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Abstract

Graph Neural Networks are widely deployed in vast fields, but they often struggle
to maintain accurate representations as graphs evolve. We theoretically estab-
lish a lower bound, proving that under mild conditions, representation distortion
inevitably occurs over time. To estimate the temporal representation distortion
without human annotation after deployment, one naive approach is to pre-train
a recurrent model before deployment and use this model afterwards, but the es-
timation is far from satisfactory. In this paper, we analyze the representation
distortion from an information theory perspective, and attribute it primarily to
inaccurate feature extraction during evolution. Consequently, we introduce SMART,
a straightforward and effective baseline enhanced by an adaptive feature extractor
through self-supervised graph reconstruction. Experimental results on real-world
evolving graphs demonstrate our outstanding performance, especially the necessity
of self-supervised graph reconstruction. For example, on OGB-arXiv dataset, the
estimation metric MAPE deteriorates from 2.19% to 8.00% without reconstruction.

1 Introduction

The rapid rising of Graph Neural Network (GNN) leads to widely deployment in various applications,
e.g. social network, smart cities, drug discovery[1, 2, 3]. However, recent studies have uncovered a
notable challenge: as the distribution of the graph shifts continuously after deployment, GNNs may
suffer from the representation distortion over time, which further leads to continuing performance
degradation[4, 5, 6], as shown in Figure 1.
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Figure 1: GNN performance contin-
ues to decline with the rapid growth
of the evolving graph.

Consequently, a practical and urgent need is to monitor the
representation distortion of GNN. An obvious method is to
regularly label and test online data. However, constant human
annotation is difficult to withstand the rapidly ever-growing
evolution of graph after deployment. Therefore, how to proac-
tively estimate the temporal generalization performance without
annotation after deployment is a challenging problem.

To solve this problem, a naive way is to collect the general-
ization changes through partially-observed labels before de-
ployment, and train a recurrent neural network (RNN) [7] in
a supervised manner. However, existing studies [8, 9] have
shown that RNN itself have insufficient representation power,
thereby usually concatenating a well-designed feature extrac-
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tor. Unluckily, the representation distortion of static feature extractor still suffers during evolution.
Hence, to deal with this problem, we propose SMART (Self-supervised teMporAl geneRalization
esTimation). Since it is hard to gather label information in a rapid graph evolution after deployment,
our SMART resorts to an adaptive feature extractor through self-supervised graph feature and structure
reconstruction, eliminating the information gap due to the evolving distribution drift.

2 Problem Formulation
Before the deployment at time tdeploy, we are given with a pre-trained graph neural network G that
outputs a label for each node in the graph, based on the graph adjacency matrix Ak ∈ {0, 1}nk×nk

and feature matrix Xk ∈ Rnk×d at each time k. Additionally, we are given an observation set
D = {(Ak, Xk, HkYk)}tk=0, consisting of (1) a series of fully observed graph adjacency matrices
A0, · · · , At and node feature matrices X0, · · · , Xt; (2) a series of partially observed label vectors
H0Y0, · · · , HtYt, where each observation matrix Hk ∈ {0, 1}nk×nk is diagonal. The diagonal
element on the i-th row in matrix Hk is non-zero if and only if the label of the node i is observed.

At each time τ after deployment at time tdeploy, we aim to predict the expected temporal generalization
performance of the model G on the state Gτ = (Aτ , Xτ , Yτ ), given a full observation on the adjacency
matrix Aτ and feature matrix Xτ . Obviously, the problem is not hard if we have a sufficient amount
of labeled samples. However, it is costly to obtain the human annotation on the constant portion of the
whole graph after deployment, especially many real-world graphs grow exponentially fast. Therefore,
the problem arises if we try to design a post-deployment testing performance predictorM without
further annotations after deployment. Specifically, we theoretically prove that as graph evolves, the
representations of GNN undergo inevitable distortion, making the prediction more challenging.

3 Theoretical Analysis
In this subsection, we show that as the graph evolves, the distortion of representation is unavoidable,
which might further lead to potential performance damage. Under Assumption 1 (in Appendix
A), we consider the pre-trained graph model as a single-layer GCN with Leaky ReLU activation
function parameterized as θ. The optimal parameters for the model are θ∗. However, due to the
stochastic gradient descent in optimization and quantization of models, we always obtain a sub-
optimal parameter drawn from a uniform distribution U(θ∗, ξ). We define the expected distortion of
the model output on node i at time t as the expected difference between the model output at time t

and time zero on the node i, i.e., ℓt(i) = Eθ,Gt

[
|ft(i; θ)− f0(i; θ)|2

]
.

Theorem 1. If θ is the vectorization of the parameter set {(aj ,Wj , bj)}Nj=1 and its i-th coordinate θi
is drawn from the uniform distribution U(θ∗i , ξ) centering at the i-th coordinate of the vector θ∗i , the
expected deviation ℓτ (i) of the perturbed GCN model at the time τ ≥ 0 on the node i ∈ {1, ..., n} is
lower bounded by

ℓτ (i) ≥ ϕτ (i) ≜
Nβ2ξ4
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where the set N0(i) denotes the neighborhood set of the node i at time 0. Additionally, ϕτ (i) is
strictly increasing with respect to τ ≥ 1.

Remark 1. Proofs of Theorem 1 can be found in Appendix A. This theorem shows that for any
node i, the expected distortion of the model output is strictly increasing over time, especially when
the width N of the model is quite large in the current era of large models. Therefore, accurately
estimating the generalization performance changes of GNNs is a necessary and challenging problem.

4 Methodology
Now, we want to construct a temporal generalization loss estimator that takes the adjacency matrices
and feature matrices as its input and predicts the difference between the outputs of the graph neural
network G and the observed true labels at time k, i.e., ℓk = ℓ (HkG(Ak, Xk), HkYk).

In order to capture the temporal variation, we adopt a recurrent neural network-based model
M(·; θRNN ) to estimate generalization loss in the future. The RNN model sequentially takes
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the output of the GNN G(Ak, Xk) as its input and outputs the estimation ℓ̂k at time k. To enhance the
representation power of RNN, we usually add a non-linear feature extractor φ to capture the principal
features in the inputs and the RNN model becomes[

ℓ̂k
hk

]
=

[
Mℓ (φ ◦G(Ak, Xk), hk−1)
Mh (φ ◦G(Ak, Xk), hk−1)

]
,

where hk denotes the hidden state in the RNN, transferring the historical information. After de-
ployment time tdeploy, a naive and straightforward way of using the generalization loss estimator is
directly applying the model on the graph sequence (Gτ : τ > tdeploy). This results in a population
loss prediction error Eτ on the optimal trained modelM∗, φ∗ at time τ given by

Eτ (M∗, φ∗) = E∥M∗
ℓ (φ

∗ ◦G(Ak, Xk), hk−1)− ℓ (G(Ak, Xk), Yk) ∥2

Before deployment, however, we are not able to get sufficient training frames. This indicates φ∗ may
only have good feature extraction performance on graphs similar to the first several graphs. After
deployment, the graphs undergo significant changes, and thereby have unavoidable representation
distortion, which makes the generalization estimator perform worse and worse.

To further investigate this problem, let us consider the information loss within the input graph series
and the output prediction after the GNN is deployed,

Information Loss ≜ I({(Aτ , Xτ )}kτ=tdeploy+1,D; ℓk)− I(ℓ̂k; ℓk),

where I(; ) is the mutual information of two variables. The learning process is equivalent to minimiz-
ing the above information loss. Furthermore, it can be divided into two parts:

Information Loss = I({φ ◦G(Aτ , Xτ )}kτ=tdeploy+1,D; ℓk)− I(ℓ̂k; ℓk)︸ ︷︷ ︸
① Information Loss Induced by RNN

+ I({G(Aτ , Xτ )}kτ=tdeploy+1,D; ℓk)− I({φ ◦G(Aτ , Xτ )}kτ=tdeploy+1,D; ℓk).︸ ︷︷ ︸
② Information Loss Induced by Representation Distortion

(1)

The second part indicates the information loss by the representation distortion of φ. Especially as
the graph evolve over time, the information loss correspondingly increases due to the distribution
shift. According to the data-processing inequality [10] in information theory, post-processing cannot
increase information. Therefore, the second part of Equation 1 holds for any time τ ,

I({G(Aτ , Xτ )}kτ=tdeploy+1,D; ℓk)− I({φ ◦G(Aτ , Xτ )}kτ=tdeploy+1,D; ℓk) ≥ 0.

The equality holds if and only if φ ◦G(Aτ , Xτ ) is a one-to-one mapping with G(Aτ , Xτ ). In other
words, there exists an inverse function φ−1 to reconstruct the features and structures of graph over
the time, such that φ−1 ◦ φ ◦G(Aτ , Xτ ) = G(Aτ , Xτ ).

Therefore, after deployment, since there are no human-annotated label, we design the contrastive
graph reconstruction to obtain self-supervised signals to finetune the adaptive feature extractor φ at
post-deployment time, thereby reducing the information loss during the dynamic graph evolution.
Compared with directly graph reconstruction, contrastive method generates more views through data
augmentation, which can learn more principal and robust representations.

Given the pre-trained graph model G and evolving graph (Ak, Xk) at time k, we first obtain the
feature embedding matrix Ok = G(Ak, Xk). In order to capture the evolution property of graphs, we
define two contrastive loss on augmented feature graph, which is denoted as (T (Ak), Ok), where
T (·) is the structure transformation function, i.e. randomly add or drop edges [11, 12, 13].

Structure Reconstruction Loss Ls. First of all, we define the structure reconstruction loss Ls.
Given the augmented feature graph (T (Ak), Ok), we perform reconstruction on adjacency matrix
Ak. Specifically, it computes the reconstructed adjacency matrix Âk by Âk = σ(FkF

T
k ), Fk =

φ(T (Ak), Ok), where Fk ∈ RN×B , σ is the sigmoid activation function. Here we utilize one-layer
graph attention network (GAT) as model φ [14], and it is optimized by binary cross entropy loss
between Ak and Âk as a link prediction task, i.e. Ls = LBCE(Ak, Âk).

Feature Reconstruction Loss Lf . Moreover, we perform the node-level feature reconstruction on
the corrupted adjacency matrix T (Ak). We utilize a single-layer decoder a to obtain the reconstructed
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feature Ôk by Ôk = Fka
T , Fk = φ(T (Ak), Ok), where a ∈ RB×B , and it is optimized by mean

squared error loss Lf = ∥Ok − Ôk∥2.

To sum up, the reconstruction loss Lg is the composition of structure reconstruction loss Ls and
feature reconstruction loss Lf as Lg(φ) = λLs + (1 − λ)Lf , where λ is the proportional weight
ratio to balance two loss functions. By the way, before the deployment, we conduct the same
graph reconstruction to improve the performance of feature extraction with the supervised learning.
Algorithm 1 outlines the pre-deployment training and post-deployment finetuning of SMART in detail.

5 Experiment
In this section, to validate the effectiveness of our proposed SMART, we conduct experiments on
four real-world evolving network datasets. Meanwhile, due to space constraints, we present the
experimental results and theoretical analysis on Barabási-Albert random graphs in Appendix C.

Experiment Setting. We use four evolving graph datasets for evaluation: OGB-arXiv [15],
DBLP [16], Pharmabio [16], Facebook 100 [17]. Mean Absolute Percentage Error (MAPE) and
Standard Error are utilized for evaluations. The detailed experiment setting is shown in Appendix F.

Comparison with Linear Regression. Experimental observations reveal that the degradation of
many GNN models exhibits an approximate linearity. Therefore, we compare our model SMART with
linear regression on three academic datasets and three different GNN backbones as shown in Table 1.
We observe a strikingly prediction improvement. For example, in Pharmabio dataset, our SMART on
GCN decreases MAPE from around 32.4% to around 1.3% compared to linear regression. Additional
experimental results are presented in Appendix G.

Table 1: Performance comparison on three academic network datasets and three GNN backbones.
We use MAPE ± Standard Error to evaluate the estimation on different scenarios.

Dataset OGB-arXiv (↓) DBLP (↓) Pharmabio (↓)
GNN Backbone Linear SMART Linear SMART Linear SMART

GCN [18] 10.5224 2.1897±0.2211 16.4991 3.4992±0.1502 32.3653 1.3405±0.2674

GAT [14] 12.3652 3.1481±0.4079 17.6388 6.6459±1.3401 29.0404 1.2197±0.2241

GraphSage [19] 19.5480 5.2733±2.2635 23.7363 9.9651±1.4699 31.7033 3.1448±0.6875

Ablation Study. To verify the effectiveness of different modules in SMART, we conducted ablation
studies on four datasets with the four variants as shown in Figure 2. (1) Comparing (M1) with our
method, contrastive graph reconstruction significantly impacts accurate generalization estimation,
particularly evident in the OGB-arXiv and Pharmabio datasets, where the (M1) variant exhibits a
substantial performance gap. (2) In the case of (M2), generalization estimation based on historical
multi-step information improves prediction accuracy and stability. For instance, in the Cornell dataset,
predictions using single-step information result in a larger standard error. (3) As shown by (M3a)
and (M3b), removing either of the reconstruction losses leads to a performance decrease in SMART.
Since evolving graphs display temporal drift in both structure and features, both graph contrastive
reconstruction losses are essential for mitigating information loss over time.
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Figure 2: Ablation study on four representative evolving datasets.

6 Conclusions
In this paper, we investigate a practical but underexplored problem of temporal generalization
estimation in evolving graph. To this end, we theoretically show that the representation distortion is
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unavoidable and further propose a straightforward and effective baseline SMART. Experiments on
real-world datasets demonstrate the effectiveness of our methods and verify the importance of self-
supervised graph reconstruction. Future work involves exploring our methods in more complicated
heterogeneous graphs and spatio-temporal graphs.
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A Proof for Theorem 1

Before presenting the results, we first present the following several assumptions.

Assumption 1 (Graph Evolution Process). The initial graph G0 = (A0, X0, Y0) has n nodes. (1)
We assume that the feature matrix X0 is drawn from a continuous probability distribution supported
on Rn×d. (2) At each time t in the process, a new node indexed by n+ t appears in the graph. We
assume that this node connects with each node in the existing graph with a positive probability and
that edges in the graph do not vanish in the process. (3) We assume that the feature vector xn+t has
a zero mean conditioned on all previous graph states, i.e., E[xn+t|G0, ...,Gt−1] = 0d for all t ≥ 1.
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Remark 1. Assumption 1 states the following: (1) For any given subspace in the continuous proba-
bility distribution, the probability that X0 appears is zero. (2) The ever-growing graph assumption
is common in both random graph analysis, like the Barabási-Albert graph [20], and real-world
scenarios. For example, in a citation network, a paper may have a citation relationships with other
papers in the network, and this relationships will not disappear over time. Similarly, the purchasing
relationships between users and products in e-commerce trading networks are the same. (3) The
zero-mean assumption always holds, as it is a convention in deep learning to normalize the features.

Next, we present the proof for Theorem 1 as follows.

Proof. Let fτ (i; θ) denote the output of the GCN on the node i at time τ ≥ 0. Therefore, we have

fτ (i; θ) =

N∑
j=1

ajσ

 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

 . (2)

Thus, the expected loss of the parameter θ∗ on the node i at time τ is

ℓτ (i) = E
[
(fτ (i; θ)− f0(i; θ))

2
]

= E


∣∣∣∣∣∣

N∑
j=1

aj

σ

 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

− σ

 1

d0(i)

∑
k∈N0(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2
 .

Furthermore, recall that each parameter aj ∼ U(a∗j , ξ) and each element Wj,k in the weight vector
Wj also satisfies Wj,k ∼ U(W ∗

j , ξ). Therefore, the differences aj − a∗j and Wj,k −W ∗
j,k are all i.i.d.

random variables drawn from distribution U(0, ξ). Therefore, we have

ℓτ (i) = E


∣∣∣∣∣∣

N∑
j=1
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σ
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dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

− σ

 1
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2


= E
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2
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= E


∣∣∣∣∣∣

N∑
j=1
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+ E
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The third equality holds by the fact that the differences (aj − a∗j )’s are all i.i.d. random variables
drawn from the uniform distribution U(0, ξ). Therefore, we have

ℓτ (i) ≥ E


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N∑
j=1

(aj − a∗j )
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Furthermore, since the differences (aj − a∗j ) are i.i.d. random variable drawn from the distribution
U(0, ξ), we must further have

ℓτ (i) ≥ E


∣∣∣∣∣∣

N∑
j=1

(aj − a∗j )

σ

 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

− σ

 1

d0(i)

∑
k∈N0(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2


= E

 N∑
j=1

E[(aj − a∗j )
2|Aτ , Xτ ]

∣∣∣∣∣∣σ
 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

− σ

 1

d0(i)

∑
k∈N0(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2


=
ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣σ
 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

− σ

 1

d0(i)

∑
k∈N0(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2
 .

Furthermore, the leaky ReLU satisfies that |σ(u)− σ(v)| ≥ β|u− v|. The above inequality further
implies

ℓτ (i) ≥
ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣σ
 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj

− σ

 1

d0(i)

∑
k∈N0(i)

x⊤
k Wj + bj

∣∣∣∣∣∣
2


≥ β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣ 1

dτ (i)

∑
k∈Nτ (i)

x⊤
k Wj + bj −

1

d0(i)

∑
k∈N0(i)

x⊤
k Wj − bj

∣∣∣∣∣∣
2


≥ β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣ 1

dτ (i)

∑
k∈Nτ (i)\N0(i)

x⊤
k Wj +

(
1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k Wj

∣∣∣∣∣∣
2


≥ β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣ 1

dτ (i)

∑
k∈Nτ (i)\N0(i)

x⊤
k Wj

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k Wj

∣∣∣∣∣∣
2


≥ β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k Wj

∣∣∣∣∣∣
2


Therefore, we have

ℓτ (i) ≥
β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k Wj

∣∣∣∣∣∣
2


=
β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k (Wj −W ∗

j +W ∗
j )

∣∣∣∣∣∣
2


=
β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k (Wj −W ∗

j )

∣∣∣∣∣∣
2


+
β2ξ2

3
E

 N∑
j=1

∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k W

∗
j

∣∣∣∣∣∣
2
 ,

where the last equality comes from the fact that random vectors (Wj −W ∗
j )’s are an i.i.d. random

variables drawn from the uniform distribution U(0, ξ) and are also independent of the graph evolution
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process. Therefore, we have

ℓτ (i) ≥
Nβ2ξ2

3
E


∣∣∣∣∣∣
(

1

dτ (i)
− 1

d0(i)

) ∑
k∈N0(i)

x⊤
k (Wj −W ∗

j )

∣∣∣∣∣∣
2


=
Nβ2ξ4

9
E

( 1

dτ (i)
− 1

d0(i)

)2
∥∥∥∥∥∥
∑

k∈N0(i)

xk

∥∥∥∥∥∥
2
 ,

where the last equality comes from the fact that each element in the random vector (Wj −W ∗
j ) is

i.i.d. random variable drawn from the uniform distribution U(0, ξ). Since the initial feature matrix
X0 = (x1, ..., xn) are drawn from a continuous distribution supported on Rd, we must have with
probability one, ∥∥∥∥∥∥

∑
k∈N0(i)

xk

∥∥∥∥∥∥
2

> 0.

Furthermore, we have

EGτ

[(
1

dτ (i)
− 1

d0(i)

)2
∣∣∣∣∣G0
]
≥

(
EGτ

[
1

dτ (i)

∣∣∣∣∣G0
]
− 1

d0(i)

)2

=

(
1

d0(i)
− EGτ

[
1

dτ (i)

∣∣∣∣∣G0
])2

To prove ϕτ (i) is strictly increasing, it suffices to prove that EGτ

[
1

dτ (i)

∣∣∣∣∣G0
]

is decreasing with

respect to τ . Since

EGτ

[
1

dτ (i)

∣∣∣∣∣G0
]
= EGτ

[
1

dτ (i)

∣∣∣∣∣G0
]

=

∫ ∞

0

P

(
1

dτ (i)
> r

∣∣∣∣∣G0
)
dr

=

∫ ∞

0

P

(
dτ (i) <

1

r

∣∣∣∣∣G0
)
dr

<

∫ ∞

0

P

(
dτ−1(i) <

1

r

∣∣∣∣∣G0
)
dr,

where the last inequality comes from the fact that

P

(
dτ (i) <

1

r

∣∣∣∣∣G0
)

< P

(
dτ−1(i) <

1

r

∣∣∣∣∣G0
)
.

B SMART Algorithm

We illustrate the details of our proposed SMART in Algorithm 1. The learning process of SMART is
divided into two stage: pre-deployment warmup training and post-deployment finetuning. Before
the deployment, we conduct both the supervised learning on the generalization loss prediction with
the partially-observed labels and self-supervised learning on the evolving graph structure. After the
deployment, since we no longer have the label information over time, we design two contrastive
graph reconstruction task as a self-supervised manner to actively finetuning the feature extractor φ.
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Algorithm 1 SMART: Self-supervised Temporal Generalization Estimation

Require: Pre-trained graph model G, observation data D, evolving graph (Ak, Xk) at time k.
Ensure: Update generalization performance predictorM and φ with paramter θ =

[
θM, θφ

]
.

1: while not converged or maximum epochs not reached do ▷ Pre-deployment Warmup Training
2: Compute loss L(θ) =

∑tdeploy
τ=0 ∥Mℓ (φ ◦G(Aτ , Xτ ), hτ−1)− ℓ (HτG(Aτ , Xτ ), HτYτ ) ∥2;

3: Compute graph self-supervised Lg via two self-supervised graph reconstruction;
4: Update θ ← θ + α∇θ(L+ Lg);
5: end while
6: for k = tdeploy + 1, · · · , T do ▷ Post-deployment Finetuning
7: Get the newly-arrival graph (Ak, Xk);
8: while not converged or maximum epochs not reached do
9: Compute graph self-supervised Lg via two self-supervised graph reconstruction;

10: Update θφk ← θφk + β∇θφ
k
Lg;

11: end while
12: end for

C A Closer Look at Barabási–Albert Random Graph

To theoretically verify the effectiveness of SMART, we first take a closer look at a specific scenario of
the synthetic random graphs G = (Gt : t ∈ N), which follows preferential attachment growth [21],
and is also called Barabási–Albert (BA) graph model.
Assumption 2 (Preferential Attachment Evolving Graphs). Here we consider a node regression
task. The initial graph G0 has N0 nodes. (1) We assume the node feature matrix Xk is a Gaussian
random variable with N (0, IB), where IB ∈ RB . (2) The node label of each node i is generated by
yi = dαi Xim, α ≥ 0, which is satisfied like node degree, closeness centrality coefficients, etc. (3) A
single-layer GCN f(G) = LXW is given as the pre-trained graph model G.
Theorem 2. If at each time-slot t, the Barabási–Albert random graph is grown by attaching one new
node with m edges that are preferentially attached to existing nodes with high degree. To quantify the
performance of GNN, the mean graph-level generalization relative error is determined by

EG = 2m · t

N0 + t
· (C2

+∞∑
d=1

d−2α−4 − 2C

+∞∑
d=1

d−α−4 +

+∞∑
d=1

d−3),

where d is the degree of nodes. C = ( 1β
∑N0

i=1 d
α−1
i )/(

∑N0

i=1 d
−1
i ) and di is the degree of node vi.

Remark 2. Proofs of Theorem 2 can be found in the Appendix D. This theorem shows that when the
node scale N0 of initial graph G0 is quite large, the graph-level error loss is approximately linearly
related to time t and continues to deteriorate.

To verify the above propositions, we generate a Barabási–Albert (BA) scale-free model with the
following setting: the initial scale of the graph isN0 = 1000, and the evolution period is 180 timesteps.
At each timestep, one vertex is added with m = 5 edges. The label of each node is the closeness
centrality coefficients. The historical training time period is only 9. As we derived in Theorem 2, the
actual graph-level generalization error approximates a linear growth pattern. Therefore, we consider
to compare SMART with linear regression model to estimate the generalization performance.

Does Linear Regression Model Work? We conduct experiments with 10 random seeds and present
the empirical results in Figure 3a. (1) Generalization error exhibits linear growth, consistent with
our theorem (the blue solid line). (2) Our SMART method performs significantly well in a long
testing period, with a mean prediction percentage error of 4.2602% and collapses into a roughly
linear model. (3) However, the linear regression model, based on the first 9-step partial observations
(the green solid line), exhibits extremely poor performance. Due to limited human annotation,
partial observations cannot accurately represent the performance degradation of the entire graph.
We also adjust parameters in the BA graph model and introduced dual BA graph model [22] for
further experiments (see Table 2). Our proposed SMART model effectively captures the evolutionary
characteristics across various settings and significantly outperforms the linear regression model.

Effectiveness of Graph Reconstruction. To further validate the effectiveness of graph reconstruction
in SMART, we conduct following two experiments. (1) As shown in Figure 3b, we remove the graph
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Table 2: Performance comparison on different Barabási–Albert graph setting. We use Mean Absolute
Percentage Error (MAPE) ± Standard Error to evaluate the estimation on different scenarios.

Barabási–Albert (N0 = 1000) Dual Barabási–Albert (N0 = 1000,m1 = 1)

m = 2 m = 5 m = 10 m2 = 2 m2 = 5 m2 = 10

Linear 79.2431 74.1083 82.1677 61.8048 67.6442 38.4884
SMART 7.1817±1.2350 4.2602±0.5316 9.1173±0.1331 7.9038±1.8008 3.8288±0.1706 1.9947±0.1682
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Figure 3: Experimental results of SMART and its variation on BA random graph.

reconstruction module and repeat the experiment with 10 random seeds. Due to the temporal
distribution shift caused by the graph evolution, the generalization estimation shows significant
deviations and instability. (2) We track the intermediate results during post-deployment fine-tuning,
i.e. the reduction of reconstruction loss and prediction improvements. As depicted in Figure 3c, in the
early stage of reconstruction (scatter points in light color), the prediction performance optimization is
fluctuating. As the optimization continues (scatter points in dark color), the prediction performance
is effectively boosted and concentrated in the upper-right corner, with an average performance
improvement of 10%.

D Proof for Theorem 2

Proof. Assuming a regression task with a single-layer GCN, we compute mean squared error between
prediction and ground truth as the learning objective as follows

min
W

EX ∥LXW − Y ∥22 = min
W

EX ((LXW )T · LXW − 2(LXW )TY + ∥Y ∥22) (3)

= min
W

EX (WTXTLTLXW − 2WTXTLTY + ∥Y ∥22). (4)

Since D−2 is a diagonal matrix, (LTL)ij = (ATD−2A)ij = aTi D
−2aj , where ai is the i-th row in

matrix A. Each node feature is independently Gaussian distributed.

When i ̸= j,
EX [XTLTLX]ij = 0 (5)

When i = j,

EX [XTLTLX]ii = EX (xT
i L

TLxi) = EX (

n∑
j=1

n∑
m=1

xij(L
TL)jmxmi) (6)

Similarly, when and only when j = m, EX [XTLTLX]ii ̸= 0

EX [XTLTLX]ii =

n∑
j=1

EX (x2
ij)(L

TL)jj =

n∑
j=1

(LTL)jj · I (7)
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where
∑n

j=1(L
TL)jj =

∑n
j=1((D

−1A)TD−1A)jj =
∑n

j=1(A
TD−2A)jj =

∑n
j=1

1
dj

≜ β

Consequently, the learning objective is equal to

min
W

EX ∥LXW − Y ∥22 = min
W

β ·WTW − 2WTEX (XTLTY ) + ∥Y ∥2 (8)

Meanwhile, the optimal parameter of GCN equals to W ∗ = 1
βEX (XTLTY ).

W ∗
i =

1

β
EX [XTLTY ]i (9)

=
1

β
EX

N∑
m=1

(XTLT )imYm (10)

=
1

β
EX

N∑
m=1

(LX)mid
α
mXmk (11)

=
1

β
EX

N∑
m=1

N∑
s=1

LmsXsid
α
mXmk (12)

=
1

β
EX

N∑
m=1

LmmXmid
α
mXmk (13)

Therefore, only if i = k, W ∗
k = 1

β

∑N
m=1 Lmmdαm = 1

β

∑N
m=1 d

α−1
m ≜ C, and otherwise W ∗

i = 0.

For any given node vi, we have

εi =
E∥(LXW ∗)i − Yi∥22

E∥Yi∥22
=

E(LXW ∗)2i − 2(LXW ∗)iYi + ∥Yi∥2

E∥Yi∥22
(14)

To be specific,

(LXW ∗)i =

d∑
j=1

(LX)ijW
∗
j = (LX)ikW

∗
k = C

N∑
s=1

LisXsk (15)

(LXW ∗)iYi = C

N∑
s=1

LisXskd
α
i Xik = Cdαi Lii = Cdα−1

i (16)

E(LXW ∗)2i = E[C
N∑
s=1

LisXsk]
2 = E[C2

N∑
s=1

(LisXsk)
2] = C2

N∑
s=1

L2
is = C2 1

di
(17)

E∥Yi∥2 = Ed2αi X2
ik = d2αi (18)

Therefore, plugging to Eq. 14

εi =
C2d−1

i − 2Cdα−1
i + d2αi

d2αi
(19)

= C2d−2α−1
i − 2Cd−α−1

i + 1 (20)

Therefore, the error of graph G is calculated as

EG =
∑
i

εi =

+∞∑
k=1

P (k)ε(k), (21)
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where P (k) is the probability of node degree equals to k, and ε(k) is the corresponding node
error. Here we assume the inherent graph model follows the Barabási–Albert model [20], where the
probability of node degree equals to

P (k) = 2m2 · t

N0 + t
· 1
k3

. (22)

N0 is the initial scale of graphs, m is the newly-arrival number of nodes of each time t. Consequently,
the error of graph G can be further deduced as:

EG =

+∞∑
k=1

2m2 · t

N0 + t

1

k3
(C2 · k−2α−1 − 2C · k−α−1 + 1) (23)

= 2m2 t

N0 + t
(C2

+∞∑
k=1

k−2α−4 − 2C

+∞∑
k=1

k−2α−4 +

+∞∑
k=1

k−3) (24)

E Real-world Datasets

We use two citation datasets, a co-authorship network dataset and a series of social network datasets
to evaluate our model’s performance. We utilize inductive learning, wherein nodes and edges that
emerge during testing remain unobserved during the training phase.

• OGB-arXiv [15]: The OGB-arXiv dataset is a citation network where each node represents
an arXiv paper, and each edge signifies the citation relationship between these papers. Within
this dataset, we conduct node classification tasks, encompassing a total of 40 distinct subject
areas. Our experiment spans the years from 2007 to 2020. In its initial state in 2007, OGB-arXiv
comprises 4,980 nodes and 6,103 edges. As the graph evolves over time, the citation network
boasts 169,343 nodes and 1,166,243 edges. We commence by pretraining graph neural networks
on the graph in 2007. Subsequently, we employ data from the years 2008 to 2010 to train our
generalization estimation model SMART. Following this training, we predict the generalization
performance of the pretrained graph neural network on graphs spanning the years 2011 to 2020.

• DBLP [16]: DBLP is also a citation network and this dataset use the conferences and journals
as classes. In our experiment, DBLP starts from 1999 to 2015 with 6 classes. Throughout the
evolution of DBLP, the number of nodes increase from 6,968 to 45,407, while the number of
edges grow from 25,748 to 267,227. We pretrain the graph neural network on the graph in 1999
and train our model on the next three years. We employ the graph spanning from 2004 to 2015 to
assess the performance of our model.

• Pharmabio [16]: Pharmabio is a co-authorship graph dataset, and each node represents a paper
with normalized TF-IDF representations of the publication title as its feature. If two papers share
common authors, an edge is established between the corresponding nodes. We conduct node
classification tasks on this dataset, comprising a total of seven classes, with each class representing
a journal category. The range of Pharmabio is 1985 to 2016. The pretrained graph neural network
is based on the graph of the year 1985 with 620 nodes and 57,559 edges. Then we train our
estimation model by using graph data from 1986 to 1988. We evaluate our model on consecutive
26 years starting form 1989. At the last year 2016, the graph has evolved to 2,820 nodes with
3,005,421 edges.

• Facebook 100 [17]: Facebook 100 is a social network which models the friendship of users
within five university. We perform binary node classification on this dataset, with the classes
representing the gender of the users. Among these datasets, Amherst, Reed and Johns Hopkins
are of smaller scale, while Penn and Cornell are larger in size. We sequentially evaluate our
model’s adaptability to datasets of different scales. All these datasets end in the year of 2010 with
the number of nodes varying from 865 to 38,815 and edges from 31,896 to 2,498,498.

F Implementation Details

In this section, we present the implementation details of our model. We adopt the vanilla graph
convolution network as the pre-trained graph model G, which is trained on the initial timestep of the
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Table 3: Hyperparameter setting in our experiments

Datasets OGB-arXiv DBLP Pharmabio Facebook 100

Penn Amherst Reed Johns Hopkins Cornell

GNN Layer 3 3 2 2 2 1 2 2
GNN dimension 256 256 256 256 256 32 256 256
RNN Layer 1 1 1 1 1 1 1 1
RNN dimension 64 8 64 64 64 32 64 8
loss lambda 0.5 0.9 0.7 0.3 0.9 0.7 0.1 0.5
learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

graph with 10% labeling. During training, we only select the next 3 historical timesteps, where we
randomly label 10% of the newly-arrived nodes. The remaining timesteps are reserved for testing,
where we have no observations of the label. We run SMART and baselines 20 times with different
random seeds. We use Adam optimizer for all the experiments, and the learning rate for all datasets
are uniformly set to be 1e-3. In all experiments, the pre-trained graph neural networks are equipped
with batch normalization and residual connections, with a dropout rate set to 0.1. Meanwhile, We
employed the ReLU activation function. We set hyperparameter for each datasets and specify the
details in Table 3.

To simulate real-world human annotation scenarios, we randomly labeled 10% of the samples during
the training of the pre-trained graph neural network model. Prior to deployment, at each time step,
we labeled 10% of the newly appearing nodes. After deployment, no additional labeling information
was available for newly added nodes. For consistency, we use only the first three frames to obtain
few labels for all real-world datasets, which is a relatively small sample size. Further enhancing the
labeled data can yield additional improvements in temporal generalization estimation.

All the evaluated models are implemented on a server with two CPUs (Intel Xeon Platinum 8336C ×
2) and four GPUs (NVIDIA GeForce RTX 4090 × 8).

G Additional Experiment Results

In this section, we present additional experiment results as follows.

Estimation on Different Test Time Period. In Table 4, we demonstrate the performance of
SMART over time during the evolution of graphs in five social network datasets from Facebook
100. As the evolving pattern gradually deviates from the pre-trained model on the initial graph,
generalization estimation becomes more challenging. Consequently, the error in linear estimation
increases. However, our SMART method maintains overall stable prediction performance.

Table 4: Performance comparison on five social network datasets in Facebook 100. We divide the test
time Ttest into 3 periods and evaluate the estimation performance separately.

Facebook 100 [0, Ttest/3] (Ttest/3, 2Ttest/3] (2Ttest/3, Ttest]

Linear SMART Linear SMART Linear SMART

Penn 1.9428 0.0193±0.0041 2.0432 0.6127±0.0307 2.7219 2.2745±0.0553

Amherst 31.1095 1.4489±0.2450 49.2363 2.8280±0.9527 73.5709 4.3320±1.8799

Reed 55.6071 0.0453±0.0020 65.7536 0.0987±0.0078 73.6452 0.0318±0.0085

Johns Hopkins 8.1043 0.5893±0.0491 10.2035 0.8607±0.1661 11.5206 0.9061±0.2795

Cornell 4.5655 0.4663±0.0275 8.6622 1.0467±0.0817 12.3263 1.7311±0.1175

Proportional Ratio of Two Reconstruction Loss. We evaluate performance using different weight
ratios λ ∈ {0, 1, 0.3, 0.5, 0.7, 0.9}, as shown in Figure 4. Our method is generally insensitive to the
choice of λ, with λ = 0.5 being a balanced option in most cases. However, larger λ values can yield
better results in specific datasets, such as DBLP and PharmaBio, especially when the node features
are simple, like one-hot encoding or TF-IDF representations.
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Figure 4: Hyperparameter Study on proportional weight ratio λ of SMART on all datasets.
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Figure 5: Hyperparameter Study on RNN dimension of SMART on all datasets.

Feature Dimension of RNN Input. We compared RNN feature dimensions ranging from
{4, 8, 16, 32, 64, 128}, as shown in Figure 5. Performance remains stable across four datasets when
the feature dimension is set between 4 and 64. However, a significant performance drop occurs
on the Cornell dataset when the dimension is set to 128. Setting the RNN feature dimension too
high is discouraged for two reasons: (1) As shown in Equation 1, RNN input represents compressed
node information over time. To enhance historical information density and effectiveness, the input
dimension should be reduced, facilitated by the reconstruction loss. (2) Given limited observation
samples during training, reducing the RNN input dimension helps alleviate training pressure.
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