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Abstract

CLIP-style models are powerful tools for zero-shot image-text tasks, but contain a
very large number of parameters, making them expensive to deploy in hardware-
constrained settings. We introduce a novel way to distill these large CLIP-based
models into significantly smaller ones. Our method is called multimodal distillation
because we jointly train two student networks (operating on image and text) from
two teacher networks. Our loss tries to preserve the structure of the embeddings of
the dataset, as provided by the image and text teacher networks. We are thus able
to extract information from the interaction of the teacher embeddings, improving
performance on downstream classification tasks.

1 Introduction

CLIP-style models are among the most prominent image-text models currently in use. These models
operate on paired input data, images as well as associated text. Each modality is encoded separately,
and the model is trained in a contrastive fashion: embeddings that correspond to the same image-text
pair are encouraged to have a large inner product, while embeddings that correspond to different
image-text pairs are encouraged to have as small of an inner product as possible. This allows for
zero-shot evaluation, without the use of downstream training images. This allows the model to
achieve state of the art performance in various machine learning tasks, without ever having access to
the data they are evaluated on. For these models, it is often the case that they require a very large
number of parameters to achieve good results, which might make them difficult to use in practice.

Knowledge Distillation (KD) works by distilling information from a pretrained, well-performing
teacher model to a (usually smaller) student network. This technique aims to improve the quality of
the resulting student, yielding better performance compared to only training on a dataset without the
extra information provided by the teacher. Smaller student networks also reduce inference compute
and memory requirements and can be deployed on smaller edge devices [2, 3, 9, 25].

In our work, we propose a method for distillation of CLIP style models that aims to circumvent two
assumptions commonly made by knowledge distillation techniques:

• The first is that the student model operates on one modality (for example, a vision-based
student model learning from a similar vision-based teacher). In our setting, we examine
a way to distill information from a model that operates on multiple modalities to a simi-
larly multimodal student. Our method distills both modalities at the same time, therefore
informing each modality from the other one.

• The second is that the student model is assumed to have knowledge of the downstream task,
most commonly by using distillation for a supervised task. In this work, we shall examine
the use of distillation for a setting where the student model is also used for a variety of tasks
via zero-shot evaluation. This way, the student aims to be equally diverse to the teacher.
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(a) Baseline distillation method. (b) Multimodal distillation method.

Figure 1: Comparison between baseline distillation method and our proposed method. The base-
line distillation method minimizes the KL divergence of the distributions created by the embeddings
of the student and the teacher. In contrast, our method performs contrastive learning on each of the
student and teacher modality pairs, in order to obtain information from the embeddings directly. Inner
products of embeddings on the diagonals are maximized, while the rest are minimized.

2 Related Work

2.1 Contrastive Learning

Contrastive learning is a form of self-supervision that works by contrasting samples in the input data.
The aim of techniques under this categorization is to learn representations that are aligned for similar
inputs. This is often done by performing augmentations on the data, creating multiple views from a
single sample whose representations the model wants to align. These also need to be as varied as
possible, so that views from different images have different representations. This dual operation of
alignment and uniformity of representations learned using contrastive learning is a known result of
one of its standard training objectives [19]. Overall, contrastive learning has become very popular
in recent years, with multiple works demonstrating various learning objectives which exhibit these
desired properties [4, 5, 11, 24]. The usage of multiple views is not restricted to contrastive learning,
as there also exist methods that make use of the positive samples without relying on negatives [1, 10].

Contrastive learning is an excellent choice in the multimodal setting, where models operate on paired
datasets. Each sample in the data has one view per modality, all of them containing different but
related information about the sample in question. This has led to many state-of-the-art image-text
models that use contrastive learning or architectures trained with it as part of their pipeline [14, 15, 16].
In what follows, we shall focus on CLIP in particular, an architecture trained to learn both image
and text representations from unlabeled data. Recently, via OpenCLIP [13] it has become possible to
reproduce this CLIP training [7], allowing further exploration into CLIP-style models.

2.2 Knowledge Distillation

Knowledge distillation [12] is a technique that allows the distillation of the information from a
pretrained teacher model to a student one. Traditionally, this technique works by training the student
to match the soft labels assigned by the teacher. Recently, contrastive learning has proven to be useful
in this setting as well, as it can be used in the form of contrastive representation distillation [18], to
obtain results which are better than regular knowledge distillation in the unimodal setting.

In the setting of image-text models, the study of distillation of large teacher models to smaller ones
has been limited. While there are a few studies that examine this technique [8, 20, 21], they rely on
cross-modal transformers and architectures which provide only a single representation per sample,
instead of one per modality. More importantly, they also incorporate the downstream tasks as part
of their complete distillation pipelines. This is somewhat limiting, given that we want to distill an
all-purpose teacher model into an equally all-purpose student one. In contrast to that, there exist a
pair of works [6, 22] that use distillation in a way that is model and downstream task agnostic (for
the special case of self distillation), by considering the logits of the teacher in the pretraining stage
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(given distributions of images and texts within the batch). A concurrent work to ours [23] also uses
this loss function as well as weight inheritance to distill CLIP-style models. Our work will examine a
similarly general approach, where two teachers are jointly distilled into two students.

3 Method

Let us assume that we have a CLIP-style teacher model which consists of two encoders, Tim : X →
RdT and Ttext : Y → RdT . These two encoders map an image x ∈ X and a text y ∈ Y to a
common representation space. Our goal is to learn a smaller student model, consisting of encoders
Sim : X → RdS and Stext : Y → RdS , by leveraging information from the teacher model during
training. Normally, CLIP training on the student is done via the following loss:

LCLIP = − 1

2N

N∑
i=1

(
log σ(Sim(x), Stext(y); i, τ) + log σ(Stext(y), Sim(x); i, τ)

)
, (1)

σ(f(a), g(b); i, τ) =
exp(f(ai)

T g(bi)/τ)∑N
j=1 exp(f(ai)

T g(bj)/τ)
(2)

Minimizing this loss function enables the student image and text encoders to learn similar representa-
tions for the correct image and text pairs, and different ones for the rest. The loss function can be
extended by including an additional term which allows for distillation between the teacher and the
student. In other words, our loss becomes L = LCLIP + LDistill. The key question then becomes
how to formulate LDistill properly, so that the we obtain relevant information from the teacher.

One way to do this is to view the embeddings for each batch as a distribution of the images across
the possible texts and vice-versa. This means that, for each image xi in the batch, we can assign a
distribution zSim,i = softmax

j=1,...,N

(
Sim(xi)

TStext(yj)
)

over the texts in the batch. Similarly, for each

text yj we can define a distribution zStext,j = softmax
i=1,...,N

(
Stext(yj)

TSim(xi)
)

over the images. We

can define distributions zTim,i and zTtext,j in the same way. The term below is then added to the loss:

LDistill = LKD = − 1

N

N∑
i=1

N∑
j=1

zTim,ij log zSim,ij −
1

N

N∑
j=1

N∑
i=1

zTtext,ji log zStext,ji (3)

This method has been presented in [6] and [22]. There, it was used in the context of self-distillation
(where the teacher model is a previous version of the student). Visually, this operation can be seen
in Figure 1a. This extra term works by minimizing the KL divergence between the distributions
corresponding to the rows and columns of the matrix in Figure 1a. This term essentially encourages
the student to assign images across the texts in the batch as similarly to the teacher as it can.

In the previous method, distillation is performed at the level of predictions, instead of using the
embeddings directly. This is somewhat of an extraneous task, since at this point there is no inherent
classification task that we want our student to perform. Rather, the implicit goal is to actually learn
the representations of the teacher, in a way that is useful for downstream classification. With that in
mind, we propose an alternative loss that directly operates on the embedding space of the teacher and
the student. Our Multimodal Distillation loss is LDistill = LMM , where:

LMM = − 1

N

N∑
i=1

(
log σ(Sim(x),WimTim(x); τ) + log σ(Sim(x),WtextTtext(y); τ)+

log σ(Stext(y),WimTim(x); τ) + log σ(Stext(y),WtextTtext(y); τ)
) (4)

In the above, Wim and Wtext are dS × dT matrices, learnt during training and then discarded. These
matrices project the teacher embeddings to the student embedding space if needed, as it is often the
case that dT > dS . The above loss can be seen visually in Figure 1b. This loss function operates
in a way similar to Contrastive Distillation [18], applied in the setting of multiple modalities. We
consider all possible combinations of modalities for samples in the batch. The above loss encourages
similarity between student and teacher embeddings of the same sample across both modalities. At
the same time, it decreases the similarity of embeddings of different samples. This is precisely the
goal of contrastive learning and general, making our method better related to the paradigm that is
used to train these image-text models. This encourages the student to preserve the structure learned
by the teacher, which is the key aspect of image-text training.
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Table 1: Results on ViT-S-32, training for 150 million samples. We compare our method to the
baseline knowledge distillation approach [6], as described in Section 3. We can see that we have a
benefit in ImageNet-1K Zero-Shot accuracy.

Method ImageNet-1K Zero-Shot Accuracy
No Distillation 24.35%

Knowledge Distillation 29.50%
Multimodal Distillation 30.18%

Figure 2: Performance of methods across training. We see that our loss outperforms the baseline
across training, with the difference being higher at the earlier stages of training.

4 Experiments

For our experiments, we trained a CLIP model using the above distillation losses. We used the
OpenCLIP implementation of CLIP training [13]. For the teacher model, we used a ViT-L/14 based
CLIP model, trained by OpenAI. This is a well performing teacher model, achieving 75.3% accuracy
on ImageNet. Note that to achieve this accuracy, the model was trained on a very large amount of
data, a setting that we don’t match in this work due to compute limitations. For the student model,
we used a ViT-S/32 based model, as defined in the OpenCLIP repository. Our teacher model has 428
million parameters while the student has 63 million, which correspond to a major reduction in the
theoretical expressive power of the network. Training was done on an HPC cluster, using a single
node with 3 A100s GPUs. Training is done for 10 epochs on the YFCC15M dataset, a 15 million
subset of YFCC100M [17] defined in the CLIP repository. We use a batch size of 1024 per GPU, and
a learning rate of 0.0005.

We evaluate our models on their ImageNet-1K accuracy. Evaluation is done in a zero-shot way (so
we do not train a linear classifier on top of the representations). Results can be seen in Table 1. We
can see that all distillation methods outperform pure CLIP training, and that our method performs
better than using the KD based variant or distilling each modality separately.

Moreover, in Figure 2 we see that our method outperfoms the baseline Knowledge Distillation
approach across training, with the benefit being higher earlier in the training process. This shows the
benefit of our method, when used for shorter training, if fewer resources are available.

5 Conclusion

We have presented a method to distill a large CLIP model to a smaller one, in a way that prioritizes
similarity between the embeddings of the teacher and the student. We see that there is a benefit over
using the logits of the teacher within the batch. In the future, we aim to expand on these techniques
and further examine the capabilities of our method to create all-purpose students, without access to
downstream tasks.
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