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Abstract

By identifying similarities between successive inputs, Self-supervised Learn-
ing (SSL) methods for time series analysis have demonstrated their effectiveness in
encoding the inherent static characteristics of temporal data. However, an exclusive
emphasis on similarities might result in representations that overlook the dynamic
attributes critical for modeling cardiovascular diseases within a confined subject
cohort. Introducing Distilled Encoding Beyond Similarities (DEBS), this paper
pioneers an SSL approach that transcends mere similarities by integrating dissimi-
larities among positive pairs. The framework is applied to electrocardiogram (ECG)
signals, leading to a notable enhancement of +10% in the detection accuracy of
Atrial Fibrillation (AFib) across diverse subjects. DEBS underscores the potential
of attaining a more refined representation by encoding the dynamic characteristics
of time series data, tapping into dissimilarities during the optimization process.
Broadly, the strategy delineated in this study holds the promise of unearthing novel
avenues for advancing SSL methodologies tailored to temporal data.

1 Introduction

This paper presents a novel Self-supervised Learning (SSL) method for time series analysis, namely
the Distilled Encoding Beyond Similarities (DEBS)1, with a specific focus on the analysis of physi-
ological signals. The underlying concept of this approach is based on the categorization of signal
characteristics into two types: (i) inherent static features that account for individual characteris-
tics such as gender and age, and (ii) dynamic features that can reveal transitional states or events
experienced by the subjects during the recording, such as heart arrhythmias in ECG.

As such, DEBS not only captures what is common but also the changes between two positive pairs.
This is achieved by enhancing the dissimilarities between the positive pairs. We extend the ongoing
research trajectory that considers the naturally obtained multiple views as an organic source of
variance in order to avoid data augmentation. In addition, we hypothesize that (i) looking solely
for similarities can lead the representations to neglect altogether the variance and, therefore, not
to encode meaningful dynamic features contained in the data, and (ii) incorporating a focus on the

1Throughout this paper, the term distilled is used in its idiomatic sense rather than in the deep learning sense.
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(a) Similarity Path. X1 and X2 belong to the same
subject. In practise, the two inputs are fed into both
the teacher and student networks, and the resulting
outputs are compared with each other.

(b) Dissimilarity Path. Xt−i, Xt and Xt+i belong to the
same record. In practise, PAR is computed and compared
with the Xt representation between networks.

Figure 1: DEBS Architecture. For the sake of clarity, some redundant connections have been omitted.

dissimilarities between positive pairs can result in the representation of the dynamic features and,
consequently, an improvement in the performance of downstream tasks such as AFib detection.

In summary, the contributions of this paper are: (i) We introduce DEBS, the first SSL method that
enforces the representations of positive pairs to be dissimilar as a part of the objective function.
(ii) We show that by incorporating dissimilarities during the optimization process, it increases the
AFib detection accuracy over 10%. (iii) We open a new approach in which dissimilarities between
positive pairs should be considered for learning the dynamic features of the signals when handling
temporal data, such as ECG.

2 Distilled Encoding Beyond Similarities (DEBS)

Traditional SSL studies require the creation of at least one version of the same input in order to
train the model to learn an invariant representation with respect to the artificial variance introduced
through the use of data augmentation. We consider it a bottleneck in the SSL domain, due to (i) data
augmentation methods specifically designed for physiological signals are still an ongoing area of
development. Recent studies [18, 13] indicate that the optimal approach to data augmentation in this
context has yet to be determined. (ii) Despite achieving a consensus on effective data augmentation
procedures, as seen in the field of Computer Vision, the choice of specific data augmentation
techniques remains crucial for the success of the SSL method being employed [2, 5].

Instead of creating the new version of the signal utilizing two time series belonging to the same
subject, we consider two time series belonging to the same record as positive pairs. Utilizing these
organic multiple views and, thereby obviating the need for data augmentation raises an important
implicit question. The object of interest evolves across time while exhibiting changes, i.e., the
dynamic characteristics of temporal data. A SSL which only considers similarities between these
multiple views, will neglect these dynamic characteristics, resulting in a loss of information within
the representations and a consequent low performance in identifying events in downstream tasks.
Therefore, learning beyond similarities is essential for capturing the dynamic characteristics of
the temporal data. DEBS represents the first SSL technique to incorporate dissimilarities between
positive pairs as part of the objective in addition to similarities during the training process, with the
purpose of driving the representations to reflect what has changed within the signal and therefore,
capturing the dynamic characteristics within the representation.

2.1 Description of DEBS

Non-Contrastive Method: The omission of the negative pairs enable the proposed SSL methods
to surpass the conventional emphasis on similarity. By not considering dissimilarity among negative
pairs to avoid mode collapse, dissimilarity can be incorporated among positive pairs. As Bootstrap
Your Own Latent (BYOL) [7] framework, DEBS incorporates both a teacher network and a student
network. While the student network is optimized using Stochastic Gradient Descent (SGD) with
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respect to the loss function, the teacher network serves as an exponential moving average (EMA) of
the student one, effectively operating as its delayed version. This EMA updating rule is described as:

ξ ← τ · ξ + (1− τ) · θ, (1)
where τ , ξ, and θ are the updating hyperparameter, the teacher weights, and the student weights.

In contrast to the BYOL method, DEBS integrates two projectors within both the student and teacher
networks. Consequently, two predictors are also incorporated into the student network, deviating from
using a single predictor. As a result, the encoder generates representations that traverse two distinct
paths, namely the similarity path and the dissimilarity path, as termed in this work. The rationale
behind this design is to enable the first path to capture static features inherent in the representation
while the second path to capture the dynamic features.

Similarity path: The objective of the student network’s predictor is to produce a representation
that closely aligns with the one generated by the same path in the teacher network. It is illustrated
in Figure 1a. The degree of similarity serves as one of the cost functions in the proposed method,
termed the “Similarity Loss (Lsim)”, and it is described as the following:

Lsim(zt2,qs(z
s
1)) = 1− zt2 · qs(z

s
1)

max
(
∥zt2∥2 · ∥qs(zs1)∥2 , ϵ

) , (2)

where zt2 and qs(z
s
1) are the representation vector and the representation prediction for X2 and X1,

computed by the teacher and the student network, respectively. ϵ has been set with a value of 1e− 8
in our work. This similarity path is depicted in Figure 1a.

Dissimilarity path: In contrast to the similarity path, the dissimilarity path aims to predict repre-
sentations that exhibit differences between two inputs. To achieve this, the “Dissimilarity Loss (Ldis)
(Eq.(4))” is introduced. It is a cost function specifically designed to guide the optimization process
and encourage the model to generate dissimilar representations.

Ldis(z
t
t+j ,qs(z

s
t−i)) = 1 +

ztt+j · qs(z
s
t−i)

max
(∥∥ztt+j

∥∥
2
·
∥∥qs(zst−i)

∥∥
2
, ϵ
) , (3)

where ztt+j and qs(z
s
t−i) are the representation vector and the representation prediction for Xt+j and

Xt−i, computed by the teacher and the student network, respectively.

In addition to Ldis, we introduce the “Gradual Loss (Lgra)” as a part of the training objective. We
consider that it is not only essential for the representations of two time points drawn from the same
subject, Xt−i and Xt+j , to be dissimilar, but also for the representation of Xt to lie between them.
In other words, if a subject’s state evolves from Xt−i to Xt+j , the representation of Xt, i.e., zt,
should approximate an intermediate point between these two extremes. This ensures that the temporal
evolution is properly captured within the representations. It is described as:

Lgra(qs(z
s
t ),PAR(ztt−i, z

t
t+j)) = 1−

qs(z
s
t ) · PAR(ztt−i, z

t
t+j)

max
(
∥qs(zst )∥2 ·

∥∥PAR(ztt−i, z
t
t+j)

∥∥
2
, ϵ
) , (4)

where Pondered Average Representation (PAR) is the approximation of zt, drawn from zt−i and
zt+j . We do not force zt to be equally distant from both zt−i and zt+j , therefore, we calculate PAR
as,

PAR(ztt−i, z
t
t+j) =

ztt−i · j + ztt+j · i
i+ j

. (5)

The overall loss function that is minimized in the dissimilarity path (Ldispath) is described as:

Ldispath(qs(z
s
t ),qs(z

s
t−i), z

t
t−i, z

t
t+j) = α · Ldis(z

t
t+j ,qs(z

s
t−i))

+ Lgra(qs(z
s
t ),PAR(ztt−i, z

t
t+j)),

(6)
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where α is the dissimilarity coefficient. This dissimilarity path is illustrated in Figure 1b.

3 Experimental evaluation

Comparison against SOTA methods: In this experiment, we evaluate DEBS against three different
baselines: (i) PCLR [3], (ii) Mixing-Up [15] and (iii) TF-C [17]. For this evaluation, a Support Vector
Classifier (SVC) [11] is fitted on top of the representations, based on samples obtained from the
MIT-BIH Arrhythmia Database (MIT-ARR) database [10], and evaluated in two different databases
(MIT-BIH Atrial Fibrillation Database (MIT-AFIB) [9] and Computing in Cardiology Challenge
2017 (CINC2017) [1]). All used datasets are publicly available in Physionet [6].

We have optimized the same model used in this work, under the same configuration (optimizer, data,
batch size and number of iterations), except for the TF-C method, where their proposed model has
been used. This is due to the fact that it requires the use of two encoders instead of one. Note that this
model contains approximately 32 million parameters, which is 30x more than our proposed model.
To ensure that the model converges, the latter has been optimized over 75K iterations, instead of the
25K iterations proposed in this work. We have saved the model after 25K, 50K and 75K iterations.

Table 1 shows that the proposed method clearly outperform all the baselines in the different databases.

Table 1: Comparison agains SOTA SSL Methods
Dataset SSL Method Accuracy (%) Sensitivity (%) Specificity (%)

MIT AFIB

PCLR [3] 72.7 65.6 78.9
Mixing-Up [15] 65.0 60.5 67.2
TF-C (25K) [17] 72.2 65.0 78.5
TF-C (50K) [17] 69.8 62.3 76.2
TF_C (75K ) [17] 71.3 65.9 76.4

DEBS 77.5 75.6 79.5

CINC2017 (Training)

PCLR[3] 63.5 21.2 93.0
Mixing-Up[15] 68.0 20.5 90.9
TF-C (25K)[17] 62.4 20.5 92.8
TF-C (50K)[17] 62.0 20.3 92.7
TF-C (75K)[17] 62.4 20.6 92.9

DEBS 78.2 34.0 95.3

CINC2017 (Validation)

PCLR [3] 70.6 43.3 89.2
Mixing-Up [15] 66.0 36.0 82.8
TF-C (25K) [17] 69.2 42.0 42.0
TF-C (50K) [17] 65.5 38.0 87.0
TF-C (75K) [17] 67.7 40.7 89.9

DEBS 81.8 59.0 92.7

Discussion of the results: This study has demonstrated that by incorporating dissimilarities during
the training process, we can enable both static and dynamic characteristics to be captured within
the representation, as they are projected separately into distinct components.It leads to a significant
difference in the proposed downstream task at the end of the training procedure. With these results
we have shown substantial support for hypothesis: (i) looking solely for similarities can lead the
representations to neglect altogether the variance and, therefore, not to encode meaningful dynamic
features contained in the data, and (ii) incorporating a focus on the dissimilarities between positive
pairs can result in the representation of the dynamic features and, consequently, an improvement in
the performance of downstream tasks such as AFib identification.

4 Conclusion

In this paper, we have presented DEBS, the first SSL method that incorporates dissimilarities between
positive pairs. We have shown that by incorporating this new objective function, the representations
capture not only the static nature of the data but also the dynamic features. It leads to a significant
improvement of over 10% when evaluated on AFib classification in dynamic ECG time series data.
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Appendix

This appendix comprises the following components: (i) Pseudocode delineating the proposed method,
(ii) Logical reasoning elucidating the rationale behind DEBS, (iii) Implementation details designed to
facilitate reproducibility, (iv) Additional evaluation, and (v) Ablation Study.

A Algorithms

Algorithm 1: Similarity Path
Input:

D, K and N ▷ Set of time series, Number of iterations and Batch Size
fs,qs and θ ▷ Student Block, Student Predictor and Student Parameters
ft, and ξ ▷ Teacher Block and Teacher Parameters
Lsim, opt and τ ▷ Similarity Loss Function, Optimizer and EMA update parameter

1 for k ← 0 to K do
2 B ← {X1

i , X
2
i ∈ D}Ni=0 ▷ Sample N -sized Batch. X1

i , X
2
i belongs to the same subject.

3 for X1
i , X

2
i ∈ B do

4 zs1, z
s
2 ← fs(X

1
i , X

2
i ) ▷ Student Block Projections

5 zt1, z
t
2 ← ft(X

1
i , X

2
i ) ▷ Teacher Block Projections

6 Lsim
i ← 0.5 · (Lsim(qs(z

s
1), z

t
2) + Lsim(qs(z

s
2), z

t
1)) ▷ Similarity Loss

7 end
8 ∂θ ←

∑N
i=0 ∂θLsim

i ▷ Compute loss gradients for θ
9 θ ← opt(θ, ∂θ) ▷ Update Student Parameters

10 ξ ← τ · ξ + (1− τ) · θ ▷ Update Teacher Parameters
11 end

Algorithm 2: Dissimilarity Path
Input:

D, K and N ▷ Set of time series, Number of iterations and Batch Size
fs,qs and θ ▷ Student Block, Student Predictor and Student Parameters
ft, and ξ ▷ Teacher Block and Teacher Parameters
opt and τ ▷ Optimizer and EMA update parameter
PAR ▷ Ponderate Average Representation
Ldis and Lgra ▷ Dissimilarity and Gradual Loss Function
wsize and α ▷ Windows Size and Dissimilarity Coefficient

1 for k ← 0 to K do
2 B ← {Xt−i

n , Xt
n, X

t+j
n ∈ D}Nn=0 ▷ Sample Xt−i

n , Xt
n, X

t+j
n from same record

3 assert(i+ j ≤ wsize)

4 for Xt−i
n , Xt

n, X
t+j
n ∈ B do

5 zst−i, z
s
t , z

s
t+j ← fs(X

t−i
n , Xt

n, X
t+j
n ) ▷ Student Block Projections

6 ztt−i, z
t
t , z

t
t+j ← ft(X

t−i
n , Xt

n, X
t+j
n ) ▷ Teacher Block Projections

7 Lgra
n ← 0.5 · (Lgra(qs(z

s
t ),PAR(ztt−i, z

t
t+j))

8 + Lgra(PAR(qs(z
s
ti),qs(z

s
t+j)), z

t
t)) ▷ Gradual Loss

9 Ldis
n ← α · 0.5 · (Ldis(qs(z

s
t−i), z

t
t+j) + Ldis(qs(z

s
t+j), z

t
t−i))) ▷ Dissimilarity Loss

10 end
11 ∂θ ←

∑N
n=0(∂θLdis

n + ∂θLgra
n ) ▷ Compute loss gradients for θ

12 θ ← opt(θ, ∂θ) ▷ Update Student Parameters
13 ξ ← τ · ξ + (1− τ) · θ ▷ Update Teacher Parameters
14 end
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B Intuitions behind DEBS

Intuitions behind being a two-step procedure: Our belief is that understanding the changes in
the input requires first understanding what remains constant. This principle drives DEBS to undergo
two distinct learning phases. In the initial phase, the method focuses on reducing the variance by
ensuring similarity among representations, i.e., encoding the static characteristics of the signals. Once
these are adequately captured, DEBS proceeds to emphasize the remaining variance that encapsulates
information about the dynamic nature of the data. By doing so, the method does not neglect but
understands the remaining variance, ultimately capturing the dynamic characteristics of the temporal
data.

Intuitions behind the dissimilarity coefficient (α): Ldis serves the purpose of enforcing distinc-
tiveness among representations, thus capturing the dynamic features inherent in the signal. Ldis

leverages the Cosine Similarity metric, which varies in the range of values [−1,+1], being −1, a
completely different representation, and +1, a completely equal representation. While this loss
function is minimized when the first value is reached, it is not realistic to expect the representations
to be entirely dissimilar. This is due to the fact that not only do static features remain constant
throughout the signal, but also the dynamic characteristics need to maintain some level of relational
information. Hence, DEBS deliberately introduces α as a regularization factor for lowering the
weight of this objective.

Intuitions behind Lgra: Our approach takes into consideration an additional factor: the need for
the representations to capture the temporal context. It is not only essential for the representations
of two-time points drawn from the same subject, Xt−i and Xt+j , to be dissimilar, but also for the
representation of Xt to lie between them. In other words, if a subject’s state evolves from Xt−i to
Xt+j , the representation of Xt, i.e., zt, should approximate an intermediate point between these two
extremes. This ensures that the temporal evolution is properly captured within the representations.

Intuitions behind the window size: An essential consideration in implementing the method is
determining the appropriate spacing window size between Xt−i and Xt+j , i.e., how much these
inputs may be separated in time. This spacing window size must be large enough to accommodate
signal changes, yet narrow enough to contain only a single one. If successive changes occur within this
window, it can lead to conflicting directions in which these changes are reflected in the representations,
thereby PAR(ztt−i, z

t
t+j) may not be aligned with qs(z

s
t ).

C Implementation details

Architecture: We use the same model as the one described in Subject-Based non Contrastive
Learning (SBnCL). It is an adaptation of the Vision Transformer (ViT) [4] model for performing
physiological signals. The input data is a time series of 1000 samples, which is split into patches of
size 20. The model counts with 6 regular transformer blocks with 4 heads each. The model dimension
is set to 128, for a total of 1,192,616 trainable parameters.

DEBS implementation: The projectors and predictors in our approach are implemented as a two-
layer Multilayer Perceptron (MLP). These layers have a dimensionality of 256 and 64, respectively.
Batch normalization and rectified linear unit (ReLU) operations are incorporated between the two
layers of each structure. The model is trained with the Sleep Heart Health Study (SHHS) dataset [16,
12]. The EMA updating factor (τ ) is set to 0.995. The window size is set to 2 minutes, and the Ldiss

coefficient is set to 0.1. The value of these last two hyper-parameters is presented in Section E.

Optimization: The training procedure consists of 25,000 iterations. After 15,000 iterations, dis-
similarities are integrated into the objective function, while similarities are no longer taken into
account. Before starting the second step, we update the teacher weights as a copy of the current
student weights. The effect of this two-step procedure is discussed in Section E. We use a batch size
of 256, and Adam [8] with a learning rate of 3e− 4 and a weight decay of 1.5e− 6 as the optimizer.
The training procedure and the subsequent evaluations are performed on a local computer, with a
Nvidia GeForce RTX 3070 GPU.
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D Further Evaluation

D.1 The effect of incorporating dissimilarities:

To comprehend the impact of integrating the dissimilarity path, an analysis is conducted on the
performance of the MIT-ARR → MIT-AFIB framework during the optimization process, with
evaluations performed every 500 iterations. The results, illustrated in Figure 2, highlight that
exclusive emphasis on similarities leads to a degradation in model performance. Conversely, the
incorporation of dissimilarities contributes to a consistent enhancement in model performance, which
leads to a difference of + 10% at the end of the training procedure.

(a) Accuracy across training procedure (b) Effect of incorporating dissimilarities

Figure 2: Atrial Fibrillation (AFib) classification accuracy across training procedures. For an easier
track of the evolution across the iterations, a polynomial has been fitted according to the obtained
metrics.

D.2 Principal Component Analysis (PCA) on the representations:

(a) Subject-based PCA Analysis (b) Event-based PCA Analysis

Figure 3: PCA Analysis on MIT-AFIB representations

To complement the previous evaluation, we performed a PCA [14] on the MIT-AFIB representations.
We hypothesize that DEBS can drive the model to contain both the static characteristics and the
dynamic characteristics of the temporal data within the representations. In this evaluation, the
subject characteristics are considered static characteristics since they are constant during the record.
Furthermore, we consider AFib as an event that can be characterized by the dynamic features of
the time series data, since a subject can suffer it or not during the same record. For assessing this
hypothesis, these two features of the signal should be projected in different PCA components. Figure
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3 represents the results of this analysis. Figure 3a shows that the inputs belonging to the same
subject obtain similar values for the first two components. Figure 3b demonstrates that the dynamic
characteristics are also captured in the representations. The values of the 5th component exhibit two
distinct nearly normal distributions, corresponding to the events of AFib and Normal Rhythm. This
behaviour is not seen when the dissimilarities are not incorporated.

E Ablations Study

In order to investigate the impact of various hyperparameters employed by DEBS. Specifically,
we examine the influence of the window size, dissimilarity coefficient, and the choice between a
one-step optimization process, in which similarities and dissimilarities are concurrently considered or
a two-step optimization process, in which we first consider the similarities, and then the dissimilarities.
Figure 4 illustrates the results, revealing that while all configurations exhibit improvements over
the baseline (which considers only similarities), the proposed configuration (window size=2 min,
dissimilarity coefficient=0.1, and two-step process) yields the most favorable outcomes.

(a) Effect of dissimilarity coeffi-
cient, α

(b) Effect of window size (c) Effect of learning in two steps

Figure 4: Ablations Study. For an easier track of the evolution across the iterations, a polynomial has
been fitted according to the obtained metrics.

F Limitations:

While we assert the potential applicability of the DEBS approach to physiological data in general,
we acknowledge that our experiments have been limited to the analysis of ECG data. Neverthe-
less, we posit that DEBS can be adapted to handle diverse types of time series data by adjusting
hyperparameters such as window size and dissimilarity coefficient.
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