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Abstract

Representations are at the core of all deep reinforcement learning (RL) methods
for both Markov decision processes (MDPs) and partially observable Markov deci-
sion processes (POMDPs). Many representation learning methods and theoretical
frameworks have been developed to understand what constitutes an effective rep-
resentation. However, the relationships between these methods and the shared
properties among them remain unclear. In this paper, we show that many of these
seemingly distinct methods and frameworks for state and history abstractions are,
in fact, based on a common idea of self-predictive abstraction. Furthermore, we
provide theoretical insights into the widely adopted stop-gradient technique for
learning self-predictive representations.

1 Introduction

Reinforcement learning holds great potential to learn optimal policies, mapping observations to
return-maximizing actions. However, the application of RL in the real world encounters challenges
when observations are high-dimensional and/or noisy [69, 79, 81]. This challenge becomes even more
severe in partially observable environments [51] where a history of observations grows over time.

To address the curse of dimensionality, a substantial body of work has focused on compressing obser-
vations into a latent state space, known as state abstraction in MDPs [10, 11, 46], history abstraction
in POMDPs [6, 47], and sufficient statistics in stochastic control [4, 39, 40, 70]. Traditionally, this
compression has been achieved through hand-crafted feature extractors [37, 73] or with the discovery
of a set of core tests sufficient for predicting future observations [47, 68]. Modern approaches
learn the latent state space using an encoder to automatically filter out irrelevant parts of observa-
tions [42, 52, 82]. Furthermore, deep RL enables end-to-end and online learning of compact state
or history representations alongside policy training. As a result, numerous representation learning
techniques for RL have surfaced (refer to Table 1), drawing inspiration from diverse fields within ML
and RL. However, this abundance of methods may have inadvertently presented practitioners with a
“paradox of choice”, hindering their ability to identify the best approach for their specific RL problem.

This paper aims to offer systematic guidance regarding the essential characteristics that good
representations should possess (the “what”) in the context of RL, as well as effective strategies for
learning such representations (the “how”). We begin our analysis from first principles by comparing
and connecting various representations proposed in prior works for MDPs and POMDPs, resulting
in a unified view. Remarkably, these representations are all connected by a self-predictive condition
– the encoder can predict its next latent state [71]. Next, we examine how to learn such self-predictive
condition in RL, a difficult subtask due to the bootstrapping effect [15, 62, 78]. We provide fresh
insights on why the popular “stop-gradient” technique, in which the parameters of the encoder do not
update when used as a target, has the promise of preventing representational collapse in POMDPs.
Taken together, we believe that our work may prove helpful for charting a path forward for studying
the longstanding challenge of learning representations in MDPs and POMDPs.
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2 Background
MDPs and POMDPs. In the context of a POMDPMO = (O,A, P,R, γ, T ) [71], an agent receives
an observation ot ∈ O at time step t, selects an action at ∈ A based on the observed history ht :=
(ht−1, at−1, ot) ∈ Ht, and obtains a reward rt ∼ R(ht, at) along with the subsequent observation
ot+1 ∼ P (· | ht, at). The initial observation h1 := o1 is sampled from the distribution P (o1). The
total time horizon is denoted as T ∈ N+ ∪ {+∞}, and the discount factor is γ ∈ [0, 1] (less than 1
for infinite horizon). To maintain brevity, we employ the “prime” symbol to represent the next time
step, for example writing h′ = (h, a, o′). Under the above assumptions, our agent acts according to a
policy π(a | h) with action-value Qπ(h, a). Furthermore, it can be shown that there exists an optimal
value function Q∗(h, a) such that Q∗(h, a) = E[r | h, a] + γEo′∼P (|h,a)[maxa′ Q∗(h′, a′)] and a
deterministic optimal policy π∗(h) = argmaxaQ

∗(h, a). In an MDPMS = (S,A, P,R, γ, T ), the
observation ot and history ht are replaced by the state st ∈ S.

State and history representations. In a POMDP, an encoder is a function ϕ : Ht → Z that
produces a history representation z = ϕ(h) ∈ Z . Similarly, in an MDP, we replace h with s,
resulting in a state encoder ϕ : S → Z and a state representation z = ϕ(s) ∈ Z . This representation
is also known as an “abstraction” [46] or a “latent state” [15]. Such encoders are sometimes shared
and simultaneously updated by downstream components (e.g. policy, value, reward model, world
model) of an RL system [22, 26]. In this paper, we are interested in such a shared encoder, or the
encoder of the value function if the encoders are separately learned.

Below, we present the key abstractions that are central to this paper, along with their established
connections. We will highlight the conditions met by each abstraction. We defer additional common
abstractions and related concepts to Appendix A.2.

1. Q∗-irrelevance abstraction. An encoder ϕQ∗ provides a Q∗-irrelevance abstraction [46] if it
contains the necessary information for predicting the return. Formally, if ϕQ∗(hi) = ϕQ∗(hj), then
Q∗(hi, a) = Q∗(hj , a),∀a. A Q∗-irrelevance abstraction can be achieved as a by-product of learning
an encoder ϕ through a value function Q(ϕ(h), a) end-to-end using model-free RL. If the optimal
values match, then Q∗(ϕQ∗(h), a) = Q∗(h, a),∀h, a.

2. Self-predictive (model-irrelevance) abstraction. In our interpretation, we view the model-
irrelevance concept [46] from a self-predictive standpoint. Specifically, a model-irrelevant encoder,
denoted as ϕL, fulfills two conditions: expected reward prediction (RP) and next latent state
z prediction (ZP)1, ensuring that the encoder is capable of predicting expected reward and the
subsequent latent state distribution.

∃Rz : Z ×A → R, s.t. E[R(h, a) | h, a] = Rz(ϕL(h), a), ∀h, a, (RP)

∃Pz : Z ×A → ∆(Z), s.t. P (z′ | h, a) = Pz(z
′ | ϕL(h), a), ∀h, a, z′. (ZP)

ZP can be interpreted as a sufficient statistics condition on ϕL: the next latent state z′ is conditionally
independent of the history h when ϕL(h) and a is known, symbolized as z′ ⊥⊥ h | ϕL(h), a.
Satisfying ZP only is trivial and can be achieved by employing a constant representation ϕ(h) = c,
where c is a fixed constant. Therefore, ZP must be used in conjunction with other conditions (e.g.,
RP) to avoid such degeneration. The ϕL is known as a bisimulation generator [17] in MDPs and an
information state generator [71] in POMDPs.

3. Observation-predictive (belief) abstraction. This abstraction is implicitly introduced by Subra-
manian et al. [71], which we denote by ϕO, and satisfies three conditions: expected reward prediction
RP, recurrent encoder (Rec) and next observation prediction (OP)2.

∃Pm : Z ×A×O → ∆(Z), s.t. P (z′ | h′) = Pm(z′ | ϕO(h), a, o′), ∀h, a, o′, z′, (Rec)

∃Po : Z ×A → ∆(O), s.t. P (o′ | h, a) = Po(o
′ | ϕO(h), a), ∀h, a, o′. (OP)

∃Po : Z → ∆(O), s.t. P (o | h) = Po(o | ϕO(h)), ∀h. (OR)

Similarly, the OP condition is equivalent to o′ ⊥⊥ h | ϕO(h), a, and OP is closely related to
observation reconstruction (OR), widely used in practice [85]. The recurrent encoder (Rec)
condition is satisfied for encoders parameterized with feedforward or recurrent neural networks [12,
29], but not Transformers [80]. In this paper, we assume the Rec condition is always satisfied. In
POMDPs, ϕO is well-known as a belief state generator [34].

1RP and ZP are labeled as (P1) and (P2), respectively, in Subramanian et al. [71].
2OP and ZM are labeled as (P2a) and (P2b), respectively, in Subramanian et al. [71].
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Below we extend the known relations between these abstractions in MDPs [46] to POMDPs.
Theorem 1 (Relationships between common abstractions). An encoder satisfying ϕO also belongs
to ϕL; an encoder satisfying ϕL also belongs to ϕQ∗ ; the reverse is not necessarily true.

3 A Unified View on State and History Representations
3.1 An Implication Graph of Representations in RL

ZP

ϕQ∗

RP

Rec

OP

OR

Figure 1: (Better viewed in PDF) An impli-
cation graph showing the relations between
the conditions on history representations.
The source nodes of the edges with the same
color together imply the target node. The
dashed edge means it only applies to MDPs.
All the connections are discovered in this
work, except for (1) OP + Rec implying ZP,
(2) ZP + RP implying ϕQ∗ .

Using the taxonomy of state and history abstractions, it
becomes possible to establish theoretical links among the
different representations and their respective conditions
discussed earlier. These connections are succinctly illus-
trated in a directed graph, as shown in Fig. 1. In this
section, we highlight the most significant novel finding,
while postponing the presentation of other propositions
and proofs to Sec. A.

The definition of self-predictive and observation-predictive
abstractions suggests the classic phased training frame-
work. In phased training, we alternatively train an encoder
to predict expected rewards (RP) and predict next latent
states (ZP) or next observations (OP), and also train an
RL or planning agent on the latent space with the encoder
“detached” from downstream components. On the other
hand, we show in our Thm. 2 that if we learn an encoder
end-to-end in a model-free fashion but using ZP (OP) as an auxiliary task, then the ground-truth
expected reward can be induced by the latent Q-value and latent transition. Thus, the encoder also
satisfies RP and generates ϕL (ϕO) representation already.
Theorem 2 (ZP + ϕQ∗ imply RP). If an encoder ϕ satisfies ZP, and Q(ϕ(h), a) = Q∗(h, a),∀h, a,
then we can construct a latent reward functionRz(z, a) := Q(z, a)−γEz′∼Pz(|z,a)[maxa′ Q(z′, a′)],
such thatRz(ϕ(h), a) = E[R(h, a) | h, a],∀h, a.

3.2 Which Representations Do Prior Methods Learn?

Table 1: Which optimal representation will be learned by the value function in prior works? The “PO”
column shows if the approach applies to POMDPs. The “Conditions” column shows the conditions that the
encoder of the optimal value satisfies (see the appendix for the “metric” condition). The ZP loss shows the loss
function they use to learn ZP condition. The ZP target shows whether they use online or stop-gradient (including
detached and EMA) encoder target.

Work PO? Abstraction Conditions ZP loss ZP target

Model-Free & Classic Model-Based RL ✗ ϕQ∗ ϕQ∗ N/A N/A
DeepMDP [15] ✗ ϕL ϕQ∗ + RP + ZP W (ℓ2) online

SPR [62] ✗ ϕL ϕQ∗ + ZP cos EMA
DBC [88] ✗ ϕL ϕQ∗ + RP + ZP + metric FKL detached

LSFM [45] ✗ ϕL ϕQ∗ + RP + ZP SF detached
Baseline in [79] ✗ ϕL ϕQ∗ + RP + ZP ℓ2 detached

EfficientZero [86] ✗ ϕL ϕQ∗ + RP + ZP cos detached
TD-MPC [26] ✗ ϕL ϕQ∗ + RP + ZP ℓ2 EMA

ALM [16] ✗ ϕL ϕQ∗ + ZP RKL EMA
TCRL [89] ✗ ϕL RP + ZP cos EMA

OFENet [56] ✗ ϕO ϕQ∗ + OP N/A N/A

Recurrent Model-Free RL [27, 36, 53] ✓ ϕQ∗ ϕQ∗ N/A N/A
PBL [18] ✓ ϕL ϕQ∗ + ZP ℓ2 detached
AIS [71] ✓ ϕL, ϕO RP + ZP or OP ℓ2, FKL detached

Belief-Based Methods [21–25, 44, 83] ✓ ϕO RP + ZP + OR FKL online
Causal States [87] ✓ ϕO RP + OP N/A N/A

With the unified view of state and history representations, we can categorize prior works by the
conditions that their optimal encoders in their value functions satisfy. Table 1 shows representative
examples. The unified view enables us to draw interesting connections between prior works, even
though they may differ in RL or planning algorithms and the encoder objectives. Here we highlight
some important connections and provide a more detailed discussion of all prior works in Sec. C.
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To begin with, it is important to recognize that classic model-based RL actually learns ϕQ∗ in value
function. Model-based RL trains a policy and value by rolling out on the learned model. However,
the policy and value do not share representations with the model [9, 32, 35, 72, 76], or learn their
representations from maximizing returns [54, 67, 77]. Secondly, as shown in Table 1, there is a
wealth of prior work on approximating ϕL, stemming from different perspectives. These include
bisimulation [15], information states [71], variational inference [16], successor features [2, 45], and
self-supervised learning [18, 26, 62]. The primary differences between these approaches lie in their
selection of (1) architecture (whether learning RP, ϕQ∗ , or both), (2) ZP objectives (such as ℓ2, cosine,
forward or reverse KL), and (3) ZP targets for optimization (including online, detached, EMA, as
detailed in Sec. 4). Finally, observation-predictive representations are typically studied in POMDPs,
where they are known as belief states [34] and predictive state representations [47].

4 On Learning Self-Predictive Representations in RL
Thm. 2 suggests that we can learn ϕL by simply training an auxiliary task of ZP on a model-free
agent. Prior works have proposed several auxiliary losses to learn ZP, summarized in Table 1’s ZP
loss column. For simplicity, consider the deterministic ℓ2 objective [15, 26, 62, 79, 86]3:

Jℓ(ϕ, θ, ϕ̃;h, a) := Eo′∼P (|h,a)

[
∥gθ(fϕ(h), a)− fϕ̃(h

′)∥22
]
, (1)

where we parameterize an encoder with fϕ : Ht → Z and a latent transition function with gθ :

Z ×A → Z . The ϕ̃, called ZP target, can be online (exact ϕ that allows gradient backpropagation),
or the stop-gradient version ϕ (detached from the computation graph and using a copy or exponential
moving average (EMA) of ϕ). The update rule is ϕ← τϕ+ (1− τ)ϕ, with τ = 0 for detached and
τ ∈ (0, 1) for generic EMA. We summarize the choices of ZP targets in one column of Table 1.

In this section, we aim to justify that the widely used stop-gradient (detached or EMA) ZP targets [16,
62, 88, 89], play an important role in optimization. We find that stop-gradient can avoid representa-
tional collapse under some linear assumptions (Thm. 3), while online ZP targets lack these properties.
Theorem 3 (Stop-gradient provably avoids representational collapse in linear models). Assume
a linear encoder fϕ(h) := ϕ⊤h−k: ∈ Rd with parameters ϕ ∈ Rk(|O|+|A|)×d, which always
operates on h−k:, a recent-k truncation of history h. Assume a linear deterministic latent transition
gθ(z, a) := θ⊤z z + θ⊤a a ∈ Rd with parameters θz ∈ Rd×d and θa ∈ R|A|×d. If we train ϕ, θ using
the stop-gradient ℓ2 objective Eh,a

[
Jℓ(ϕ, θ, ϕ;h, a)

]
without RL loss, and θ relies on ϕ by reaching

the stationary point with ∇θEh,a

[
Jℓ(ϕ, θ, ϕ;h, a)

]
= 0, then the matrix multiplication ϕ⊤ϕ will

retain its initial value according to our continuous-time analysis.
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Figure 2: The absolute normalized inner product of the
two column vectors in the learned encoder when using
online, detached, or EMA ZP target in an MDP (left) and
a POMDP (right). We plot the results for 100 different
seeds, which controls the rollouts used to sample tran-
sition and the initialization of the representation. The
bold lines represent the median of the seeds.

Thm. 3 extends the results of [78, Theorem 1]
to action-dependent latent transition, POMDP,
and EMA settings. This theorem also implies
that ϕ will keep full-rank during training if the
initialized ϕ is full-rank4.

Similar to Tang et al. [78], we illustrate our the-
oretical contribution by examining the behavior
of the learned encoder over time when starting
from a random orthogonal initialization. We ex-
tend these results by considering both the MDP
and the POMDP setting and consider two clas-
sical domains, mountain car [50] (MDP) and
load-unload [49] (POMDP), where we fit an en-
coder ϕ with a latent state dimension of 2. Fig. 2
shows the orthogonality-preserving effect of the stop-gradient by comparing the cosine similarity
between columns of the learned ϕ. As expected by Thm. 3, we see this similarity stay several orders
of magnitude smaller when using stop-gradient (detached or EMA) compared to the online case.
Note that although our theory discusses the continuous-time dynamics, we can approximate them
with gradient steps with a small learning rate, as was done for these results.

3Cosine distance [62] is an ℓ2 distance on the normalized vector space Z = { z ∈ Rd | ∥z∥2 = 1}.
4This is due to the fact that rank(A⊤A) = rank(A) for any real-valued matrix A.
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A A Unified View on State and History Representations

A.1 Notation

Table 2 shows the glossary used in this paper.

A.2 Additional Background

A.2.1 Additional Abstractions and Formalizing the Relationship

First, we present two additional abstractions not shown in the main paper, which are also used in
prior work. Then we formalize Thm. 1 with Thm. 4 using the concept of granularity in relation.

π∗-irrelevance abstraction. An encoder ϕπ∗ yields a π∗-irrelevance abstraction [46] if it contains
the necessary information (a “sufficient statistics”) for selecting return-maximizing actions. Formally,
if ϕπ∗(hi) = ϕπ∗(hj) for some hi, hj ∈ Ht, then π∗(hi) = π∗(hj). One way of obtaining a π∗-
irrelevance abstraction is to learn an encoder ϕ end-to-end with a policy πz(a | ϕ(h)) by model-free
RL [75] such that π∗

z(ϕπ∗(h)) = π∗(h),∀h.

Markovian abstraction. An encoder ϕM provides Markovian abstraction if it satisfies the expected
reward condition RP and Markovian latent transition (ZM) condition: for any zk = ϕM (hk),

P (zt+1 | z1:t, a1:t) = P (zt+1 | zt, at) ∀z1:t+1, a1:t (ZM)

This extends Markovian abstraction [1] in MDPs to POMDPs.

Granularity in relation. In MDPs, it is well-known that state representations form a hierarchical
structure [46, Theorem 2], but this idea had not been extended to the POMDP case. We do so
here by defining an equivalent concept of “granularity”. We say that an encoder ϕA is finer than
or equal to another encoder ϕB , denoted as ϕA ⪰ ϕB , if and only if for any histories hi, hj ∈ Ht,
ϕA(hi) = ϕA(hj) implies ϕB(hi) = ϕB(hj). The relation ⪰ is a partial ordering. Using this notion,
we can show Thm. 4:

Theorem 4 (Granularity of state and history abstractions (the formal version of Thm. 1)).
ϕO ⪰ ϕL ⪰ ϕQ∗ ⪰ ϕπ∗ .
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Table 2: Glossary of notations used in this paper.
Notation Text description Math description

γ Discount factor γ ∈ [0, 1]
T Horizon T ∈ N ∪ {+∞}
st State at step t s ∈ S
ot Observation at step t o ∈ O
at Action at step t a ∈ A
rt Reward at step t r ∈ R
ht History at step t ht = (ht−1, at−1, ot) ∈ Ht, h1 = o1

P (ot+1 | ht, at) Environment transition
R(ht, at) Environment reward function R : Ht ×A → ∆(R)
π(at | ht) Policy (actor)
π∗(ht) Optimal policy (actor)

Qπ(ht, at) Value (critic)
Q∗(ht, at) Optimal value (critic)

ϕ Encoder of history ϕ : Ht → Z
zt Latent state at step t zt = ϕ(ht) ∈ Z

Pz(zt+1 | zt, at) Latent transition
Rz(zt, at) Latent reward function
πz(at | zt) Latent policy (actor)
π∗
z(zt) Optimal latent policy (actor)

Qπz
z (zt, at) Latent value (critic)

Q∗
z(zt, at) Optimal latent value (critic)

RP Expected Reward Prediction E[rt | ht, at] = E[rt | ϕ(ht), at]

OR Observation Reconstruction P (ot | ht) = Po(ot | ϕ(ht))
OP Next Observation Prediction P (ot+1 | ht, at) = Po(ot+1 | ϕ(ht), at)

ZP Next Latent State z Prediction P (zt+1 | ht, at) = Pz(zt+1 | ϕ(ht), at)
Rec Recurrent Encoder zt+1 ⊥⊥ ht | ϕ(ht), at, ot+1

ZM Markovian Latent Transition zt+1 ⊥⊥ z1:t−1, a1:t−1 | ϕ(ht), at

ϕπ∗ π∗-irrelevance abstraction ϕ(h1) = ϕ(h2) =⇒ π∗(h1) = π∗(h2)
ϕQ∗ Q∗-irrelevance abstraction ϕ(h1) = ϕ(h2) =⇒ Q∗(h1, a) = Q∗(h2, a)
ϕM Markovian abstraction RP + ZM
ϕL Self-predictive abstraction RP + ZP ⇐⇒ ϕQ∗ + ZP
ϕO Observation-predictive abstraction RP + OP + Rec ⇐⇒ ϕQ∗ + OP + Rec

Abstract MDP. Given an encoder ϕ, we can construct an abstract MDP [46] Mϕ =
(Z,A, Pz, Rz, γ, T ) for a POMDPMO. The latent reward Rz and latent transition Pz are then given
by: Rz(z, a) =

∫
P (h | z)R(h, a)dh, Pz(z

′ | z, a) =
∫
P (h | z)P (o′ | h, a)δ(z′ = ϕ(h′))dhdo′,

where P (h | z) = 0 for any ϕ(h) ̸= z and is normalized to a distribution. The optimal latent (Marko-
vian) value function Q∗

z(z, a) statisfies Q∗
z(z, a) = Rz(z, a) + γEz′∼Pz(|z,a)[maxa′ Q∗

z(z
′, a′)], and

the optimal latent policy π∗
z(z) = argmaxaQ

∗
z(z, a). It is important to note that this definition

focuses solely on the process by which the encoder induces a corresponding abstract MDP, without
addressing the quality of the encoder itself.

A.2.2 Alternative Definitions

In the main paper (Sec. 2), we present the concepts of self-predictive abstraction ϕL and observation-
predictive abstraction ϕO. In most prior works, these concepts were defined in an alternative way –
using a pair of states (histories). In comparison, our definition is based on a pair of a state (history)
and a latent state, which we believe is more comprehensible and help derive the auxiliary objectives.

For completeness, here we restate their definition, extended to POMDPs, and then show the equiva-
lence between their and our definitions.

Model-irrelevance abstraction [46] (bisimulation relation [17]) ΦL. If for any two histories
hi, hj ∈ H such that ΦL(hi) = ΦL(hj), then

E[R(hi, a) | hi, a] = E[R(hj , a) | hj , a], ∀a ∈ A (2)
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P (z′ | hi, a) = P (z′ | hj , a), ∀a ∈ A, z′ ∈ Z (3)

where P (z′ | h, a) =
∫
P (o′ | h, a)δ(z′ = ΦL(h

′))do′. Here we extend the concept from MDPs [17,
46] into POMDPs. It is worth noting that while original concepts assume deterministic rewards or
require reward distribution matching for stochastic rewards [6] in Eq. 2, the requirement can indeed
be relaxed. As shown by Subramanian et al. [71], it is sufficient to ensure expected reward matching
to maintain optimal value functions. As such, we adopt this relaxed requirement of expectation
matching in our concept.
Proposition 1 (ΦL is equivalent to ϕL).

Proof. It is easy to see that ϕL implies ΦL. If ϕL(hi) = ϕL(hj), then by RP,

E[R(hi, a) | hi, a] = Rz(ϕL(hi), a) = Rz(ϕL(hj), a) = E[R(hj , a) | hj , a], (4)

and by ZP,

P (z′ | hi, a) = Pz(z
′ | ϕL(hi), a) = Pz(z

′ | ϕL(hj), a) = P (z′ | hj , a) (5)

Therefore, ϕL implies ΦL.

Now we want to show ΦL implies ϕL. First, to see RP condition: for any h, a,

E[R(h, a) | h, a] = E[R(h, a) | h, a]
∫
H
P (h | ΦL(h))dh (6)

=

∫
H
P (h | ΦL(h))E[R(h, a) | h, a]dh (7)

(A)
=

∫
H
P (h | ΦL(h))E

[
R(h, a) | h, a

]
dh := Rz(ΦL(h), a) (8)

where

P (h | ΦL(h)) =

{
1
c if ΦL(h) = ΦL(h)

0 else
(9)

the normalizing constant c ∈ [0+,∞) is the measure of the inverse image Φ−1
L (ΦL(h)).

The step (A) follows that for any h such that P (h | ΦL(h)) > 0 (i.e., ΦL(h) = ΦL(h)), by the
definition of ΦL, we have E

[
R(h, a) | h, a

]
= E[R(h, a) | h, a]. The final equation follows that we

can construct a latent reward function with ΦL(h) and a as inputs, as h is integrated.

Similar to the proof of showing RP, we can show ZP: for any h, a,

P (z′ | h, a) = P (z′ | h, a)
∫
H
P (h | ΦL(h))dh (10)

=

∫
H
P (h | ΦL(h))P (z

′ | h, a)dh (11)

(B)
=

∫
H
P (h | ΦL(h))P (z

′ | h, a)dh := Pz(z
′ | ΦL(h), a) (12)

where the step (B) follows the definition of ΦL that P (z′ | h, a) = P (z′ | h, a).

Belief abstraction ΦO (weak belief bisimulation relation [6]). It satisfies Rec, and if for any two
histories hi, hj ∈ H such that ΦO(hi) = ΦO(hj), then

E[R(hi, a) | hi, a] = E[R(hj , a) | hj , a], ∀a ∈ A (13)

P (o′ | hi, a) = P (o′ | hj , a), ∀a ∈ A, o′ ∈ O (14)

This concept is known as a naive abstraction in MDPs [33] and weak belief bisimulation relation in
POMDPs [6]. Similarly, prior concepts assume deterministic reward or distribution matching for
stochastic rewards, while we relax it to expected reward matching.
Proposition 2 (ΦO is equivalent to ϕO).

Proof. The proof is almost the same as the proof of Prop. 1 by replacing z′ with o′.
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A.3 Propositions and Proofs

With the additional background in Appendix A.2, we show the complete implication graph in Fig. 3
built on Fig. 1.

ZP

ϕQ∗

RP

ZM
Rec

OP
ϕπ∗

OR

Figure 3: The complete implication graph showing the relations between the conditions on history
representations. The source nodes of the edges with the same color together imply the target node.
The dashed edge means it only applies to MDPs. As a quick reminder, RP: expected reward prediction,
OP: next observation prediction, OR: observation reconstruction, ZP: next latent state prediction,
Rec: recurrent encoder, ZM: Markovian latent transition. All the connections are discovered in this
work, except for (1) OP + Rec implying ZP, (2) ZP + RP implying ϕQ∗ , (3) ϕQ∗ implying ϕπ∗ .
A.3.1 Results Related to ZP

Lemma 1 (Functions of independent random variables are also independent). If X ⊥⊥ Y , then for
any (measurable) functions f, g, we have f(X) ⊥⊥ g(Y ).

Proof. This is a well-known result. Here is an elementary proof. Let A,B be any two (measurable)
sets,

P (f(X) ∈ A, g(Y ) ∈ B) = P (X ∈ f−1(A), Y ∈ g−1(B)) (15)
X⊥⊥Y
= P (X ∈ f−1(A))P (Y ∈ g−1(B)) = P (f(X) ∈ A)P (g(Y ) ∈ B) (16)

Lemma 2. If X ⊥⊥ Y | Z, then for any function f , we have X ⊥⊥ Y, f(Z) | Z.

Proof.

P (Y, f(Z) | X,Z) = P (f(Z) | X,Z)P (Y | X,Z, f(Z)) (17)
= P (f(Z) | Z)P (Y | Z) = P (f(Z) | Z)P (Y | Z, f(Z)) = P (Y, f(Z) | Z) (18)

Proposition 3 (ZP implies both ZM and Rec.).
Remark 1. These are new results. ZP implying ZM means ϕL ⪰ ϕM .

Proof of Proposition 3 (ZP implies ZM). Since ZP that zt+1 ⊥⊥ ht | zt, at, this implies zt+1 ⊥⊥
f(ht) | zt, at for any transformation f by Lemma 1. One special case of f is that f(ht) =
(z1:t, a1:t−1) , where zk = ϕ(hk), which is ZM.

Proof of Proposition 3 (ZP implies Rec). Let ϕ satisfy ZP, i.e. z′ ⊥⊥ h | ϕ(h), a. Then we can show
that z′ ⊥⊥ h | ϕ(h), a, o′. This is because the graphical model ((h, a)→ o′ and (h, a, o′)→ z′; see
Fig. 4) does not have v-structure such that (h, z′)→ o′, thus adding the variable o′ to conditionals
preserves conditional independence, by the principle of d-separation [58].

Then we have Rec (z′ ⊥⊥ h′ | ϕ(h), a, o′) by Lemma 2, as (a, o′) also appears in the condition.

Proposition 4 (OP and Rec imply ZP [71].).
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zt

zt+1

ht

ot+1

at

Figure 4: The graphical model of the interaction between history encoder and the environment.

Proof of Proposition 4 and Theorem 4 (ϕO ⪰ ϕL). We directly follow the proof in [71, Proposition
4]. Let ϕ satisfy OP and Rec, then we will have ZP:

P (z′ | h, a) =
∫
P (z′, o′ | h, a)do′ =

∫
P (z′ | h′)P (o′ | h, a)do′ (19)

(Rec,OP )
=

∫
Pm(z′ | ϕ(h), a, o′)P (o′ | ϕ(h), a)do′ (20)

=

∫
P (z′, o′ | ϕ(h), a)do′ = Pz(z

′ | ϕ(h), a) (21)

Proof of Theorem 4 (ϕQ∗ ⪰ ϕπ∗ ). If ϕQ∗(hi) = ϕQ∗(hj), then Q∗(hi, a) = Q∗(hj , a),∀a,
and then taking argmax we get the optimal policy, π∗(h1) = argmaxaQ

∗(h1, a) =
argmaxaQ

∗(h2, a) = π∗(h2).

Proposition 5 (OR and ZP imply OP).

Proof. Recall OR is defined as δ(o = o) = P (o | h) = P (o | ϕ(h))5. Consider given h, a, for any
o′,

P (o′, ϕ(h′) | h, ϕ(h), a) = P (ϕ(h′) | h, a)P (o′ | ϕ(h′), h, ϕ(h), a) (22)
(ZP,OR)

= P (ϕ(h′) | ϕ(h), a)P (o′ | ϕ(h′)) (23)

= P (ϕ(h′) | ϕ(h), a)P (o′ | ϕ(h′), ϕ(h), a) (24)

= P (o′, ϕ(h′) | ϕ(h), a) (25)

where Ln. 24 follows that o′ ⊥⊥ h′ | ϕ(h′) implies o′ ⊥⊥ ϕ(h), a | ϕ(h′) by Lemma 1. Therefore,
o′, ϕ(h′) ⊥⊥ h | ϕ(h), a. By Lemma 1, we have OP o′ ⊥⊥ h | ϕ(h), a.

Proposition 6 (In MDPs, OR implies ZP and OP).

Proof. Assume ϕ satifies OR in MDPs, i.e. P (s | ϕ(s)) = δ(s = s). We want to show that
z′, s ⊥⊥ s | ϕ(s), a which implies ZP by Lemma 1. In fact,

P (z′, s | s, ϕ(s), a) = P (z′, s | s, a) = P (z′ | s, a)δ(s = s) (26)

P (z′, s | ϕ(s), a) = P (s | ϕ(s), a)P (z′ | s, ϕ(s), a) (27)
OR
= δ(s = s)P (z′ | s, a) (28)

Similar proof to OP by replacing z′ with s′.

5If there is no confusion, we may omit the subscripts of Pz and Po for notational simplicity.
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A.3.2 Results Related to Multi-Step Conditions

Below are results on multi-step RP, ZP, and OP, and due to space limit, we do not show these
connections in Fig. 3.
Proposition 7 (ZP is equivalent to multi-step ZP). For k ∈ N+, define k-step ZP as

P (zt+k | ht, at:t+k−1) = P (zt+k | ϕ(ht), at:t+k−1), ∀h, a, z (29)

Proof. As ZP is 1-step ZP, thus multi-step ZP implies ZP. Now we show that ZP implies multi-step
ZP.

P (zt+k | ht, at:t+k−1) =

∫
P (zt+1:t+k, ot+1:t+k | ht, at:t+k−1)dot+1:t+kdzt+1:t+k−1 (30)

=

∫ k∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+kdzt+1:t+k−1 (31)

=

∫ (∫
δ(zt+k = ϕ(ht+k))P (ot+k | ht+k−1, at+k−1)dot+k

)
(32)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1 (33)

=

∫
P (zt+k | ht+k−1, at+k−1)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1

(34)

ZP
=

∫
P (zt+k | ϕ(ht+k−1), at+k−1)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1

(35)

=

∫
P (zt+k | zt+k−1, at+k−1)

k−1∏
i=1

δ(zt+i = ϕ(ht+i))P (ot+i | ht+i−1, at+i−1)dot+1:t+k−1dzt+1:t+k−1

(36)

= . . . (37)

=

∫ k∏
i=2

P (zt+i | zt+i−1, at+i−1)P (zt+1 | ht, at)dzt+1:t+k−1 (38)

ZP
=

∫ k∏
i=2

P (zt+i | zt+i−1, at+i−1)P (zt+1 | ϕ(ht), at)dzt+1:t+k−1 (39)

ZM
=

∫
P (zt+1:t+k | ϕ(ht), at:t+i−1)dzt+1:t+k−1 (40)

= P (zt+k | ϕ(ht), at:t+i−1) (41)

Proposition 8 (ZP and RP imply multi-step RP). For k ∈ N+, define k-step RP as

E[rt+k | ht, at:t+k] = E[rt+k | ϕ(ht), at:t+k], ∀h, a (42)

Proof.

E[rt+k | ht, at:t+k] =

∫
P (ot+1:t+k | ht, at:t+k−1)E[rt+k | ht+k, at+k]dot+1:t+k (43)

RP
=

∫
P (ot+1:t+k | ht, at:t+k−1)Rz(ϕ(ht+k), at+k)dot+1:t+k (44)

=

∫
P (ot+1:t+k | ht, at:t+k−1)δ(zt+k = ϕ(ht+k))Rz(zt+k, at+k)dot+1:t+kdzt+k (45)

=

∫ (∫
P (ot+1:t+k | ht, at:t+k−1)δ(zt+k = ϕ(ht+k))dot+1:t+k

)
Rz(zt+k, at+k)dzt+k (46)
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=

∫
P (zt+k | ht, at:t+k−1)Rz(zt+k, at+k)dzt+k (47)

k-step ZP
=

∫
P (zt+k | ϕ(ht), at:t+k−1)Rz(zt+k, at+k)dzt+k (48)

= E[rt+k | ϕ(ht), at:t+k] (49)

where k-step ZP is implied by ZP by Prop. 7.

Proposition 9 (OP implies multi-step OP in MDPs, but not POMDPs). For k ∈ N+, define k-step
OP as

P (ot+k | ht, at:t+k−1) = P (ot+k | ϕ(ht), at:t+k−1), ∀h, a, o (50)

Proof. We first show the result in MDPs. Assume a state encoder ϕ satisfies OP,

P (st+k | st, at:t+k−1) =

∫
P (st+1:t+k | st, at:t+k−1)dst+1:t+k−1 (51)

MDPs
=

∫
P (st+1 | st, at)

k∏
i=2

P (st+i | st+i−1, at+i−1)dst+1:t+k−1 (52)

OP
=

∫
P (st+1 | ϕ(st), at)

k∏
i=2

P (st+i | st+i−1, at+i−1)dst+1:t+k−1 (53)

MDPs
=

∫
P (st+1:t+k | ϕ(st), at:t+k−1)dst+1:t+k−1 (54)

= P (st+k | ϕ(st), at:t+k−1) (55)

However, in POMDPs, OP does not imply multi-step OP. This can be shown by a counterexample in
Castro et al. [6, Theorem 4.10], where the weak belief bisimulation relation corresponds to single-step
OP and RP, while trajectory equivalence corresponds to multi-step OP and RP. The idea is to show
that for two histories h1t and h2t , if P (ot+1 | h1t , at) = P (ot+1 | h2t , at),∀ot+1, at, it does not imply
that P (ot+2 | h1t , at, ot+1, at+1) = P (ot+2 | h2t , at, ot+1, at+1),∀ot+1:t+2, at:t+1.

A.3.3 Results Related to ϕQ∗

Proof sketch of ZP + RP (ϕL) imply ϕQ∗ . To show Q∗(h, a) = Q∗
z(ϕL(h), a),∀h, a, please see [71,

Theorem 5 and Theorem 25] for finite-horizon and infinite-horizon POMDPs, respectively. For
the approximate version, please see [71, Theorem 9 and Theorem 27]. By definition, Q∗(h, a) =
Q∗

z(ϕL(h), a),∀h, a implies that ϕL is a kind of ϕQ∗ .

Proof of Theorem 2 (ZP + ϕQ∗ imply RP). Suppose ϕ satisfies ZP and we train model-free RL with
value parameterized by Q(ϕ(h), a) to satisfy the Bellman optimality equation:

Q(ϕ(ht), at) =

E[R(ht, at) | ht, at] t = T

E[R(ht, at) | ht, at] + γEot+1∼P (|ht,at)

[
max
at+1

Q(ϕ(ht+1), at+1)

]
else

(56)

where the case t = T only applies to finite-horizon problems (the same below). This is equivalent
to say that Q(ϕ(ht), at) = Q∗(ht, at),∀ht, at, where Q∗ satisfies the Bellman optimality equation,
too:

Q∗(ht, at) =

E[R(ht, at) | ht, at] t = T

E[R(ht, at) | ht, at] + γEot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
else

(57)
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Now we can construct an abstract MDP with ϕ. The latent transition matches due to ZP. The latent
reward function is purely defined by latent value and latent transition6:

Rz(zt, at) :=

Q(zt, at) t = T

Q(zt, at)− γEzt+1∼P (|zt,at)

[
max
at+1

Q(zt+1, at+1)

]
else

(58)

We want to show RP condition: Rz(ϕ(ht), at) = E[R(ht, at)],∀ht, at.
Here is our proof. Recall that the grounded reward function can also be derived reversely by Q∗:

E[R(ht, at) | ht, at] :=

Q
∗(ht, at) t = T

Q∗(ht, at)− γEot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
else

(59)

If the problem is finite-horizon with horizon T and when t = T , RP holds due to Q(ϕ(hT ), aT ) =
Q∗(hT , aT ).

Now consider general case when t < T in finite-horizon (γ = 1) and any t in infinite-horizon (γ < 1).
Due to Q-value match (Q(ϕ(ht), at) = Q∗(ht, at)), it is equivalent to show that

Eot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
= Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]
, ∀ht, at, t

(60)

Proof for this:

LHS
ϕQ∗
= Eot+1∼P (|ht,at)

[
max
at+1

Q(ϕ(ht+1), at+1)

]
(61)

=

∫ (∫
P (ot+1 | ht, at)δ(zt+1 = ϕ(ht+1))dot+1

)
max
at+1

Q(zt+1, at+1)dzt+1 (62)

=

∫
P (zt+1 | ht, at)max

at+1

Q(zt+1, at+1)dzt+1 (63)

ZP
=

∫
P (zt+1 | ϕ(ht), at)max

at+1

Q(zt+1, at+1)dzt+1 = RHS (64)

Lemma 3 (Integral probability metric [71]). Given by a function class F , integral probability
metric (IPM) between two distributions P,Q ∈ ∆(Z) is

DF (P,Q) = sup
f∈F
|Ex∼P[f(x)]− Ey∼Q[f(y)]| (65)

For any real-valued function g, the following inequality is derived by definition:

|Ex∼P[g(x)]− Ey∼Q[g(y)]| ≤ ρF (g)DF (P,Q) (66)

where ρF (g) := inf{ρ ∈ R+ | ρ−1g ∈ F} is a Minkowski functional.

Remark 2. Some examples include:

• Total Variance (TV) distance is an IPM defined by FTV = {f : ∥f∥∞ ≤ 1}.

• Wasserstein (W) distance is an IPM defined by FW = {f : ∥f∥L ≤ 1}.

• KL divergence is not an IPM, but is an upper bound of TV distance by Pinsker’s inequality:

DFTV(P,Q) ≤
√

2DKL(P || Q). (67)

6In the main paper, we omit the finite-horizon case due to space limit.
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Theorem 5 (Approximate version of Theorem 2 (approximate ZP and approximate ϕQ∗ imply
approximate ϕL)). Suppose the encoder ϕ satisfies approximate ZP (AZP) and we train model-free
RL with value parametrized by Q(ϕ(h), a) to approximate Q∗(h, a), namely: ∀t, ht, at,

∃Pz : Z ×A → ∆(Z), s.t. DF (P (zt+1 | ht, at), Pz(zt+1 | ϕ(ht), at)) ≤ δt (AZP)
|Q∗(ht, at)−Q(ϕ(ht), at)| ≤ αt (Approx. ϕQ∗ )

where DF is an IPM. Under these conditions, we can construct a latent reward function:

Rz(zt, at) :=

Q(zt, at) t = T

Q(zt, at)− γEzt+1∼Pz(|zt,at)

[
max
at+1

Q(zt+1, at+1)

]
else

(68)

such that
|E[R(ht, at) | ht, at]−Rz(ϕ(ht), at)| ≤ ϵt, ∀t, ht, at (ARP)

where ϵt =

{
αT t = T

αt + γ(αt+1 + ρF (Vt+1)δt) else
(69)

V(zt) = max
at

Q(zt, at) (70)

where Vt+1 is the latent state-value function V at step t+ 1.

Proof. For the case of t = T in finite-horizon, ARP holds by the assumption of approx. ϕQ∗ . Now
we discuss generic case of t. Recall the reward and latent reward can be rewritten as:

E[R(ht, at) | ht, at] = Q∗(ht, at)− γEot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
(71)

Rz(zt, at) = Q(zt, at)− γEzt+1∼P (|zt,at)

[
max
at+1

Q(zt+1, at+1)

]
(72)

Therefore, the reward gap is upper bounded:
|E[R(ht, at) | ht, at]−Rz(ϕ(ht), at)| (73)
≤ |Q∗(ht, at)−Q(ϕ(ht), at)| (74)

+ γ

∣∣∣∣Eot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)

]
− Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]∣∣∣∣ (75)

≤ αt + γ

∣∣∣∣Eot+1∼P (|ht,at)

[
max
at+1

Q∗(ht+1, at+1)−max
at+1

Q(ϕ(ht+1), at+1)

]∣∣∣∣ (76)

+ γ

∣∣∣∣Eot+1∼P (|ht,at)

[
max
at+1

Q(ϕ(ht+1), at+1)

]
− Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]∣∣∣∣ (77)

≤ αt + γEot+1∼P (|ht,at)

[
max
at+1

|Q∗(ht+1, at+1)−Q(ϕ(ht+1), at+1)|
]

(78)

+ γ

∣∣∣∣Ezt+1∼P (|ht,at)

[
max
at+1

Q(zt+1, at+1)

]
− Ezt+1∼P (|ϕ(ht),at)

[
max
at+1

Q(zt+1, at+1)

]∣∣∣∣ (79)

≤ αt + γαt+1 + γ
∣∣Ezt+1∼P (|ht,at)[V(zt+1)]− Ezt+1∼P (|ϕ(ht),at)[V(zt+1)]

∣∣ (80)

≤ αt + γ(αt+1 + ρF (Vt+1)δt) (81)
where Eq. 74 is by triangle inequality, Eq. 76 is by triangle inequality and approx. ϕQ∗ , Eq. 78 is by
the maximum-absolute-difference inequality |max f(x)−max g(x)| ≤ max |f(x)− g(x)|, Eq. 80
is by approx. ϕQ∗ , and Ln. 81 is by the property of IPM (Eq. 66 in Lemma 3) and AZP.

Remark 3. In the infinite-horizon problem, assume δt = δ and αt = α for any t, and DF is
Wasserstein distance. Further, assume the latent reward Rz(z, a) is Lr-Lipschitz and the latent
transition Pz(z

′ | z, a) is Lp-Lipschitz, then by [71, Lemma 44], if γLp < 1,

ρF (Vt+1) = ∥V∥L ≤
Lr

1− γLp
, ∀t (82)

Thus, the reward difference bound can be rewritten as

ϵ ≤ (1 + γ)α+
γLrδ

1− γLp
(83)
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B Optimization in Self-Predictive RL

Proof of Theorem 3. The setup. Let ht:−k a vectorization of the recent truncation of history ht with
window size of k ∈ N, i.e. ht:−k = vec(at−k, ot−k+1, . . . , at−1, ot) ∈ Rx,7 where x = k(|O|+|A|).
We assume a linear encoder that maps history ht ∈ Ht into zt:

zt = fϕ(ht) := ϕ⊤ht:−k ∈ Rd (84)

where k ∈ N is a constant, and the parameters ϕ ∈ Rx×d. In other words, the linear encoder only
operates on recent histories of a fixed window size. We assume a linear deterministic latent transition

zt+1 = gθ(zt, at) := θ⊤z zt + θ⊤a at ∈ Rd (85)

where the parameters θz ∈ Rd×d and θa ∈ Ra×d. In fact, the result can be generalized to a non-linear
dependence of actions.

The proof. The continuous-time training dynamics of ϕ:

ϕ̇ = −Eht,at

[
∇ϕJℓ(ϕ, θ, ϕ;ht, at)

]
(86)

= −Eht,at,ot+1

[
∇ϕ∥θ⊤z ϕ⊤ht:−k + θ⊤a at − ϕ

⊤
ht+1:−k∥22

]
(87)

= −Eht,at

[
(θ⊤z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤∇ϕθ

⊤
z ϕ

⊤ht:−k

]
(88)

= −Eht,at

[
ht:−k(θ

⊤
z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤

]
θ⊤z (89)

The gradient of the loss w.r.t. θz:

∇θzEht,at

[
Jℓ(ϕ, θ, ϕ;ht, at)

]
(90)

= Eht,at

[
(θ⊤z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤∇θz (θ

⊤
z ϕ

⊤ht:−k + θ⊤a at)
]

(91)

= ϕ⊤Eht,at

[
ht:−k(θ

⊤
z ϕ

⊤ht:−k + θ⊤a at − Eot+1

[
ϕ
⊤
ht+1:−k

]
)⊤

]
∈ Rd×d (92)

Therefore, we have

ϕ⊤ϕ̇ = −∇θzEht,at

[
Jℓ(ϕ, θ, ϕ;ht, at)

]
θ⊤z (93)

Following the practice in [78], we assume ∇θzEht,at

[
Jℓ(ϕ, θ, ϕ;ht, at)

]
= 0, i.e. θz reaches the

stationary point of the inner optimization that depends on ϕ, then ϕ⊤ϕ̇ = 0. Thus, the training
dynamics of ϕ⊤ϕ is

d(ϕ⊤ϕ)

dt
= ϕ̇⊤ϕ+ ϕ⊤ϕ̇ = ϕ̇⊤ϕ+ (ϕ̇⊤ϕ)⊤ = 0 (94)

This means that ϕ⊤ϕ keeps same value during training.

C Prior Works on State and History Representation Learning

In this section, we provide a concise overview of previous works that learn or approximate self-
predictive or model-based representations. We focus on the objectives of state or history encoders in
their value functions. For each work discussed, we present a summary of the conditions that their
encoders aim to satisfy or approximate at the beginning of each paragraph. In cases where multiple
encoder objectives are proposed, we select the one employed in their primary experiments for our
discussion.

In particular, we list the exact objectives they aim to optimize, which might be redundant for exact
conditions. For example, multi-step RP can be implied by RP + ZP by Prop. 8 (or ϕQ∗ + ZP by
Thm. 2), and multi-step ZP can be implied by ZP by Prop. 7.

7We zero pad ai and oi if i ≤ 0.
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C.1 Self-Predictive Representations

DeepMDP [15]: ϕQ∗ + RP + ZP with online ℓ2. DeepMDP aims to learn state representations
that match RP and ZP. In their experiments, they assume deterministic encoder, transition and latent
transition, resulting in dirac distributions Pϕ(z

′ | s′) and Pϕ,θ(z
′ | s, a). Although they use the

Wasserstein distance, it reduces to ℓ2 distance for two dirac distributions. They use an online target in
ZP loss. In their toy DonutWorld task, they try phased training with RP + ZP, but the agent tends to
be trapped in a local minimum of zero ZP. Then they try ϕQ∗ + RP + ZP in Atari by training RP +
ZP as an auxiliary task of C51 agent [3], outperforming C51 in their main result. They also find that
ϕQ∗ + RP + ZP is comparable to ϕQ∗ + ZP, aligned with our theoretical prediction based on Thm. 2.
They also try phased training in Atari and find that RP + ZP performs poorly, while RP + ZP + OR
yields good results.

SPR [62]: ϕQ∗ + multi-step ZP with EMA cos. Self-Predictive Representations (SPR) improves
the ZP objective in DeepMDP. They use a special kind of ℓ2 loss (i.e. cos distance) to bound the loss
scale, and use an EMA target. They use multi-step prediction loss to learn the condition:

P (zt+1:t+k | st, at:t+k−1) = P (zt+1:t+k | ϕ(st), at:t+k−1) (95)

where k = 5 in their experiments. In addition, to reduce the large latent space generated by CNNs,
they use a linear projection of the latent states to satisfy ZP.

DBC [88]: ϕQ∗ + RP + stronger ZP with detached FKL. Deep Bisimulation for Control (DBC)
trains the state encoder ϕ with several auxiliary losses, including RP and ZP. The ZP loss uses a
forward KL objective with a detached target. Their main contribution is the introducation of the
bisimulation metric [13] into state representation learning: for any si, sj ∈ S and ai, aj ∈ A,

∥ϕ(si)− ϕ(sj)∥1 = |R(si, ai)−R(sj , aj)|+ γW (Pθ(z
′ | ϕ(si), ai),Pθ(z

′ | ϕ(sj), aj))
(metric)

where W is Wasserstein distance and Pθ is modeled as a Gaussian. The metric condition enforces
the latent space to be structured with a ℓ1 metric. They train ϕ satisfying the metric condition by
minimizing the mean square error on it as another auxiliary loss. This leads to a stronger ZP condition.

PBL [18]: ϕQ∗ + indirect multi-step ZP. Predictions of Bootstrapped Latents (PBL) designs two
auxiliary losses, reverse prediction and forward prediction, for their history encoder ϕ, transition
model θ, observation encoder f , and projector g:

min
f,g

Eh

[
∥g(f(o))− ϕ(h)∥22

]
(Reverse)

min
ϕ,θ

Eh,a,o′
[
∥θ(ϕ(h), a)− f(o′)∥22

]
(Forward)

To understand their connection with ZP, assume the two losses reach zero with ϕ(h) = g(f(o))
and θ(ϕ(h), a) = Eo′∼P (|h,a)[f(o

′)] for any h, a, although in theory this may be unrealizable.
Furthermore, assume deterministic transition, then

g(θ(ϕ(h), a)) = g(f(o′)) = ϕ(h′) (96)

Therefore, in deterministic environments, reverse and forward prediction together is equivalent to
ZP if they reach the optimum. They also adopt multi-step version of their loss with a horizon of
20. While forward and reverse prediction both appear critical in this work, the follow-up work
BYOL-explore [19] removes reverse prediction.

EfficientZero [86]: ϕQ∗ + RP + multi-step ZP with detached cos. EfficientZero improves
MuZero [61] by introducing ZP loss as one of their main contributions. We consider it especially
crucial to planning algorithms because ZP enforces the latent model to be accurate. Similar to
SPR [62], they use 5-step cos objective with a projection on latent states, and add image data
augmentation for visual RL tasks.

AIS [71]: RP + ZP with detached ℓ2 or forward KL in their approach, while RP + OP with ℓ2
in their experiments. Approximate Information States (AIS) adopts a phased training framework
where the history encoder ϕ learns from RP instead of maximizing returns. In their approach
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section [71, Sec. 6.1.2], they propose using MMD with ℓ2 distance-based kernel kd to learn ZP, and
detach the target. The distance-based kernel [63] takes a pair of latent states z1, z2 ∈ Z as inputs,
and is defined as kd(z1, z2) = 1

2 (d(z0, z1) + d(z0, z2)− d(z1, z2)) where z0 ∈ Z is arbitrary. In this
case, d(z1, z2) = ∥z1 − z2∥22 is ℓ2 distance.

Let Pϕ,θ(z
′ | h, a) and Qϕ(z

′ | h, a) be the predicted and real next latent distributions. The MMD
with kd can be reduced to ℓ2 distance between the expectations of two distributions:

MMD2
kd
(Pϕ,θ,Qϕ;h, a) (97)

= −Ez′
1,z

′
2∼Pϕ,θ

[d(z′1, z
′
2)] + 2Ez′

1∼Pϕ,θ,z′
2∼Qϕ

[d(z′1, z
′
2)]− Ez′

1,z
′
2∼Qϕ

[d(z′1, z
′
2)] (98)

= −Ez′
1,z

′
2∼Pϕ,θ

[
∥z′1 − z′2∥22

]
+ 2Ez′

1∼Pϕ,θ,z′
2∼Qϕ

[
∥z′1 − z′2∥22

]
− Ez′

1,z
′
2∼Qϕ

[
∥z′1 − z′2∥22

]
(99)

= 2∥Ez′∼Pϕ,θ
[z′ | h, a]− Ez′∼Qϕ

[z′ | h, a]∥22 (100)
Therefore, the MMD objective can be viewed as the expected ZP with ℓ2 distance. They also propose
forward KL to instantiate ZP loss. Nevertheless, AIS [71] do not show experiment results on learning
ZP. Instead, they and the follow-up works [57, 64] implement AIS by learning OP loss with MMD
objectives, resulting in learning observation-predictive representations. Another follow-up work,
Discrete AIS [84], learns ZP loss with ℓ2 objective in a discrete latent space, so that they can apply
value iteration.

TD-MPC [26]: ϕQ∗ + RP + multi-step ZP with EMA ℓ2. Temporal Difference learning for Model
Predictive Control (TD-MPC) uses a planning horizon of 5 for the encoder objective and trains the
latent policy with MPC algorithm. They find that learning ZP works better than learning OR or not
learning ZP in the DM Control suite.

TCRL [89]: RP + multi-step ZP with EMA cos. Temporal consistency reinforcement learning
(TCRL) simplifies TD-MPC [26] by removing the planning component, replacing ℓ2 loss with cos
loss, and detaching the encoder parameters during value function learning. They validate their
approach on the state-based DM Control suite.

ALM [16]: ϕQ∗ + multi-step ZP with EMA reverse KL. Aligned Latent Models (ALM) is based
on variational inference, and aims to learn the latent model Pθ(z

′ | z, a), the state encoder ϕ(s) and
the latent policy π(z) to jointly maximize the lower bound of the expected return. The objective of
their encoder includes maximizing the return and ZP loss, instantiated as 3-step reverse KL with an
EMA target. Specifically, the 1-step objective for their encoder is computed as

min
ϕ
−Rz(zϕ, a) +DKL(Pθ(z

′ | zϕ, a) || Pϕ(z
′ | s′))− Ez′∼Pθ(|zϕ,a)

[
Qπ(z′, π(z′))

]
(101)

where zϕ ∼ Pϕ(z | s), and Rz(z, a) is the latent reward, learned by the RP condition (with ϕ
detached), and z′ indicates stop-gradient. With the latent reward and also their intrinsic rewards, they
perform SVG algorithm [28] for policy optimization with a planning horizon of 3 steps.

Successor Representations and Features [2, 45]: ϕQ∗ + RP + weak ZP. Here, we introduce
successor features (SF) with our notation. Suppose the expected reward function can be computed as

E[r | s, a] = g(ϕ(s), a)⊤w, ∀s, a (102)

where ϕ : S → Z is a state encoder and g : Z ×A → Rd is called state-action feature extractor, and
w ∈ Rd are weights8. In our notation, Eq. 102 is RP condition for ϕ.

As a special case, in tabular MDPs with finite state and action spaces with state-dependent reward
R(s), let ϕ(s) ∈ {0, 1}|S| be one-hot state representation, and let g(ϕ(s), a) = ϕ(s) and weight
ws = E[r | s], this satisfies Eq. 102. This special case is known as successor representation (SR)
setting [10]. In deep SR [38, 45], they allow learning ϕ with assuming g(ϕ(s), a) = ϕ(s).

The Q-value function of a policy π can be rewritten as

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt | S0 = s,A0 = a

]
(103)

8Although it is linear w.r.t. w, it can recover any reward function, e.g. when ϕ(s) = s and g(s, a)i =
E[r | s, a] for some i.
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= Eπ

[ ∞∑
t=0

γtg(ϕ(st), at)
⊤w | S0 = s,A0 = a

]
(104)

= Eπ

[ ∞∑
t=0

γtg(ϕ(st), at) | S0 = s,A0 = a

]⊤

w (105)

:= ψπ(s, a)⊤w (106)

where ψπ(s, a) is called successor features [2], a geometric sum of future g(ϕ(s), a). Although ψπ

can belong to any function class, following deep SR [38, 45], we assume it is parametrized by the
state encoder as ψπ(s, a) = fπ(ϕ(s), a) where fπ : Z × A → Rd. Then, by plugging Eq. 106 in
Bellman equation Qπ(s, a) = Es′,a′∼π[R(s, a) + γQπ(s′, a′)], we have

fπ(ϕ(s), a) = g(ϕ(s), a) + γEs′,a′∼π[f
π(ϕ(s′), a′)] (107)

Therefore, Eq. 107 can be viewed as a weak version of ZP, because given any current latent state and
action pair (ϕ(s), a), Eq. 107 can predict the expectation of some function of next latent state ϕ(s′).
ZP can imply Eq. 107 because it can predict exactly the distribution of next latent state.

With a combination of RP (Eq. 102), ϕQ∗ (implied by Eq. 107 when π is optimal), and a weak version
of ZP, we show that the state encoder that successor features learn, belongs to a weak version of ϕL.

As a special case, in Linear Successor Feature Model (LSFM) [45, Theorem 2], they show that SF is
exactly the bisimulation (ϕL) under several assumptions: finite action and latent space, the successor
features fπ(z, a) = Faz is a linear function, and the policy π : Z → ∆(A) conditions on latent
space. However, here we point it out that with the assumptions above implies the expected ZP (not
necessarily ZP), thus, still a weak version of bisimulation.

Following Lehnert and Littman [45], assume the finite latent space is composed of one-hot
vectors: Z = {e1, e2, . . . , en}, we can construct a matrix Fπ ∈ Rd×n with each column
Fπ(i) = Ea∼π(|ei)[Faei].

1

γ
(fπ(ϕ(s), a)− g(ϕ(s), a)) = Es′,a′∼π[f

π(ϕ(s′), a′)] (108)

= Es′∼P (|s,a),a′∼π(|ϕ(s′))[Fa′ϕ(s′)] (109)

= Es′∼P (|s,a)[F
πϕ(s′)] = FπEs′∼P (|s,a)[ϕ(s

′)] (110)

By [45, Lemma 4], Fπ is invertible, thus there exists a function J : Z × A → Z such that
J(ϕ(s), a) = Es′∼P (|s,a)[ϕ(s

′)], i.e., expected ZP holds.

C.2 Observation-Predictive Representations

Belief-Based Methods [21, 23, 25, 44]: RP + OR + ZP with online forward KL. As a major
approach to solving POMDPs, belief-based methods extends belief MDPs [34] to deep RL through
variational inference, deriving the encoder objective as ELBO. Let the latent variables are z1:T , the
world model p(o1:T , r1:T | a1:T ), and the posterior are q(z1:T | o1:T , a1:T ) with the factorization:

p(z1:T+1, o1:T+1, r1:T | a1:T ) = p(z1)p(o1 | z1)
T∏

t=1

p(rt | zt, at)p(zt+1 | zt, at)p(ot+1 | zt+1)

(111)

q(z1:T+1 | hT+1) =

T∏
t=0

q(zt+1 | ht+1) =

T∏
t=0

q(zt+1 | zt, at, ot+1) (112)

where ht+1 = (ht, at, ot+1) in our notation. The log-likelihood has a lower bound:

EhT+1,r1:T [log pθ(o1:T+1, r1:T | a1:T )] (113)

= EhT+1,r1:T

[
logEq(z1:T+1|hT+1)

[
p(z1:T+1, o1:T+1, r1:T | a1:T )

q(z1:T+1 | hT+1)

]]
(114)

≥ EhT+1,r1:T ,z1:T∼q(·|hT+1)

[
log

p(z1:T , o1:T+1, r1:T | a1:T )
q(z1:T+1 | hT+1)

]
(115)
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= EhT+1,r1:T ,z1:T+1∼q(hT+1)


T∑

t=0

log p(ot+1 | zt+1)︸ ︷︷ ︸
(1)

+ log p(rt | zt, at)︸ ︷︷ ︸
(2)

− log
q(zt+1 | ht+1)

p(zt+1 | zt, at)︸ ︷︷ ︸
(3)


(116)

When p, q are trained to optimal, the first term becomes OR condition and the second term becomes
reward distribution matching that implies RP. The third term with expectation can be written as
Eht+1

[DKL(q(zt+1 | ht+1) || p(zt+1 | zt, at))], which is exactly the forward KL objective to learn
ZP. From our relation graph (Fig. 1; Prop. 5), ZP + OR imply OP, thus belief-based methods aim to
approximate observation-predictive representation (RP + OP). Normally, they use an online target in
forward KL, because they have OR signals that can help prevent representational collapse. They also
train encoders without maximizing returns.

We can also build the connections between OR and RP objectives and maximizing mutual information.
Let P (o, z) be the marginal joint distribution of observation and latent state at the same time-step,
where P (o′, z′) =

∫
P (o′, z′, h, a)dhda =

∫
P (h, a)P (o′ | h, a)P (z′ | h′)dhda. Consider,

I(o′; z′) = Eo′,z′∼P (o′,z′)

[
log

P (o′, z′)

P (o′)P (z′)

]
(117)

= Eo′,z′∼P (o′,z′)

[
log

P (o′ | z′)
P (o′)

]
(118)

= Eo′,z′∼P (o′,z′)[logP (o
′ | z′)] +H(P (o′)) (119)

= Eh,a,o′∼P (|h,a),z′∼P (|h′)[logP (o
′ | z′)] +H(P (o′)) (120)

Since the entropy term is independent of latent states, the OR objective in belief-based methods
is exactly maximizing the I(o; z). Similarly, the RP objective in belief-based methods is exactly
maximizing I(r; z).

OFENet [56]: ϕQ∗ + OP. Online Feature Extractor Network (OFENet) trains the state encoder
using an auxiliary task of OP loss with ℓ2 distance. They show strong performance of their approach
over model-free baseline in standard MuJoCo benchmark. Follow-up work [41] empirically find
that ϕQ∗ + RP slightly improves up model-free RL, but much worse than ϕQ∗ + OP in MuJoCo
benchmark.

SAC-AE [85]: ϕQ∗ + OR. Soft Actor-Critic with AutoEncoder (SAC-AE) trains the state encoder
with an auxliary task of OR loss with forward KL and also ℓ2-regularization. They detach the state
encoder in policy objective. As in MDPs, OR implies OP (Prop. 6), SAC-AE also approximates
observation-predictive representation.

PSR [47] and belief trajectory equivalence [6]: Rec + multi-step OP and RP. Predictive State
Representation (PSR) aims to learn a history encoder ϕ and transition model PO such that

P (ot+1:t+k | ht, at:t+k−1) = PO(ot+1:t+k | ϕ(ht), at:t+k−1), ∀h, a, o (121)

which implies multi-step OP (defined in Prop. 9) in POMDPs. The original PSR uses linear transition
models. Follow-up work on PSRs [31] and belief trajectory equivalence introduce multi-step RP to
PSR. In Castro et al. [6], they show that single-step OP and RP do not necessarily imply multi-step
OP and RP in POMDPs, summarized in Prop. 9. In this sense, PSR is a stronger notion of belief
abstraction.

Causal state representations [87]: Rec + OP + RP. This work connects observation-predictive
representations in POMDPs with causal state models in computational mechanics [65]. Specifically,
they show that belief trajectory equivalence (Rec + multi-step OP and RP) [6] implies a causal state of
a stochastic process, where RP means reward distribution prediction. The resulting abstract MDP is a
causal state model or an ϵ-machine, generating minimal sufficient representations for predicting future
observations. In the implementation, they train a deterministic RNN encoder and a deterministic
transition model to satisfy OP and RP conditions, and also train a latent Q-value function using
Q-learning by freezing encoder parameters. Optionally, they also train a discretizer on the latent
space in finite POMDPs.
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C.3 Other Related Representations

UNREAL [30], Loss is its own Reward [66]. These works make early attempts at auxiliary task
design for RL. UNREAL trains recurrent A3C agent with several auxiliary tasks, including reward
prediction (RP), pixel control and value function replay. Loss is its own Reward trains A3C agent with
several auxiliary tasks, including reward prediction (RP), observation reconstruction (OR), inverse
dynamics, and a proxy of forward dynamics (OP) that finds the corrupted observation from a time
series. Among them, inverse dynamics condition in MDPs is that

∃Pinv : Z × Z → ∆(A), s.t. Pinv(a | ϕ(s), ϕ(s′)) = P (a | s, s′), ∀s, a, s′ (122)

but this condition does not direct relation with forward dynamics (OP).

VPN [54], MuZero [61]: ϕQ∗ + RP. From Thm. 2, we know that ϕQ∗ + RP is implied by ϕQ∗

+ ZP, thus this representation lies between ϕQ∗ and ϕL. Both VPN and MuZero learn the shared
state encoder and latent model from maximizing the return and predicting rewards. Their policies are
learned by MCTS algorithm.

E2C [82] and World Model [20]: ZP + OR. They are similar to belief-based methods, but remove
the reward prediction loss from the encoder objective. Instead, reward signals are only accessible to
latent policies or values.

Contrastive representation learning in RL (CURL [43], DRIML [48], ContraBAR [8]): ϕQ∗

(RP) + weak OP (OR). CURL (ϕQ∗ + weak OR) introduces contrastive learning using the infoNCE
objective [55] as an auxiliary task in MDPs. InfoNCE between positive and negative examples is
shown to be a lower bound of mutual information between input and latent state variables [59]. In
MDPs, it is a lower bound of I(s; z), which correspond to OR objectives (Eq. 117). Therefore, CURL
can be interpreted as maximizing a lower bound of OR.

DRIML (ϕQ∗ + weak OP) proposes an auxiliary task named InfoMax in MDPs. In its single-step
prediction variant, InfoMax maximizes the lower bound of I(z′; z, a) via the infoNCE objective.
Similar to the analysis [60], by data processing inequality:

I(z′; z, a) ≤ I(z′; s, a) ≤ I(s′; s, a) (123)

I(z′; z, a) ≤ I(s′; z, a) ≤ I(s′; s, a) (124)

when all equalities hold (e.g. ϕ satisfies OR), these imply z′ ⊥⊥ s, a | z, a (ZP) and s′ ⊥⊥ s, a | z, a
(OP).

ContraBAR (weak RP and weak OP) introduces infoNCE objectives to meta-RL, which requires
incorporating reward signals into observations when viewed as POMDPs [53]. Similar to DRIML, in
its single-step prediction variant, the objective is to maximize the lower bound of mutual information
of I(z′; z, a) where z is a joint representation of state s and reward r. As shown in the ContraBAR
paper [8, Theorem 4.3], under certain optimality condition, the objective can lead to learning RP and
OP conditions.

Learning Markov State Abstraction [1]: ϕQ∗ + ZM. From Prop. 3, we know that ZM is implied
by ZP, thus representation lies between ϕQ∗ and ϕL. They show that ZM can be implied by inverse
dynamics and density ratio matching in MDPs. Thus, they train on these two objectives as auxiliary
losses.

MICo [7]: ϕQ∗ + metric. With a state encoder ϕ, matching under Independent Coupling (MICo)
defines a distance metric Uϕ in the state space. For any pair of states x, y ∈ S,

Uϕ(x, y) = |rπx − rπy |+ γEx′∼Pπ
x ,y′∼Pπ

y
[Uϕ(x

′, y′)] (metric)

where rπx = Ea∼π(|x)[R(x, a)] and Pπ
x (x

′ | x) = Ea∼π(|x)[P (x
′ | x, a)]. The metric Uϕ is parame-

terized with

Uϕ(x, y) =
1

2
(∥ϕ(x)∥22 + ∥ϕ(y)∥22) + β arctan(

√
1− cos(ϕ(x), ϕ(y))2, cos(ϕ(x), ϕ(y))) (125)

They learn the MICo metric by an auxiliary loss using mean squared error.
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SALE [14]: ZP with detached ℓ2. TD7 algorithm contains state-action learned embeddings
(SALE) method that learns a state encoder to predict next latent states in MDPs. They conduct
extensive ablation studies in the MuJoCo benchmark. They detach next latent states, which performs
better than EMA version. They use ℓ2 loss and normalize latent states by average ℓ1 norm, which
performs better than cos loss and other normalization methods. They train the encoder solely with ZP
loss, because they find that this is slightly better than training with ZP + RP, and much better than
end-to-end training (ZP + ϕ∗Q). Lastly, both raw states s and (detached) latent states z are inputted
into the actor-critic, maintaining original information for optimal decision-making.

D Experimental Details

D.1 Small Scale Experiments to Illustrate Theorem 3

In this section, we discuss the details of the experiment used to explore the empirical effects of using
stop-gradient to detach the ZP target in the self-predictive loss. First, we discuss the details shared
between both domains and then discuss domain-specific details.

We learn on data obtained by rolling out 10 trajectories under a fixed, near-optimal policy starting
from a random state. Trajectories are followed until termination or until 200 transition have been
observed, whichever happens first. The encoder, ϕ ∈ Rk×2 where k is the number of observed
features, is updated using full gradient descent with a small learning rate, α = 0.01, for 500 steps.
At every 10 steps, the absolute cosine similarity between the 2 columns of ϕ is computed, i.e.,
f(x, y) = |x⊤y|/(||x||2||y||2) and the results are plotted in Fig. 2. The optimal transition model
θ∗ =

[
θ∗z

⊤ θ∗a
⊤]⊤ is solved using singular value decomposition and the Moore-Penrose inverse to

minimize the linear least-squares objective:∥∥∥∥[ϕ⊤S A
] [θz
θa

]
− ϕ̃⊤S′

∥∥∥∥
2

, (126)

where S and S′ are matrices with each row corresponding to the sampled states (histories) and next
states (histories), respectively, and, similarly, A is a row-wise matrix of the sampled actions. The
ϕ̃ is set as ϕ in online target, or ϕ̄ in detached target and EMA target where the Polyak step size
τ = 0.005. To avoid numerical issues, singular values close to zero are discarded according to the
default behavior of JAX’s [5] jax.numpy.linalg.lstsq method when using float32 encoding.

Mountain car [50]. We follow the dynamics and parameters used in [74, Example 10.1]. We
encode states using a 10× 10 uniform grid of radial basis function (RBF), e.g., fi(s) = exp(−(s−
ci)

⊤Σ−1(s− ci)) for an RBF centered on ci, and with a width corresponding to 0.15 of the span of
the state space. Specifically, Σ is diagonal and normalizes each dimension such that the width of the
RBF covers 0.15 in each dimension. As a result, the total number of features k = 100. Actions are
encoded using one-hot encoding and |A| = 3. The policy used to generate data is an energy pumping
policy which always picks actions that apply a force in the direction of the velocity and applies a
negative force when the speed is zero.

Load-unload [49]. Load-unload is a POMDP with 7 states arranged in a chain. There are 2 actions
which allow the agent to deterministically move left or right along the chain, while attempting to move
past the left-most or right-most state results in no movement. There are three possible observations
which deterministically correspond to being in the left-most state, the right-most state or in any one
of the 5 intermediate states. Observations and actions are encoded using one-hot encodings. The
agent’s state correspond to the history of observation and actions over a fixed window of size 20
with zero padding for a total of k = 98 features (k = 20× 3 + 19× 2). Finally, the policy used to
generate trajectories is a stateful policy that repeats the last action with probability 0.8 and always
starting with the move-left action.
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