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Abstract

This paper introduces a novel approach for uncertainty quantification in safety-
critical predictive models by using a deep ensemble model, hence addressing a
critical problem in predictive maintenance tasks. It builds a regression model to
predict the Remaining Useful Life (RUL) of aircraft engines, utilizing the well-
known run-to-failure turbo engine degradation dataset. Addressing the overlooked
yet crucial aspect of uncertainty estimation in previous research, this paper revamps
the LSTM architecture to facilitate uncertainty estimates, employing Negative
Log Likelihood (NLL) as the training criterion. Through a series of experiments,
the model demonstrated self-awareness of its uncertainty levels, correlating high
confidence with low prediction errors and vice versa. This initiative not only
enhances predictive maintenance strategies but also significantly improves the
safety and reliability of aviation assets by offering a more nuanced understanding
of predictive uncertainties. To the best of our knowledge, this is pioneering work
in this application domain.

1 Introduction

Predictive maintenance, harnessing machine learning for timely upkeep, has become crucial in
engineering and manufacturing, notably reducing costs and enhancing revenue through early aircraft
engine degradation detection and accurate Remaining Useful Life (RUL) predictions [1].

While past RUL prediction research for turbo engines, such as [2] and [3], has primarily utilized
logistic regression and standard Artificial Neural Networks (ANN), a significant gap remains in
exploring predictive model uncertainty, especially in safety-critical systems [4, 5, 6, 7]. Deep learning
models, despite their varied successes, often display overconfidence in predictions, emphasizing the
need for accurate uncertainty estimation [8, 9].

This paper addresses this gap, developing a regression model using the "Deep Ensemble" [8] technique
to predict turbo engine RUL, leveraging the widely recognized turbo engine degradation dataset
[10]. Metrics like RMSE, R2, and Negative Log Likelihood are employed, with the paper aiming to
enhance the Deep Ensemble technique by estimating mixture, Epistemic, and Aleatoric uncertainties,
offering a comprehensive understanding of predictive uncertainty.
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2 Literature Review

2.1 Uncertainty Quantification methods

Uncertainty pertains to a state of ambiguity, and this is a phenomenon that machine learning mod-
els occasionally grapple with in relation to their predictions. Statistical methodologies, such as
Confidence Intervals and Monte Carlo Simulations can be used for gauging this uncertainty.

A Confidence Interval provides a specified range within which the predicted value is likely to fall,
as elucidated by Cosma Shalizi [11]. In practice, if a Neural Network model undergoes multiple
iterations, and the standard deviation of the output values is calculated, it becomes feasible to deduce
the confidence interval in an offline manner. Nonetheless, given that Neural Network models may
comprise millions of parameters, executing them repeatedly incurs substantial computational costs.
To mitigate this, the strategy of ensembling multiple Neural Networks, also known as Deep Ensemble,
was introduced during the training phase. A comprehensive discussion on Deep Ensemble is provided
in a subsequent section.

It is crucial to highlight that calculating the confidence interval offline to ascertain uncertainty is
fundamentally different from deriving uncertainty directly from the model. When a deep learning
model proactively provides an estimate of uncertainty alongside its prediction, it demonstrates an
intrinsic awareness of its confidence level. This self-awareness is of paramount importance, especially
in safety-critical applications such as autonomous systems, where understanding and acknowledging
the model’s limitations and uncertainties is essential.

As previously highlighted, conventional Neural Network architectures do not inherently provide an
estimate of uncertainty in their predictions. This necessitates a modification and enhancement of
existing Neural Network structures to integrate statistical methodologies such as Confidence Intervals
and Monte Carlo Simulations, facilitating the extraction of uncertainty from the model.

In the realm of deep learning, the most prominent methods for uncertainty estimation encompass
Bayesian and non-Bayesian techniques. Monte Carlo Dropout, a Bayesian technique, stands out as
a significant method and is thoroughly discussed in the work of Gal et al. [12]. On the other hand,
Deep Ensembles, a non-Bayesian approach detailed by Balaji [8], is well-known for its computational
efficiency. While there are various other methods available for uncertainty estimation mainly from
Bayesian point of view, as outlined in Table 1, the paper at hand has opted to employ Deep Ensembles
for being the most state-of-the-art model due to its computational efficiency.

Monte Carlo Dropout: Probabilistic machine learning encompasses Frequentist and Bayesian
strands, with the Monte Carlo dropout technique aligning with the latter [13]. While dropout was
initially explored by [14] and [15] from a Bayesian perspective, [12] enhanced it, demonstrating its
use as a Bayesian Approximation to integrate over Neural Network model weights. Unlike traditional
Neural Networks, Bayesian Neural Networks initialize weights with prior probability distributions,
commonly Gaussian, and compute posterior distributions instead of point estimates.

Introduced by [16] to mitigate overfitting, dropout was traditionally used during training. However,
[12] applied it during both training and testing, yielding non-identical outputs during test time with
different dropout values, analogous to Monte Carlo (MC) sampling [12, 17]. This variance in output
samples provides uncertainty estimates. Although MC Dropout is a recognized method for uncertainty
quantification from a Bayesian standpoint, the subsequent introduction of a non-Bayesian method,
’Deep Ensemble,’ by DeepMind [8] offered an alternative computationally efficient approach, detailed
in the following section.

The limited industrial deployment of the MC dropout method is attributed to the computational
expense and scalability challenges of Bayesian Inference [8]. In a more recent industrial research
study conducted in 2021, MC Dropout was experimented with for Smart Grid Design application
[18], however, it has not been deployed fully yet.

Deep Ensembles: Deep Ensembles, a probabilistic model, which is also known as ensembles of
neural networks are not as computationally heavy as Bayesian models as they do not use Bayesian
Inference. The concept of the ensemble has been widely used in the regularisation of Neural Network
[19], however, this method also proves useful in uncertainty estimates as mentioned in [8].

In probabilistic regression models, the output is considered to be a Gaussian or Normal distribution
with parameter mean and variance [20], hence this Distribution is used in calculating the Negative
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Log Likelihood (NLL). This NLL is then used as a cost function for the Deep Ensembles model.
The Deep Ensembles method implements the concept from [21] in which it modifies the neural
network to output the predictive mean and the standard deviation in the output layers, as opposed to
classical neural networks for regression tasks where it only outputs a point estimate of the prediction.
Confidence intervals can be calculated from the standard deviation to interpret the uncertainty in the
prediction model.

Below is the equation of the cost function - Negative Log Likelihood (NLL). The full derivation of
the equation is shown in the Appendix.

NLL = 0.5 log(2πσ2) + 0.5σ−2
N∑

n=1

(xn − µ)2 (1)

where - σ2: is the variance of the Gaussian distribution; σ: is the standard deviation of the Gaussian
distribution; µ: is the mean of the Gaussian distribution; xn: is the individual data-points from 1 to N.
N : is the total number of data points.

The NLL equation in the Deep Ensemble paper [8] removes the 2π in the first term and adds an
additional constant term. Since the aim is to minimise the cost function and as 2π is a constant hence
removing this term will not make any difference in the minimisation. An additional constant term
was added in the equation as mentioned in [8], which is usually done when working with logarithms
to avoid underflow and overflow errors. Negative Log Likelihood is used because it is a proper
scoring rule that is widely used for evaluating predictive uncertainty [8]. The proper scoring rule is a
function of the probability prediction and the output variable, and this function is minimum when the
prediction is well-calibrated [11].

In other words, NLL is a way of measuring the error of the predictions. This works for models that
predict sufficient statistics over some distribution (for example mean and variance for a Gaussian
in this case) and then NLL can be calculated for the ground truth under the predicted distribution.
The reason this metric is used in models that use uncertainty is because the model predicts the
variance/standard deviation and uses it for the NLL, so the prediction of the uncertainty will affect
this metric. However, variance/standard deviation is merged with the prediction of the mean, so just
from the NLL it is not possible to make any claims about the uncertainty itself.

3 Procedure

3.1 Dataset

An open-source dataset [10] has been used which is available from the NASA repository. The
dataset is run-to-failure turbo engine data created using the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) [22]. C-MAPSS was developed by NASA which simulates the
real-life controls system for 90,000 pound thrust dual spool and high-bypass ratio turbo engines.
This simulation environment was developed to facilitate research in control systems, Engine Health
Monitoring (EHM), predictive maintenance etc. The dataset contains data from 4 different fleets
of engines and each of the fleet data and information on the number of engine units are on Table 2.
Table 3 shows the list of sensor names whose values are recorded for each engine unit in the dataset
for each cycle until the engine fails. An engine cycle includes three events: engine start, take-off and
landing, and engine shutdown. Take-off and landing are classed as a single event because take-off is
always followed by a landing.

An explanation of the dataset extract is in Table 4, the engine unit 1 fails at 149 engine cycles whereas
engine unit 2 fails at 269 engine cycles respectively.

3.2 Deep Ensemble Model Building

An LSTM (Long Short-Term Memory) network architecture model is constructed with an input size
of sequence length and number of features. According to the dataset [10] there are 25 input features -
which are cycle number, 3 operating settings, and 21 sensor values. The reason LSTM networks are
used is due to their suitability for time series data as they can capture long-term dependencies and
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patterns over time. This makes them ideal for predicting RUL, where historical sensor data and past
performance trends are crucial for accurate forecasting.

The dataset, divided into training and testing files, allocated ten percent of the training data for
validation. Table 6 displays the finalised parameter and hyperparameter values, determined after
numerous experiments detailed in Table 7. The hyperparameters are tuned/optimized using random
search. Dropout, a regularization technique that probabilistically omits inputs during network training
to mitigate overfitting, is applied after each LSTM layer. It is crucial to note that the dropout used for
regularization here differs from Monte Carlo Dropout [9], utilised for uncertainty quantification. The
model’s architecture is given in Table 5. The model is developed using Python’s Keras [23] (version
2.3.0) with TensorFlow [24] (version 1.14.0) as a backend, the model employed "Keras Uncertainty"
open-source resources [25] for the Deep Ensemble model creation. The raw dataset lacked RUL
labels, prompting the use of labels from [26].

The Deep Ensemble model was implemented using a custom Class, which takes in two arguments:
first a function that creates a Neural Network model and second the number of neural network models
the user wants in the ensemble. The Neural Network model provides two outputs: prediction value
and the standard deviation. Since the standard deviation output of each member in the deep ensemble
does not have direct supervision, unlike the prediction value (i.e. the prediction value is supervised
by the target y), the standard deviation is indirectly supervised by the loss function NLL. This has
been implemented by passing the standard deviation output to the loss, in which case, the training
model does not output the standard deviation directly, but it is included in the loss so it influences the
loss correctly.

4 Evaluation and Discussion

4.1 Evaluating Model with Uncertainty Quantification

The Deep Ensemble model, tested on four-engine fleets, exhibited the highest error rate with the
FD004 dataset, prompting numerous experiments detailed in Table 7 to enhance performance. The
row highlighted in blue indicates optimal performance in both prediction and uncertainty estimates.
While augmenting the number of Neural Networks (NN) in the ensemble improves performance, an
ensemble exceeding three NN elevates the error rate. Upon identifying the top-performing model
using the FD004 dataset, it was applied to the other three fleet datasets. Table 8 reveals the best
RMSE value as 30.65 for the "FD001" dataset, with a Mixture standard deviation (uncertainty) of
42.46, placing the prediction value within a ±42.46 range of the mean prediction for this dataset. An
R2 of 0.53 for the FD001 indicates a commendable fit.

Figure 1 displays the prediction graph, with green denoting ground truth and blue representing
prediction, figure 2 illustrates model prediction uncertainty with black and red trends. Ideally, the
model should exhibit minimal uncertainty to maximize prediction certainty. However, establishing
an uncertainty value threshold or conducting further comparisons necessitates the availability of
additional baseline results for analysis.

NLL for evaluating uncertainty: The "FD001" dataset yielded a minimum NLL value of 3.95, which,
while not a direct measure of uncertainty, facilitates the evaluation of the model’s standard deviation
during loss function minimization, thereby considering both prediction and its associated uncertainty.
In the context of the four datasets, a lower NLL not only signifies more accurate predictions but also
reliable uncertainty values. Mixture uncertainty suffices for assessing a predictive model’s suitability,
as demonstrated by [8]. However, incorporating Epistemic and Aleatoric uncertainties provides
nuanced insights from individual Neural Network (NN) models, enhancing decision-making.

For instance, the NN model reflects its confidence in its predictions. In the "FD002" dataset, a high
RMSE of 39.69 corresponds with a high mixture standard deviation (uncertainty) of 63.62, indicating
the model’s awareness of its imperfect prediction. Low uncertainty could be perilous, signaling
overconfidence in the model. In the "FD002" dataset, despite having the most units (260 engines)
and the lowest Epistemic standard deviation (33.41) among the four datasets, implying a desirable
decrease in Epistemic standard deviation with increasing dataset size, the mixture uncertainty remains
elevated due to a high error rate. Regarding the "FD004" dataset, it presents an RMSE of 41.91 and a
substantial mixture standard deviation of 57.97, revealing the model’s cognizance of its prediction’s
limited reliability. While inaccurate, the model’s lack of confidence is non-fatal. The absence of an
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uncertainty value could be hazardous in safety-critical applications, as it leaves users blind to the
model’s confidence level.

Note that determining the threshold for uncertainty in maintenance decisions is context-dependent
and involves risk assessment by the organisations. This paper does not detail specific thresholds but
highlights that lower NLL values indicate more reliable uncertainty estimates. Maintenance teams
might set thresholds based on acceptable risk levels and the criticality of engine components.

5 Conclusion and Further Work

Previous studies on predicting the Remaining Useful Life (RUL) of turbo engines did not address
the uncertainty of the predictive model in safety-critical applications. Given the state-of-the-art
deep ensemble model, the paper proposes a novel approach to address the gap in the literature by
implementing the Deep Ensemble method to quantify model uncertainty. Significantly, it marks the
first integration of LSTM architecture with Deep Ensemble for RUL predictions and uncertainty
assessments in aircraft engines, utilizing NASA’s engine degradation dataset.

While the Deep Ensemble method showcased computational efficiency and delivered acceptable
results on the FD001 and FD003 datasets, with Root Mean Square Error (RMSE) values of approx-
imately 30 and 33, it encountered challenges with the FD002 and FD004 datasets. These datasets
presented larger sizes and higher levels of data noise, resulting in elevated error rates.

This paper lays the groundwork for future research, underscoring the need to augment existing
predictive models with methods for providing uncertainty estimates. Prospective directions include
efforts to reduce predictive uncertainty and leverage uncertainty estimates to mitigate generalization
error. Additionally, uncertainty estimates could be instrumental for Out-Of-Distribution (OOD)
detection [27, 28], signaling increased uncertainty for predictions related to values outside the
training set’s scope.

Investigations into advanced sequence models, such as Encoder-Decoder architectures [29, 30]
with attention mechanisms [31], could also prove beneficial. These models have demonstrated
their effectiveness in language translation and are applicable to time-series data in safety-critical
autonomous systems. The evolution of dropout and model ensemble from regularization techniques to
tools for uncertainty estimation opens the door for experimentation with other regularization strategies,
such as parameter sharing [19], in conjunction with existing uncertainty estimation methodologies.

Further inquiries could also consider the amalgamation of deep ensemble with test-time dropout
(i.e., MC dropout) for enhanced uncertainty acquisition. Despite the computational demands, this
combination could potentially surpass the performance of Deep Ensemble, MC dropout, and classical
methods. Viewing uncertainty estimates research through a regularization lens is promising, aiming
to diminish generalization error, thereby bolstering model prediction precision and reliability.
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6 APPENDIX

6.1 Derivation

The Derivation of the Negative Log Likelihood is as follows:

NLL = − log

N∏
n=1

P (xn|θ)

P (xn|θ) is the likelihood
θ is the parameter of the likelihood function

(2)

We substitute the likelihood with the Probability Density Function (PDF) of the Gaussian Distribution
because we are dealing with a regression problem.

NLL = − log

N∏
n=1

(
σ−1(2π)−

1
2 exp

(
− (xn − µ)2

2σ2

))
(3)

Applying the logarithmic addition rule and simplifying it further:
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NLL = −
N∑

n=1

log

(
σ−1(2π)−

1
2 exp

(
− (xn − µ)2

2σ2

))
(4)

Since log(ex) = x and log(1/a) = −log(a), therefore we get as follows:

= 0.5 log(2πσ2) + 0.5σ−2
N∑

n=1

(xn − µ)2 (5)

[Note, the Deep Ensemble paper [8] doesn’t provide the derivation, we have done the derivation for
the reader’s ease of understanding.]

6.2 Tables and Figures

Table 1: List of works for uncertainty quantification specifically in Deep Learning models

No. Author,Year Method
1 Sankararaman et. al [32],2013 Inverse FORM
1 Charles et. al [33],2015 Weight uncertainty in neural network
2 Yarin et al [12], 2016 Monte Carlo Dropout
3 Jiri et al [34], 2017 Variational Gaussian Dropout
4 Balaji et al [8], 2017 Deep Ensembles
5 Zhang et al [35], 2022 K-means-transformer network

Table 2: Number of Engine Units in each fleet

Fleet Number File Name Number of Engine Units
1 FD001 100
2 FD002 260
3 FD003 100
4 FD004 249

Figure 1: Deep Ensemble LSTM Model for "FD001" dataset showing the actual (green line) and
predicted curve (blue line).
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Table 3: List of Sensor Measurements [22]

Sensor No. Description
1 Total temperature at fan inlet (°R)
2 Total temperature at LPC outlet (°R)
3 Total temperature at HPC outlet (°R)
4 Total temperature at LPT outlet (°R)
5 Pressure at fan inlet (psia)
6 Total pressure in bypass-duct (psia)
7 Total pressure at HPC outlet(psia)
8 Physical fan speed (rpm)
9 Physical core speed (rpm)

10 Engine pressure ratio (P50/P2)
11 Static pressure at HPC outlet (psia)
12 Ratio of fuel flow to Ps30 (pps/psi)
13 Corrected fan speed (rpm)
14 Corrected core speed (rpm)
15 Bypass Ratio
16 Burner fuel-air ratio
17 Bleed Enthalpy
18 Demanded fan speed (rpm)
19 Demanded corrected fan speed (rpm)
20 HPT coolant bleed (lbm/s)
21 LPT coolant bleed (lbm/s)

Table 4: A brief extract from the dataset file "FD002"

Unit Cycle Operational Setting 1 Sensor 1
1 1 34.9983 449.44
1 2 41.9982 445.00
1 149 42.0017 445.00
2 1 0.0025 518.67
2 2 35.0058 449.44
2 269 42.0047 445.00

260 1 34.9989 449.44
260 2 19.9985 491.19
260 316 35.0036 449.44

Table 5: Model Architecture

Layer Type Size Activation Dropout
Input Size (Sequence length, Number of Features)

(30, 25) - -
LSTM Hidden layer: (100 Neurons) ReLU 0.2
Dense Hidden layer: (30 Neurons) ReLU 0.2
Dense output layer - 1 Linear -
Dense output layer - 1 Softplus -
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Table 6: Parameters/Hyperparameters Settings for Deep Ensemble Model

No. Parameter/Hyperparameter Values
1. Number of epochs 10
2. Batch size 150
3. Sequence Length 30
4. Number of Hidden layers in NN 2
5. Number of nodes in Layer 1 (LSTM) 100
6. Number of nodes in Layer 2 (Dense) 30
7. Optimizer Adam
8. Learning rate 0.01

Table 7: Result from Running Deep Ensembles Model run on "FD004" (Sequence size as 30 has been
used). A represents ’Aleatoric’, E represents ’Epistemic’ and M represents ’Mixture’.

No. Ensemble Epochs Nodes L2 RMSE R2 NLL A std E std M std
1 2 10 30 59.27 -0.24 5.11 154.32 53.99 162.05
2 3 10 30 41.91 0.38 4.30 55.4 50.17 57.97
3 3 20 30 42.90 0.35 4.43 69.25 37.02 73.61
4 4 10 30 44.16 0.31 5.62 271.4 47.8 273.7
5 5 10 30 47.21 0.21 4.52 76.56 40.85 84.11

Table 8: Result from Running Deep Ensembles Model (Sequence size 30 has been used). In the below
table A represents ’Aleatoric’, E represents ’Epistemic’ and M represents ’Mixture’ uncertainty.

File No. of Units Ensemble Epochs Nodes L2 RMSE R2 NLL A E M
FD001 100 3 10 30 30.65 0.53 3.95 41.45 35.16 42.46
FD002 260 3 10 30 39.69 0.40 4.31 59.83 33.41 63.62
FD003 100 3 10 30 33.21 0.50 4.28 66.0 51.77 74.54
FD004 249 3 10 30 41.91 0.31 4.30 55.4 50.17 57.97

Figure 2: Mixture Uncertainty for "FD001" data-set using Deep Ensemble LSTM Model showing the
actual (green line) and predicted curve (blue line) along with upper (black line) and lower (red line)
confidence bound. The confidence interval represents 2 sigma.

10


	Introduction
	Literature Review
	Uncertainty Quantification methods

	Procedure
	Dataset
	Deep Ensemble Model Building

	Evaluation and Discussion
	Evaluating Model with Uncertainty Quantification

	Conclusion and Further Work
	APPENDIX
	Derivation
	Tables and Figures


