughought training in this set of experiments. Table 11 and Table 1 show the rank
correlation coefficients while Table 2 show the accuracy recovered by RankMe and LiDAR.

• Target mask scale factor from [0.15, 0.2], [0.125, 0.2], [0.2, 0.25] and [0.2, 0.3]. Figure 9,
Figure 10 show the results of experiments where we target mask scale ratio alone. Ta-
ble 11 and Table 1 show the rank correlation coefficients while Table 2 show the accuracy
recovered by RankMe and LiDAR.

• Target mask scale factor from [0.85, 1.0], [0.75, 1.0], [0.65, 1.0] and [0.4, 1.0]. Figure 11,
Figure 12 show the results of experiments where we target mask scale ratio alone. Ta-
ble 11 and Table 1 show the rank correlation coefficients while Table 2 show the accuracy
recovered by RankMe and LiDAR.

Additionally, we conduct a random hyperparameter search experiment where we sample 20 sets of
hyperparamters uniformly and train a ViT-B (Dosovitskiy et al., 2021) with I-JEPA (Assran et al.,
2023). The hyperparametrs were sampled from the following uniform distributions:
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(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 5: I-JEPA: ViT-Base architecture trained on Imagenet-1K by varying the learning rate. Plots
show the evolution of metrics over training time.

Figure 6: I-JEPA: Scatter plot of checkpoints collected during training of ViT-Base architecture on
Imagenet-1K by varying the learning rate.

• learning rate from [0.0001250.0002]

• weight decay from [0.050.4]

• target scale (minimum) from [0.10.2]

• target scale (maximum) from [0.20.4]

• context scale (minimum) from [0.30.95]

The results of these experiments are shown in Figure 2 and the correlations are available in Table 1
and Table 12. The probe accuracy recovered for hyperparameters generated via random search are
shown in Table 2.

(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 7: I-JEPA: ViT-Base architecture trained on Imagenet-1K by varying the weight decay. Plots
show the evolution of metrics over training time.
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Figure 8: I-JEPA: Scatter plot of checkpoints collected during training of ViT-Base architecture on
Imagenet-1K by varying weight decay.

(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 9: I-JEPA: ViT-Base architecture trained on Imagenet-1K by varying the target mask scale
hyperparameter. Plots show the evolution of metrics over training time.

Figure 10: I-JEPA: Scatter plot of checkpoints collected during training of ViT-Base architecture on
Imagenet-1K by varying the target mask scale factor.
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(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 11: I-JEPA: ViT-Base architecture trained on Imagenet-1K by varying the context mask scale
hyperparameter. Plots show the evolution of metrics over training time.

Figure 12: I-JEPA: Scatter plot of checkpoints collected during training of ViT-Base architecture on
Imagenet-1K by varying the context mask scale factor.

Figure 13: I-JEPA: Aggregated scatter plot of checkpoints collected during training of ViT-Base
architecture on Imagenet-1K. Hyperparameters varied are one of learning rate, weight decay, target
mask scale or context mask scale. Plots show that effective rank estimated by LiDAR has high
correlation with linear probe accuracy.
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Hyperparameter RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
(Student) (Student) (Teacher) (Teacher)

Learning rate 0.6835 0.7829 0.8443 0.6734 0.7506
Weight decay 0.5040 0.7034 0.7331 0.4792 0.5278

Target mask scale 0.2867 0.6786 0.7937 0.2956 0.2927
Context mask scale 0.4246 0.7867 0.8482 0.3929 0.5556

Overall 0.5830 0.7513 0.8159 0.5713 0.6828
Table 9: I-JEPA: Kendall’s τ coefficient between effective ranks of RankMe, RankMe (aug.) and
LiDAR and linear probe accuracy. Hyperparameters are varied via grid search.

Metric LR WD Target mask Context mask Overall
scale scale

ImageNet Oracle 70.5800 70.5800 70.5800 70.5800 70.5800
RankMe 56.7580 60.2040 60.2040 59.8960 59.8960

RankMe (aug.) (Student) 67.8680 67.8680 67.8680 67.8680 67.8680
RankMe (aug.) (Teacher) 56.7580 52.6720 50.4200 59.8960 59.8960

LiDAR (Student) 67.8680 67.8680 67.8680 67.8680 67.8680
LiDAR (Teacher) 65.1080 64.1920 65.5820 67.5420 67.5420

Table 10: I-JEPA: Linear probe accuracy recovered by RankMe and LiDAR on ImageNet-1K dataset.
Hyperparameters set via grid search.

Hyperparameter RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
(Student) (Student) (Teacher) (Teacher)

Learning rate 0.8775 0.9258 0.9605 0.8747 0.9030
Weight decay 0.6381 0.8669 0.8884 0.6196 0.6978

Target mask scale 0.4008 0.8429 0.9407 0.4069 0.3851
Context mask scale 0.5800 0.9180 0.9590 0.5533 0.6940

Overall 0.7700 0.9104 0.9494 0.7627 0.8475
Table 11: I-JEPA: Spearman rank correlation coefficient for I-JEPA between effective ranks of
RankMe, RankMe (aug.) and LiDAR and linear probe accuracy.

RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
(Student) (Student) (Teacher) (Teacher)

Random search 0.9470 0.9770 0.9511 0.9486 0.9722
Table 12: I-JEPA: Spearman rank correlation coefficient between effective ranks of RankMe,
augmented-RankMe and LiDAR and linear probe accuracy. Hyperparmaeters are generated via ran-
dom sampling.
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Table 13: data2vec: (a) Kendall’s τ correlation coefficient and (b) linear probe accuracy. Table 15
and Table 16 shows a detailed breakdown

(a)

RankMe RankMe (aug.) LiDAR
(Student, Teacher) (Student, Teacher)

0.2238 (0.2799, 0.2656) (0.5531, 0.5227)

(b)

ImageNet Oracle RankMe RankMe (aug.) LiDAR
(Student, Teacher) (Student, Teacher)

60.39 48.60 (51.45 51.45) (59.37, 59.37)

(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 14: data2vec: ViT-Base architecture trained on Imagenet-1K by varying the learning rate.
Plots show the evolution of metrics over training time.

E.3 data2vec

data2vec (Baevski et al., 2022) is a self-supervised learning approach that aims to predict la-
tent representations of input data based on a masked view of the input data. The idea behind
data2vec (Baevski et al., 2022) is similar to I-JEPA (Assran et al., 2023) but the details of mask-
ing and the predictor used to predict embeddings are different.

We follow the same protocol described for I-JEPA above in terms of constructing a labeled dataset
for LiDAR and augmented-RankMe with 10000 samples from ImageNet-1K and apply 50 augmenta-
tions. The augmentations applied in this case are identical to the augmentation described in (Baevski
et al., 2022) and available via a reference implementation provided by the authors 7. We use 10000
source images to calculate RankMe. We train a ViT-B (Dosovitskiy et al., 2021) model for 800
epochs with an effective batch size of 2048 and with other hyperparameters described in (Baevski
et al., 2022). During training, we save a checkpoint every 40 epochs for analysis and downstream
linear probing. Linear probing is done on frozen representations of the encoder using LARS opti-
mizer (You et al., 2017) with a starting learning rate of 0.01 and a step learning rate schedule that
drops every 15 epochs by a factor of 10 with an effective batch size of 16384 samples. We consider
the following SSL training hyperparameters in our experiments to test the performance of LiDAR
and RankMe and its augmented variant:

• Learning rate from 0.0007, 0.001, 0.002 and 0.004. Figure 14 and Table 14 and Table 15
show the results from these experiments

• Set number of mask patches to either 120 (default) or 80 while we fix the learning rate to
0.0007. Figure 16, Table 14 and Table 15 show the results from these experiments

• Table 16 shows the probe accuracy recovered by the various effective rank metrics.

7https://github.com/facebookresearch/data2vec_vision/tree/main/beit
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Figure 15: data2vec: Scatter plot of checkpoints collected during training of ViT-Base architecture
on Imagenet-1K. The learning rate was varied in this experiment.

(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 16: data2vec: ViT-Base architecture trained on Imagenet-1K by varying the masking ratio.
Plots show the evolution of metrics over training time.

Figure 17: data2vec: Scatter plot of checkpoints collected during training of ViT-Base architecture
on Imagenet-1K. The masking ratio was varied in this experiment.
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(a) Linear probe accuracy (b) RankMe (c) LiDAR (student)

Figure 18: data2vec: ViT-Base architecture trained on Imagenet-1K by varying one of learning rate
or masking ratio. Plots show the evolution of metrics over training time.

Figure 19: data2vec: Aggregated scatter plot of checkpoints collected during training of ViT-Base
architecture on Imagenet-1K. Hyperparameters varied are one of learning rate and mask ratio (num-
ber of masked patches).

Hyperparameter RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
(Student) (Student) (Teacher) (Teacher)

Learning rate 0.3639 0.4440 0.6680 0.4191 0.6240
Mask ratio 0.3720 0.3026 0.6089 0.2785 0.5466

Overall 0.3408 0.3795 0.7275 0.3627 0.6962
Table 14: data2vec: Spearman rank correlation coefficient for data2vec between effective ranks of
RankMe, RankMe (aug.) and LiDAR and linear probe accuracy.

Hyperparameter RankMe RankMe (aug.) LiDAR RankMe (aug.) LiDAR
(Student) (Student) (Teacher) (Teacher)

Learning rate 0.2410 0.3419 0.5077 0.3172 0.4716
Mask ratio 0.2683 0.2381 0.4657 0.2195 0.4170

Overall 0.2238 0.2799 0.5531 0.2626 0.5227
Table 15: data2vec: Kendall’s τ for data2vec between effective ranks of RankMe, RankMe (aug.)
and LiDAR and linear probe accuracy.
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Metric LR Mask ratio Overall

ImageNet Oracle 60.3920 55.9780 60.3920
RankMe 48.6040 48.6980 48.6980

RankMe (aug.) (Student) 48.6040 51.4500 51.4500
LiDAR (Student) 59.3720 52.7460 59.3720

RankMe (aug.) (Teacher) 48.6040 51.4500 51.4500
LiDAR (Teacher) 59.3720 52.7460 59.3720

Table 16: data2vec: Linear probe accuracy recovered by RankMe and LiDAR on ImageNet-1K
dataset.
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E.4 DINO

DINO (Caron et al., 2021) is an example of a self-distillation approach to learning representations in
a self-supervised manner. DINO uses a student and teacher encoder (weights updated via exponen-
tial moving average) ,multiple-crops and small patches to train a ViT (Dosovitskiy et al., 2021) in a
self-supervised manner. Evaluations on multiple tasks presented in DINO (Caron et al., 2021) show
that the resulting encoder learns strong representations. The loss function for DINO (Caron et al.,
2021) minimizes the cross-entropy between the probability distributions provided by the teacher and
student network. We reproduce a description below from DINO (Caron et al., 2021) for complete-
ness:

min
i
H (Pt (z) , Ps (z)) (24)

where H denotes the cross-entropy function, Ps and Pt denote the probability distributions output
by the student and teacher networks respectively. The probabilities are computed via:

Pnet(z)
(i) =

exp(fθnet
(z)(i)/τnet)∑K

k=1 exp(fθnet(x)
(k)/τnet)

(25)

where the subscript “net” denotes either the student or the teacher network, f is a neural network
parameterized by θ and z(i) is a feature vector for sample i. A key hyperparameter in DINO (Caron
et al., 2021) is the temperature value τs and τt used to control the sharpness of the output distribution
produced by the softmax function. We test the performance of RankMe, augmented-RankMe and
LiDAR to predict linear probing performance by varying these parameters.

We train a ViT-S with a patch size of 16 × 16 using the protocol described by DINO (Caron et al.,
2021) and implemented in a reference implementation provided by the authors of DINO 8 on the
Imagenet-1K (Russakovsky et al., 2015) dataset. The projection head consists of a 3-layer MLP with
hidden dimension of 2048 and an output dimension referred to as bottleneck dimension of 256 that
provides embeddings. These embeddings are that projected to a higher dimensional space of 65536
in our experiments. We use the embeddings to estimate RankMe, augmented-RankMe and LiDAR in
our experiments consistent with the methodology adopted in RankMe (Garrido et al., 2022). We use
an effective batch size of 512 images and train the model for 300 epochs. Our experiments consists
of:

• varying the teacher temperature (τt) while keeping the student temperature (τs) fixed to 0.1.
The values considered for (τt) are {0.02, 0.04, 0.06, 0.07}

• varying the student temperature (τs) while keeping the teacher temperature (τt) fixed. The
values considered for (τs) are {0.2, 0.4}

We keep the rest of the training and linear probing hyperparameters identical to those provided in
the official implementation 8. The results of these experiments are available in Figure 20 and the
correlation values are quantified in Table 17.

Correlation RankMe LiDAR (Student) LiDAR (Teacher)

Spearman rank 0.8191 0.8807 0.8732
Kendall’s τ 0.6288 0.7157 0.7299

Table 17: DINO: Compare RankMe and LiDAR with Spearman rank and Kendall’s τ correlation
coefficient metrics. Observe that LiDAR performs better than RankMe for both measures.

8https://github.com/facebookresearch/dino
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Figure 20: DINO: Aggregated scatter plot of checkpoints collected during training of ViT-Small
architecture on Imagenet-1K. Hyperparameters varied are one of teacher or student softmax temper-
ature described in the implementation section.
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Figure 21: SimCLR: Performance of SimCLR representations measured by RankMe and LiDAR.
Each point refers to a checkpoint evaluated with a randomly searched hyperparameter after 100
epochs of self-supervised pretraining. LiDAR shows strong correlation

E.5 SimCLR

SimCLR (Chen et al., 2020) is an example of a contrastive joint-embedding self-supservised learning
method. The loss function for SimCLR is given by (Chen et al., 2020; Garrido et al., 2022) and
included below for completeness:

L = −
∑
i,j∈P

eSimilarity(zi,zj)∑N
k=1 Ik ̸=ieSimilarity(zi,zk)

(26)

where Similarity denotes the cosine similarity between two vectors zi and zj , I denotes the indi-
cator function, P is the set of all positive pairs and the number of examples in given by N.

We train a ResNet-50 backbone (He et al., 2016) with a 3 layer MLP projector with hidden di-
mensions 8192 and output dimension equal to 2048. In other words, the embeddings produced by
SimCLR have a dimension equal to 2048. The network described above is trained with the LARS
optimizer (You et al., 2017) and other settings described in (Chen et al., 2020) on the ImageNet-
1k (Russakovsky et al., 2015) training split. The representations from the backbone are evaluated
via standard linear probing by training a linear layer on ImageNet-1k training split and calculating
test accuracy on the validation split. Probing is performed using SGD optimizer with Nesterov mo-
mentum with hyperparameters described in RankMe (Garrido et al., 2022). We consider two sets of
experiments to test the performance of LiDAR and RankMe with SimCLR (Chen et al., 2020):

• A grid search with the hyperparametrs sets that include learning rate, weight decay, em-
bedding dimension and softmax temperature used in RankMe (Garrido et al., 2022). Fig-
ure 22 shows a scatter plot of the probe accuracy vs. effective rank estiamted by RankMe,
augmented-RankMe and LiDAR. Table 19 quantifies the correlations for the above methods.
Table 21 shows the linear probe accuracy recovered by the various metrics and compares
the results to ImageNet Oracle

• A random hyperparameter search by randomly sampling learning rate, weight decay
and softmax temperature to generate hyperparameter sets. We create a table of hyper-
pameters with learning rate chosen from [0.3, 0.4, 0.5, 0.6], weight decay chosen from[
10−7, 10−6, 10−5

]
and softmax temperature chosen from [0.05, 0.1, 0.15, 0.2, 0.25]. We

select 30 sets of hyperparameters from this table and use these to train models with Sim-
CLR and evaluate performance. Figure 21 shows the results for this experiment as a scatter
plot and Table 19 quantifies the correlations.
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Random search Grid search as in Rankme
Figure 22: SimCLR: Performance of SimCLR representations measured by RankMe and LiDAR.
Each point refers to a checkpoint evaluated with the grid search hyperparameter from Rankme
paper after 100 epochs of self-supervised pretraining. LiDAR shows strong correlation

Hyperparameter RankMe RankMe LiDAR
(aug. dataset)

Learning rate 0.5248 0.5301 0.9138
Weight decay 0.4019 0.5573 0.8964
Temperature 0.5704 0.6764 0.9182

Overall 0.5125 0.6304 0.9155

(a) Spearman Rank correlation coefficient

Hyperparameter RankMe RankMe LiDAR
(aug. dataset)

Learning rate 0.5706 0.4694 0.7512
Weight decay 0.3580 0.4221 0.7148
Temperature 0.4209 0.7061 0.8435

Overall 0.4906 0.5581 0.7967

(b) Kendall’s τ correlation coefficient

Table 18: SimCLR: Correlation between effective rank estiamted by RankMe and LiDAR and probe
accuracy per hyperparameter.

Correlation RankMe RankMe LiDAR
(aug. dataset)

Spearman rank 0.5125 0.6304 0.9155
Kendall’s τ 0.4906 0.5581 0.7967

Table 19: SimCLR: Compare RankMe and LiDAR using Spearman Rank correlation and Kendall’s
τ correlation measures evaluated during hyperparameter grid search.

Correlation RankMe RankMe LiDAR
(aug. dataset)

Spearman rank 0.5301 0.6389 0.9188
Kendall’s τ 0.4982 0.5761 0.8167

Table 20: SimCLR: Compare RankMe and LiDAR using Spearman Rank correlation and Kendall’s
τ correlation measures evaluated during hyperparameter random search.

Metric LR WD Temp. Overall

Imagenet Oracle 58.2370 56.6740 57.4710 59.1420
RankMe 55.8950 55.1490 56.0390 56.4630

RankMe (aug. dataset) 57.2010 55.8170 56.3170 57.8260
LiDAR 57.8940 56.3020 57.0920 58.9270

Table 21: SimCLR: Linear probe accuracy recovered by RankMe, augmented-RankMe and LiDAR
on ImageNet-1K dataset at the end of training. Results are from trials run with hyperparameter
random search.
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