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Abstract

Deep reinforcement learning algorithms suffer from low sample efficiency, which
is addressed in recent approaches by building a world model and learning behaviors
in imagination. We present a simple framework for self-supervised learning of
world models inspired by VICReg, requiring neither image reconstructions nor
specific neural network architectures. The learned representations are temporally
consistent, which facilitates next state prediction and leads to good generalization
properties for the policy and the value function. We build a world model for Atari
consisting only of feedforward layers that is easy to implement and allows fast
training and inference. By learning behaviors in imagination, we evaluate our
method on the Atari 100k benchmark.

1 Introduction

Deep reinforcement learning has shown great success on challenging decision making problems
[32, 39, 33, 22, 3, 37, 26, 18]. However, sample efficiency remains the biggest challenge for
reinforcement learning algorithms, i.e., the amount of data that is required to learn good behaviors.
Recent works increase the sample efficiency with improved architectural design and hyperparameters
[46, 42], borrowing ideas from representation learning [12, 29, 40, 41, 42], data augmentation
[49, 28], pretraining and fine-tuning [41], or with learned a model of the environment [25, 50, 34, 36,
31, 16, 17, 18].

Dyna [43] introduced the idea of learning a model of the environment to improve the value function.
Ha and Schmidhuber [15] learn a world model, which is a deep generative model of the environment’s
dynamics and rewards. By imagining trajectories in a compact space, improved behaviors can be
learned without further environment interactions. The representations are obtained by a variational
autoencoder [27] and the dynamics are modeled with an LSTM [23]. Hafner et al. [16, 17, 18] jointly
train a variational autoencoder and a recurrent neural network. They achieve good performance
across multiple domains with discrete state representations and carefully chosen objective functions.
Micheli et al. [31], Robine et al. [36] model the environment with transformers [47] and achieve
state-of-the-art results on the Atari 100k benchmark.

In computer vision, self-supervised learning of image representations has made significant progress
in recent years [8, 20, 14, 6, 9, 51, 7, 4]. Many approaches are based on a Siamese architecture [5]
and can be divided into contrastive and non-contrastive methods. Contrastive methods [8, 20] learn
representations that are similar for different views (e.g. image augmentations) of the same image
(positive), but dissimilar for different images (negative) to prevent a collapse of the representations.
Non-contrastive methods do not rely on negative images, but rather prevent representation collapse
by the design of the architecture [14, 9] or by regularization of the representations [51, 4].
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Figure 1: The representations of our world model are learned using a self-supervised framework
inspired by VICReg [4].

In this work, we introduce a simple framework for learning world models for imagination based on
recent advances in self-supervised learning. The contributions of our work are as follows:

• We implement a world model inspired by the self-supervised VICReg framework [4] without
the need for image reconstruction and evaluate it on the Atari 100k benchmark [25]. To
the best of our knowledge, learning by imagination without image reconstruction has not
been (successfully) applied to Atari games [16, 34]. Note, however, that lookahead search
algorithms have already been successful without reconstructions [37, 50], and that model-
based RL without reconstructions in general has already been studied [35, 12, 34, 19, 13].

• Our learned representations are temporally consistent and continuous. The representations of
previous world models used for simulation on Atari games were categorical [17, 18, 31, 36].
The continuity has several advantages: (i) good generalization properties for the policy and
value function, (ii) stable training since jumps in the distribution of the representations are
less likely, (iii) no need for straight-through gradient estimation.

• Our world model does not rely on a specific architectural design and is easy to implement;
we only use feedforward layers. Nonetheless, it can be easily extended to more complex
architectures, e.g., a recurrent or stochastic dynamics predictor.

2 Method

2.1 World Model

We formalize the environment in terms of a partially observable Markov decision process (POMDP)
with discrete time steps, rewards r ∈ R, image observations o ∈ RC×H×W , and discrete actions
a ∈ N. A transition inside the environment is described by a tuple (o,a, r, e,o′), where e ∈ {0, 1}
indicates episode ends.

The task of our world model is threefold: (i) Map image observations onto compact representations
that retain relevant features, (ii) predict rewards and episode ends, and (iii) predict next states in
representation space. These three components are used to synthesize trajectories efficiently.

We employ a self-supervised representation learning approach inspired by VICReg [4] to learn
an encoder fθ that extracts temporally consistent features from the observations and maximizes
their information content; we give an overview in Figure 1. Given a transition (o,a, r,o′) of the
POMDP, we apply random image augmentations t, t′ ∼ T , sampled from a predefined set T , to
obtain augmented observations õ = t(o) and õ′ = t′(o′). A Siamese encoder fθ computes represen-
tations ỹ = fθ(õ) and ỹ′ = fθ(õ

′) with ỹ, ỹ′ ∈ Rd. A Siamese projector gθ computes embeddings
z̃ = gθ(ỹ) and z̃′ = gθ(ỹ

′) with z̃, z̃′ ∈ RD. An embedding predictor hθ predicts the next em-
bedding ẑ′ = hθ(z̃, a). To achieve temporal consistency between representations, we maximize
the similarity between ẑ′ and z̃′ by minimizing the mean squared error. To prevent representation
collapse, the embeddings are regularized using the variance and covariance regularization terms
proposed by Bardes et al. [4]. We train a reward predictor pθ(r |y,a,y′) via discrete regression using
two-hot encoded targets and symlog predictions, as proposed by Hafner et al. [18]. Thus, reward
prediction is stable across different scales without the need for normalization. We train an episode
end predictor pθ(e |y,a,y′) via binary classification. Note, that the reward predictor and episode
end predictor are conditioned on the next representation y′, which facilitates the prediction tasks.
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The rewards and episode ends provide stable supervised training signals, so we jointly minimize the
losses of the encoder and the predictors, which leads to the final loss

L(θ) = Eτ
[
λ 1
D‖ẑ′ − z̃′‖22︸ ︷︷ ︸

Similarity

+ VC(Z̃) + VC(Z̃′)︸ ︷︷ ︸
Regularization

− log pθ(r | ỹ, a, ỹ′)︸ ︷︷ ︸
Reward predictor

− log pθ(e | ỹ, a, ỹ′)︸ ︷︷ ︸
Episode end predictor

]
, (1)

where τ is a batch of transitions from a replay buffer, Z̃ and Z̃′ are batches of embeddings, λ > 0
controls the strength of the similarity loss, and VC is VICReg’s variance-covariance loss [4], i.e.,

VC(Z) =
1

D

D∑
j=1

[
µmax

(
0, 1−

√
Cov(Z)j,j + ε

)
︸ ︷︷ ︸

Variance regularization

+ ν
∑

k 6=j
Cov(Z)2j,k︸ ︷︷ ︸

Covariance regularization

]
, (2)

where D is the dimensionality of the embeddings, µ, ν > 0 control the strength of variance and
covariance regularization terms, respectively, and ε > 0 prevents numerical instabilities.

Being detached from representation learning, a dynamics predictor qφ learns to predict the next
representation ŷ′ = qφ(y, a) by minimizing the mean squared error

L(φ) = Eτ
[
1
d‖ŷ

′ − y‖22
]
. (3)

Note, that we train the dynamics predictor with non-augmented observations, i.e., y = fθ(o) and
y′ = fθ(o

′) instead of ỹ and ỹ′, to avoid the noise introduced by the augmentations, which are
only necessary for representation learning. Furthermore, we exploit the temporal consistency of the
representations and add a skip connection to the dynamics predictor qφ, so that it only has to learn the
change of representations E[y′ − y |y,a]. We hypothesize that the distribution of y changes more
rapidly during training than the difference between y and y′, since the objective of the representation
model is to keep the representations close to each other but not close to some prior distribution.

2.2 Policy

The representations y serve as states for the policy πψ(a |y). The policy learns to maximize the
expected return for each state by performing approximate gradient ascent with the policy gradient
[45]. We reduce the variance of the gradient estimates with a learned value function vξ(y) as baseline,
resulting in an advantage actor-critic approach [33]. The world model simulates batches of sequences
of length h = 10, which are used to estimate the advantages with generalized advantage estimation
[38] and to calculate multi-step truncated λ-returns [44] as target for the value function. Instead of
advantage normalization, we adopt the strategy of Hafner et al. [18] and normalize the returns for
advantage computation by mapping the 5th and the 95th percentile to 0 and 1, respectively. We add
the entropy of the policy to the objective to improve exploration, as it prevents early convergence to
suboptimal policies [48, 33]. For the value function we use the same discrete regression approach as
for the reward predictor, i.e., two-hot encoded targets and symlog predictions [18].

2.3 Implementation Details

The Siamese encoder is implemented by an ImpalaCNN [11], which outputs representations of
dimension d = 512. The Siamese projector and the embedding predictor are MLPs with hidden
dimensions 2048−2048, computing embeddings of dimension D = 2048. The reward predictor,
episode end predictor, policy, and value function are MLPs with hidden dimensions 1024−1024. All
networks use SiLU nonlinearities [21], the encoder uses batch normalization [24], and the MLPs use
layer normalization [2]. We use the AdamW optimizer [30] for all networks and loss functions.

The representations are continuous and not regularized directly—unlike variational autoencoders
[27], for example, which force the representations to be close to a standard normal distribution. To
stabilize training, Schrittwieser et al. [37] and Schwarzer et al. [40] normalize the representations to
lie in the interval [0, 1]. We found that adding another normalization layer at the end of the encoder is
sufficient and ensures that the norm of the representations stays roughly constant during training.

We use the image augmentations proposed by Yarats et al. [49], i.e., random shifts and imagewise
intensity jittering. We stack the four most recent frames [32], so that the world model can encode the
velocity of objects into the representations. Moreover, we stack the four most recent actions, which
are fed into the predictors. This is especially helpful for our feedforward world model, since the
effects of actions might be slightly delayed.
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Table 1: Comparison with other world models used for imagination.

Setting SimPLe [25] IRIS [31] TWM [36] DreamerV3 [18] Ours

Discrete Representation x x x x
Decoder x x x x
Pixel Imagination x x
Pixel Dynamics x
Sequential Dynamics x x x
Data Augmentation x

Table 2: Comparison with other methods on the Atari100k benchmark.

Model-free Lookahead Imagination

Game Random Human SPR Eff. Zero IRIS DreamerV3 Ours

Alien 227.8 7127.7 841.9 808.5 420.0 959 505.1
Amidar 5.8 1719.5 179.7 148.6 143.0 139 84.2
Assault 222.4 742.0 565.6 1263.1 1524.4 706 537.5
Asterix 210.0 8503.3 962.5 25557.8 853.6 932 1054.8
Bank Heist 14.2 753.1 345.4 351.0 53.1 649 22.3
Battle Zone 2360.0 37187.5 14834.1 13871.2 13074.0 12250 4800.0
Boxing 0.1 12.1 35.7 52.7 70.1 78 90.5
Breakout 1.7 30.5 19.6 414.1 83.7 31 40.3
Chopper Cmd. 811.0 7387.8 946.3 1117.3 1565.0 420 1967.8
Crazy Climber 10780.5 35829.4 36700.5 83940.2 59324.2 97190 25353.2
Demon Attack 152.1 1971.0 517.6 13003.9 2034.4 303 1107.7
Freeway 0.0 29.6 19.3 21.8 31.1 0 17.7
Frostbite 65.2 4334.7 1170.7 296.3 259.1 909 365.8
Gopher 257.6 2412.5 660.6 3260.3 2236.1 3730 2515.9
Hero 1027.0 30826.4 5858.6 9315.9 7037.4 11161 2536.0
James Bond 29.0 302.8 366.5 517.0 462.7 445 289.3
Kangaroo 52.0 3035.0 3617.4 724.1 838.2 4098 1465.2
Krull 1598.0 2665.5 3681.6 5663.3 6616.4 7782 6432.74
Kung Fu Master 258.5 22736.3 14783.2 30944.8 21759.8 21420 12464.0
Ms Pacman 307.3 6951.6 1318.4 1281.2 999.1 1327 1217.5
Pong -20.7 14.6 -5.4 20.1 14.6 18 11.6
Private Eye 24.9 69571.3 86.0 96.7 100.0 882 61.6
Qbert 163.9 13455.0 866.3 13781.9 745.7 3405 688.5
Road Runner 11.5 7845.0 12213.1 17751.3 9614.6 15565 6542.4
Seaquest 68.4 42054.7 558.1 1100.2 661.3 618 344.2
Up N Down 533.4 11693.2 10859.2 17264.2 3546.2 NaN 3165.0

Normalized Mean 0.000 1.000 0.616 1.943 1.046 1.12 0.826
Normalized Median 0.000 1.000 0.396 1.090 0.289 0.49 0.355

3 Experiments and Discussion

We evaluate our world model on the Atari 100k benchmark, which was first proposed by Kaiser
et al. [25] and has been used to evaluate many sample-efficient reinforcement learning methods
[29, 49, 40, 31, 18]. It includes a subset of 26 Atari games and is limited to 400k environment steps,
which amounts to 100k steps after frame skipping or roughly 2 hours of gameplay. We perform 5
runs per game and for each run we compute the average score over 100 episodes at the end of training.
In Table 2 we compare our method with five baselines: the model-free algorithm SPR [40] (scores
from Agarwal et al. [1]) and the model-based methods EfficientZero [50], IRIS [31], and DreamerV3
[18]. The aggregate metrics are computed on human normalized scores.

We presented a simple approach for self-supervised learning of world models, with significant
differences to previous methods, as summarized in Table 1. We successfully apply our world model
to the Atari 100k benchmark. The application to other environments is left for future work. Since
VICReg [4] is capable to learn state-of-the-art representations on the visually complex ImageNet
dataset [10], we suppose that our proposed framework should generally work in more complex
environments, where image reconstruction is difficult.
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