Exploring Target Representations for Masked
Autoencoders

Xingbin Liu'2* Jinghao Zhou?* Tao Kong?*
!Xiamen University ~ 2ByteDance

Abstract

Masked autoencoders have become popular training paradigms for self-supervised
visual representation learning. These models randomly mask a portion of the
input and reconstruct the masked portion according to assigned target represen-
tations. In this paper, we show that a careful choice of the target representa-
tion is unnecessary for learning good visual representation since different targets
tend to derive similarly behaved models. Driven by this observation, we pro-
pose a multi-stage masked distillation pipeline and use a randomly initialized
model as the teacher, enabling us to effectively train high-capacity models with-
out any effort to carefully design the target representation. On various down-
stream tasks, the proposed method to perform masked knowledge distillation
with bootstrapped teachers (ABOT) outperforms previous self-supervised methods
by nontrivial margins. We hope our findings, as well as the proposed method,
could motivate people to rethink the roles of target representations in pre-training
masked autoencoders. The code and pre-trained models are publicly available at
https://github.com/liuxingbin/dbot.

1 Introduction

Masked Image Modeling (MIM) [18, 34, 2, 40] has recently become an active research topic in the
field of visual representation learning. To be specific, MIM randomly masks a portion of the input
and then reconstructs the masked portion according to the transformed target, formulated as

min B M(T(z© (1= M), fo(z © M)), M

where “©®” means element-wise product; M is the patch mask; “x ® M represents “unmasked
patches” and vice versa; fy(-) is the learnable network to be pre-trained; 7 is the transformation
function generating the reconstructed target. 7 can either be a parameterized network or a traditional
image feature transformation method; M (-, -) is the similarity measurement.

A crucial problem of MIM is how to choose the reconstructed target, i.e., 7 (-) in Eq. (1). Previous
methods use disparate teacher networks to generate the reconstruction target [3, 34, 35, 18, 40].
Though different methods differ in their architectural designs and optimization, the choice of the
teacher network lies crucial for each method and calls for a systematic study. In this work, we
paraphrase a term Masked Knowledge Distillation (MKD) to focus our discussion on a special case
of MIM where the target is generated by a parameterized network, i.e., 7 (-) = hg(-).

The purpose of our work is to investigate whether a careful design of the teacher network for MKD
matters. To this end, we compare student networks distilled by four teacher networks with different
computation pipelines [30, 18, 6, 31]. To our surprise, although the behaviors of the teacher networks
are very different, the distilled student networks share similar characters after several stages of masked
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computation |initialized classification object detetion semantic segmentation
pipe]ine teacher Oth 1st 2nd 3rd Oth 1st an 3rd 4th Oth lst 2nd 3rd 4th
Supervised DeiT [31] 81.883.6 84.384.3149.150.552.552.4 - (46.449.250.4499 -
Contrastive  |DINO [6] 83.284.284.5 84.4|50.1 52.552.952.7 - |46.849.750.4494 -
Autoregressive DALL-E [30]|81.1 83.5 84.4 84.3131.951.052.752.5 - [31.947.449.649.3 -
Autoencoding [MAE [18]  [83.6 84.3 84.4 84.3|50.6 52.9 52.752.5 - |48.149.650.449.8 -
- random 77.3 83.4 84.5 84.329.2 49.6 52.4 52.7 52.4|25.7 47.0 49.1 49.5 49.5
performance variance 2.240.370.070.04/9.54 1.230.170.12 - |9.191.150.540.23 -

Table 1: The top-1 classification accuracy on ImageNet-1K, object detection AP-box on COCO
with Cascade Mask R-CNN, and semantic segmentation mloU on ADE20K with UperNet of dBOT
using different models as the initialized teacher network. Note that all models are pre-trained on
ImageNet-1K. We perform distillation in each stage for 800 epochs. In the 15 stage, we distill from
initialized teacher to obtain a student. In the subsequent (i.e., ond 3rd ee ) stages, the obtained
students are leveraged as bootstrapped teacher to distill a new student.

knowledge distillation. Such observations indicate that the design of target representation is not
essential for learning good visual representations when pre-trained with multi-stage, i.e., feacher
networks do not matter with multi-stage masked knowledge distillation. Exceptionally, we use a
randomly initialized model as teacher to perform multi-stage masked knowledge distillation, and
find that it performs as well as those initialized by pre-trained models with the exact same settings!
Using a random model as teachers not only avoids an extra pre-training stage, but also alleviates the
painstaking selection of the target representations.

Based on the above studies and observations, we naturally propose to perform masked knowledge
distillation with bootstrapped teachers, short as dBOT . Specifically, masked knowledge distillation
is performed repeatedly in multiple stages. At the end of each stage, we assign the student’s weight
to the teacher and re-initialize the student’s weight to continue masked knowledge distillation. With
simple yet effective design that enables pre-training starting from randomly initialized teachers, dBOT
outperforms previous self-supervised methods by nontrivial margins on various downstream tasks.

2 Related work

Self-supervised learning is an active research topic recently. Early practices revolve around contrastive
learning [19, 7, 17, 5, 6] where the model output features of images transformed by different data
augmentations are pulled together. With the development of Masked Language Modeling (MLM) in
language pre-training [12], researchers also introduce the training strategy of masked reconstruction to
visual pre-training. BEiT [3] uses the DALL-E [30] to encode an image patch as the target for model
reconstruction. iBOT [40] uses an online teacher shifting the target from offline to online to make
the target semantic meaningful. In addition to using the token obtained from offline or online model
as reconstruct target, MAE [18], and MaskFeat [34] achieve good performance in masked-image
reconstruction using low-level pixels or HOG [10] features. However, there exists no work conferring
a system-level study on the importance of how to choose adequate target representation.

3 Does h,(-) Matter in MKD?

Given the general form of masked knowledge distillation as shown in Eq. (1), in this section, we
aim to investigate whether the careful design of the target, i.e., teacher network hy(-), matters. We
employ the standard masked autoencoder framework [18] to give a system-level study.

Common setup. The architectural settings strictly follow [18]. For the teacher network, we use the
vanilla ViT [13] with intact input. For the student network with masked input, we use the asymmetric
encoder-decoder structure. The student’s output is further projected to a dimension the same as that
of teacher’s embedding. During pre-training, we use Smooth L1 loss [14] for the optimization of the
student network, and the teacher network is kept fixed. Detailed settings are delayed to Appendix C.1.
We pre-train models on ImageNet-1K [11] and conduct evaluation under classification on ImageNet,
object detection on COCO [24], and semantic segmentation on ADE20K [39].



3.1 Preliminary Study

We first investigate the effect of using networks initialized differently as teachers for masked knowl-
edge distillation. Four canonical methods as pre-trained teachers are substantiated, i.e., DeiT [31] for
supervised learning, DINO [6] for contrastive learning, DALL-E [30] for autoregressive generation,
and MAE [18] for autoencoding. The results of initialized teacher at the 0" stage and of its distilled
student at the 15 stage are shown in Table 1.

Different /., (-) lead to similarly performed students. After the first stage of masked knowledge
distillation, the student consistently outperforms teacher as shown in Table 1. Although the perfor-
mance order of different h(-) is reserved after the first stage of distillation, the students distilled
from different hy(-) have closer downstream performances compared to the original h,(-). The
performance variance drops from 2.24 to 0.37 after the first stage of distillation.

3.2 Distillation with Multiple Stages

Given the observations that better teacher generally induces better outperforming student, we are
motivated to use the trained student as teacher to train new student repeatedly and study whether
similar trend endures. If so, we would like to seek at what stage the performances saturate, as well as
the discrepancy among the results incurred by different initialized teachers.

hg(-) does not matter with multi-stage distillation. The performance gain is valid but decreases
with multi-stage and eventually vanishes. Take MAE being the initialized teacher as an example,
students outperform teachers by +0.7%, +0.1%, -0.1% for classification, from the 0*" to the 3" stage.
Other teachers and downstream tasks share the same conclusion. Moreover, the performance gaps
of students learned from different teachers decrease, especially after multi-stage, as shown by the
performance variance at different stages in the last row of Table 1, which reveals that the choice of
hg(-) exerts little influence on the downstream performance. To demonstrate models’ differences in
terms of weights and outputs, we conduct a property analysis in Appendix B. Similar properties are
found, which verify our conclusion.

A random h(-) works surprisingly well. Since the choice of h4(-) does not matter, an intuitive
experiment is to see what will happen when we employ a random teacher, in which the parameters are
randomly initialized at the 0*" stage. To our surprise, using a random teacher achieves performances
comparably with other pre-trained teachers. The saturated results are on par with those induced by
pre-trained teachers, which enables us to train a state-of-the-art model more efficiently, without the
need of an extra pre-training stage for the initialized teacher (e.g., contrastive learning as DINO).

4 MKD with Bootstrapped Teachers

The study in Sec. 3 motivates us
to propose a multi-stage distilla- loss loss
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on downstream tasks is observed. Hence, our strategy is to perform distillation with bootstrapped
teachers. We illustrate our framework in Fig. 1.

S Experiments

Architecture. We use different capacity Vision Transformers [13], i.e., ViT-B/16, ViT-L/16, and
ViT-H/14 for dBOT. The input image of size 224 x224 is first divided by a linear projection head
into non-overlapping patch tokens total of 196 for ViT-B and ViT-L, and 256 for ViT-H. We exactly
follow the common setup demonstrated in Sec. 3, e.g., a student with asymmetric encoder-decoder
architecture, a teacher with intact input, etc.

Optimization. The learning rate is first linearly increased to the initial learning rate for the first
40 epochs and then cosine annealed to 0. The initial learning rate is set as 1.5e-4 x batch_size /
256, with batch size being 4096 for all models. We use the AdamW optimizer [26] and Smooth L1
loss [14] to optimize the parameters of student network. Stochastic drop rate are applied, 0.2 for
ViT-B, 0.2 for ViT-L, and 0.3 for ViT-H. We use only center-crop and flipping for data augmentation.
As shown in Table 1, the performance of different downstream tasks saturates at different stages. By
default, we pre-train all models for classification with 2 stages, for object detection and semantic
segmentation with 3 stages.

Evaluation setup. We sweep the base learning rate within a range with a batch size being 1024.
We warm up the learning rate during the first 5 epochs to the initial learning rate and use a cosine
schedule for the rest of the epochs. We average all the patch tokens output from the last transformer
block and pass them into a linear projection head for classification. We fine-tune ViT-B for 100
epochs and ViT-L and ViT-H for 50 epochs in total.

Comparison with previous results. .. . VITB VIiT-L ViT-H ViT-Hys
We report the fine-tuning results on T8

ImageNet-1K, mainly focusing on the MoCo v3 [8] 832 841 ) }
comparison of the self-supervised and DINO [6] 83.6 B ) )

supervised methods. Supervised denotes
the results reported in the MAE. As

methods based on masked image modeling:

shown in Table 2, dBOT achieves re- 53]501:11: [[fl]()] Si(z) Sgg ] ]

marka}b.le results w1th. dlfferent mgdel MAE [18] 836 859 869 78

capacities, demonstrating its scalability.

We achieved top-1 evaluation accuracy dataZvec [2] 842 862 . _
dBOT 845 86.6 874 88.0

of 84.5%, 86.6%, and 87.4% with ViT-

B, ViT-L, and ViT-H, yieldi i . .
of 0'91% i Og;o, ar: d 0.5% liorlrllfar%?ll?g Table 2: Comparison result of the previous methods on

MAE. When fine-tuned with an image ImageNet-1K. We evaluate by the end-to-end fine-tuning
size of 448, dBOT further achieves an ac- protocol. All results are based on an image size of 224,
curacy of 88.0%, surpassing the results except for ViT-H with an extra result with 448 image size.
obtained by MAE. More results can be We perform distillation in each stage for 800 epochs and

found in Appendix A. with 2 stages (our default) in total.

6 Conclusion

As a special case of MIM, we formulate MKD upon which an empirical investigation is conducted
about the influence of different target representations on self-supervised masked autoencoders. The
study concludes that it is not necessary to carefully choose the target representation to learn good
visual representations if distillation is performed in multiple stages (i.e., with bootstrapped teachers).
Instead of initializing teachers with pre-trained models, we resort to random ones for simple practice.
Without an extra stage of pre-training, dBOT achieves favorable performance. We hope our study
and method will provide timely insights for self-supervised learning.
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method APDx AP method mloU mAce
VITB ViTL ViTB ViT-L VITB ViTL ViTB ViT-L
70 I8
DINO [6] 501 - 434 - iBOT [40] | 484 523 593 633
MAE[IS] | 506 540 439 462  dat2vec[2] | 482 - 595 -
BOT[40] | 513 - 443 - MAE[I1S] | 481 536 589 655
dBOT 527 560 457 482  dBOT 95 545 607 660

Table A1: Object detection and instance segmentation Table A2: Semantic segmentation results on
results on COCO using Cascade Mask R-CNN. All ADE20K using UperNet. All results are based
results are based on our implementation with the of- on our implementation with the official pre-
ficial pre-trained model. We perform distillation in trained model. We perform distillation in each
each stage for 800 epochs and with 3 stages (default). stage for 800 epochs and with 3 stages (default).

method Cif;g Cifigo iNajg iNaj9 Flwrs Cars avg.

40
DINO [6] | 99.1 91.7 726 78.6 98.8 93.0(89.0
iBOT [40] [ 99.2 922 746 79.6 98.9 94.3|89.8
MAE [18]| - - 754 80.5 - - -
dBOT 99.3 913 779 81.0 982 93.7/90.2

Table A3: Transfer classification accuracy on various datasets. We report the results of ViT-B. Sup.
denotes the supervised baseline. The average results (avg.) are shown in the rightmost column.

A More Experiments

A.1 Downstream Tasks

To further demonstrate the effectiveness, we consider dense prediction tasks: object detection,
semantic segmentation, and instance segmentation, as well as classification tasks that transfer to
smaller datasets.

Objection detection and instance segmentation. We consider Cascade Mask R-CNN [4] as the
task head for object detection and instance segmentation with ViT-B and ViT-L on COCO [24]. We
report APP°* and AP™2k for object detection and instance segmentation respectively. The results are
demonstrated in Table Al. dBOT outperforms the previous self-supervised and supervised methods
by a large margin, setting a new state-of-the-art result with both ViT-B and ViT-L. With ViT-B, dBOT
achieves a APP* of 52.7 and a AP™2%k of 45.7, outperforming the supervised baseline pre-training
by 2.9 and 2.5 points, respectively. With ViT-L, such improvement is more prominent with 4.8 and
3.6 points respectively, showing the high scalability of dBOT for model capacity in downstream
dense prediction tasks.

Semantic segmentation. We adapt UperNet [36] as the task head for semantic segmentation with
ViT-B and ViT-L on ADE20K [39]. We report the mIoU and mAcc for semantic segmentation, and
the results are demonstrated in Table A2. We achieve the best performances on semantic segmentation
compared to previous self-supervised methods by a nontrivial margin. dBOT improves mloU from
47.4 to 49.5 with ViT-B, and 49.9 to 54.5 with ViT-L, yielding gains of 2.1 and 4.6 points respectively,
compared to the supervised baseline. The improvement in semantic segmentation is as significant as
in object detection.

Transfer learning. To further investigate the generalizability of visual representations learned by
dBOT. We study transfer learning performance by fine-tuning the pre-trained models on smaller
datasets, including CIFAR10 [23] (Cif7¢), CIFAR100 [23] (Cif7¢g), iNaturalist18 [32] (iNayg), iNatu-
ralist19 [32] (iNayg), Flowers [28] (Flwrs), and Cars [22]. The results are shown in Table A3. dBOT
achieves comparable, if not better, performances compared to previous best methods. Specifically,
the improvement is significant on relatively larger datasets like iNaturalist18 and iNaturalist19, with
4.7% and 3.3% respectively compared to the supervised baseline.



pre-training epochs acc pre-training epochs acc
1600 83.6 400-800 84.3
800-800 84.5 800-400 84.3
533-533-533 84.4 800-800 84.5

800-1200 84.3

(a) Stage split number. 2-stage
distillation works the best.

target norm acc
w/ [LN] 84.3
w/o [LN] 84.5

(d) Target normalization. Using
patch representations w/o [LN] as
targets works best.

(b) Epoch for each stage. 2-stage
distillation with 800 epochs for
each stage works the best.

student init acc
w/o re-initialize 84.2
w/ re-initialize 84.5

(e) Student initialization. Re-
initializing the student’s weight at
breakpoints works best.

momentum acc
vanilla 84.5
0.9998 83.6
0.9999 83.9

cosine(0.996,1)  82.1

(¢c) Momentum update. The
vanilla strategy explicitly splitting
stages works the best.

mask ratio acc
0.7 84.3
0.75 84.5
0.8 84.2

(f) Mask ratio. A mask ratio of
75% works best.

Table A4: Ablation study with ViT-B/16 on ImageNet-1K validation set. We report with the end-to-
end fine-tuning top-1 accuracy (%). Ablation study is conducted with randomly initialized teachers.
We note that models distilled from the pre-trained teachers generally share similar trends. Default
settings are marked in gray . vanilla denotes m being 0 at the breakpoint and 1 otherwise. cosine(a,b)

denotes m is cosine annealed from value a to b.

A.2 Ablation Study

Stage split number. We study the influence of stage number by splitting total training epochs of
1600 into varying distillation stages, from 0 to 2. Results are shown in Table A4a. 2-stage distillation
works the best (for classification task), achieving 84.5% accuracy. Splitting epochs to 3-stage brings
0.1% performance drop, while all splitting strategies obtain a top-1 accuracy higher than 83.6%,
indicating its generalizability.

Epoch for each stage. Table A4b studies proper epochs needed for each stage in a 2-stage distilla-
tion pipeline. With the 2" stage distilling for 800 epochs, longer epochs for the 1 stage induces
0.2% improvement (84.3% vs. 84.5%). With the 1* stage distilling for 800 epochs, 800 epochs are
enough for the 2" stage since 1200 epochs incur no gain. Evenly splitting the epochs in 2-stage
masked knowledge distillation achieves the best performance.

Momentum update. We use in dBOT a multi-stage distillation pipeline, which is to distill from a
momentum encoder with m being 0 for every breakpoint and 1 otherwise. We further investigate
other momentum update strategies commonly used in self-supervised learning. Results are shown in
Table A4c. The vanilla strategy works the best.

Target normalization. We study whether patch tokens obtained by the self-attention blocks to
be used as target representation should be passed through the Layer Normalization [1] layer [LN].
The accuracy of models after 2-stage distillation is shown in Table A4d. Without passing through
[LN], the patch tokens directly obtained from the transformer block make them less suitable as target
representations to guide students’ learning.

Student initialization. We study whether student’s weight should remain when entering the next
stage of distillation. Specifically, we either keep the student’s weight unchanged or re-initialize the
student at each breakpoint. As shown in Table A4e, re-initializing the student’s weight works the
best.

Mask ratio. Table A4f shows the influence of the mask ratio on end-to-end fine-tuning. The optimal
mask ratio for dBOT is 75%, the same as that in MAE.
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Figure B1: Average attention distance of different heads w.r.t layer number of ViT-B with different
distilling teachers and their corresponding student distilled for 2 stages. The first row showcases the
teachers while the second showcases the 2" stage distilled student. Models using different teachers
achieve the same result. The distilled students obtain comparatively more local attention compared to

the teachers.
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Figure B2: Singular value decomposition of different layers of ViT-B with different distilling teachers
and their corresponding student distilled for 2 stages. The first row showcases the teachers while the
second showcases the 2" stage distilled student. Models using different teachers achieve the same
result.

B Property Analysis

We investigate the properties of models distilled from different teachers under certain criteria,
analyzing models’ weights and outputs. Further, training efficiency is briefly discussed with previous
methods.

Averaged attention distance. We compute averaged attention distance [13], averaged over
ImageNet-1K val set, for each attention head of different blocks to understand how local and
global information flows into Transformers. Average attention distance for dBOT using DeiT, DINO,
MAE, DALL-E, and random as teachers are illustrated in Fig. B1. The higher the attention distance,
models’ attention over an image is more global. Although the average attention distance of disparate
initialized teachers varies greatly, their distilled students after multi-stage distillation exhibit similar
behaviors, e.g., models’ attention toward local or global contents. Additionally, dBOT achieves more
local attention than previous works.

Singular value decomposition. We computed the percentage of top-k singular values [33] of the
embedding w.r.t each layer. The results are averaged over the ImageNet-1K val set. We showcase
the results with & varying from 1 to 5. Singular value decomposition for dBOT using DeiT, DINO,
MAE, DALL-E, and random as teachers are shown in Fig. B2. The higher the percentage, the models’
output over an image is less correlated, indicating larger redundancy of its spatial representations



model \ DeiT DINO DALL-E MAE random
Oth 13.8 36.1 36.5 36.6 23.6
2nd 36.6 36.6 36.6 36.6 36.6

Table BS: The results of unsupervised object detection on Pascal VOC 2012 with CorLoc based on
SVD decomposition.

method | data2vec [2] BEiT [3] MAE [18] dBOT
asym. X X v v
ViT-B 169 166 79 109
ViT-L 431 356 125 200
ViT-H 960 751 240 416

Table B6: Training time (s) per epoch for different methods with ViT-B/16, ViT-L/16, and ViT-H/14.
asym. denotes whether to use an asymmetric encoder-decoder structure [18]. All entries are tested on
the same setting, i.e., with 32 NVIDIA A100-80G GPUs.

thus less suitability for compression. Intuitively, random models at the O™ stage has the largest
percentage given that pixel are merely randomly projected. The student networks distilled from
different initialized teachers exhibit similar behaviors.

Unsupervised object detection. We use unsupervised object localization to quantitatively evaluate
the visual representation obtained by different models. We follow the evaluation practice proposed
in [27] with Correct Localization (CorLoc) on POC-VOC 2012 trainval sets, except that we conduct
feature decomposition via SVD instead of Laplacian since we observe more stable behaviors with
SVD. We first compute singular value decomposition for the patch feature obtained by the ViT-B
last block. Then a sign operation is applied on the first eigenvector, obtaining a binary mask of an
image. We then take the bounding box around the largest connected component, which is more like
the foreground object instead of the background. Correct localization (CorLoc) is used to measure the
results, evaluated on POC-VOC 2012 trainval sets. A box is considered to have correctly identified an
object if it has more than 50% intersection-over-union with a ground truth bounding box. Quantitative
results are demonstrated in Table B5. dBOT using different teachers achieves very similar results,
with students consistently outperforming their teachers.

Training efficiency. We compute the training time per epoch for different methods in Table B6.
With an asymmetric encoder-decoder architecture (asym.) as the default setup, dBOT performs slower
than MAE, but much faster than data2vec and BEiT. Such advantage turns more significant with
models of larger size.

C Implementation Details

C.1 Pre-Training

Default setup. We show our default pre-training setup in the second colum of Table C7. We use
Xavier Uniform [15] to initialize the Vision Transformer [13]. Note that we use asymmetry stochastic
drop path rate for students and teachers.

Setup for distillation from bigger teachers. We follow the default setup, except that we use a
different setup for stages. We first train larger-size teachers for 2 stages (in all downstream tasks) and
use those to distill new students for 1 stage (in all downstream tasks).

C.2 C(lassification
The default end-to-end fine-tuning recipe is shown in the second column of Table C8, following the

common recipes [18, 3] of ViT tuning for self-supervised models. The same recipe is applied when
distilling from bigger teachers.
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config default recipe™
optimizer AdamW [26]
optim. momentum [3; 0.9
optim. momentum S 0.95 0.98
loss Smooth L1 negative cos.
peak learning rate 2.4e-3 3e-3
learning rate schedule cosine decay [25]
batch size 4096
weight decay 0.05
stages 2 (c.), 3 (d./s.) 1
epochs per stage 800 1600
warmup epochs [16] 40 10
augmentation RandomResizedCrop
aug. input scale 0.2,1) 04,1
asym. enc-dec [18] v X
drop path [21] 0.2(B/L),03 H) 0.1 (B/L/MH)
target w/ [LN] X v
mask ratio 0.75 0.4

Table C7: Pre-training setup. recipe™ is the pre-training recipe for dBOT . cos. denotes cosine
distance. c., d., and s. denotes downstream tasks of classification, object detection, and semantic
segmentation respectively. drop path is for the students.

config default recipe™
optimizer AdamW [26]
peak learning rate|{0.8,1.2,1.6,2}e-3 {1,2,3,4}e-4
weight decay 0.05
optim. momentum 51,82 = 0.9,0.999
layer-wise decay 0.75
batch size 1024
learning schedule cosine decay
warmup epochs 5

epochs 100 (B), 50 (L/H)
augmentation RandAug (9, 0.5) [9]
label smoothing 0.1
mixup [38] 0.8
cutmix [37] 1.0

0.2 (B/L), 0.3 (H)0.1 (B), 0.2 (L), 0.3 (H)

drop path [21]

Table C8: End-to-end fine-tuning setup. recipe™ is the pre-training recipe for dBOT™ .

C.3 Object Detection and Instance Segmentation

We adopt the vanilla ViT with Cascade Mask R-CNN [4] as the task head on COCO [24] dataset for
object detection and instance segmentation, following the common setup [40]. The default recipe is
shown in Table C9. To cope with versatile image sizes, we add relative position embedding instead
of interpolating the absolute position embedding obtained during pre-training. For a fair comparison,
we applied the same setup and sweep the learning rate and stochastic drop path rate for different
methods.

C.4 Semantic Segmentation

We use vanilla ViT and UperNet [36] as the task head on ADE20K [39] dataset for semantic
segmentation, following the common setup [3]. The default recipe is shown in Table C10. To cope
with versatile image sizes, we add relative position embedding instead of interpolating the absolute
position embedding obtained during pre-training. For a fair comparison, we applied the same setup
and sweep the learning rate and layer-wise decay for different methods.
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config value config value
optimizer AdamW [20] optimizer AdamW [26]
optim. momentum 51,82 = 0.9,0.999 optim. momentum 51, 82 = 0.9,0.999
peak learning rate le-4 peak learning rate {0.3,0.5,0.8,1,3}e-4
batch size 16 batch size 16
layer-wise decay 0.75 layer-wise decay {0.65,0.75,0.85.0.95}
weight decay 0.05 weight decay 0.05
learning schedule step learning schedule cosine
epochs 12 steps 16000
step epochs 8 11 warmup steps 1500
drop path [21] 0.2 drop path [21] 0.1(B), 0.2(L)

Table C9: Object detection setup. Table C10: Semantic segmentation setup.

D Additional Experiments

D.1 Pixels vs. Random Mapping of Pixels

epoch pixel 0" block 120 block
400 83.3 83.2 83.2
1600 83.6 83.6 83.6

MAE performs masked image modeling using the image pixel as the reconstruction target. We
directly alter the target to patch tokens obtained from the image fed into a randomly initialized
network. We select two patch tokens as the reconstruction target, one is the token obtained using
the last transformer block, and the other is the token obtained using linear projection, i.e., without
any transformer block. After 400 epoch pre-training of ViT-B, the top-1 accuracy of the model on
ImageNet-1K obtained by the three different targets is shown below.

It can be derived that using the patch token obtained by a randomly initialized network as the target
can achieve comparable results with a pixel as a target. A similar result proves that patch tokens
obtained by a randomly initialized can also serve as a good reconstruction target.

D.2 Object Detection with Mask R-CNN

Additionally, we use Mask R-CNN structure with FPN for object detection and instance segmentation
on COCO datasets. The results are shown in Table D11. dBOT outperforms other methods by a large
margin, which is similar to the results using Cascade Mask R-CNN.

D.3 Linear Probing

We evaluate the linear probing performance of dBOT and MAE using ViT-B following the same
setup as MAE, the results of which is 67.8% and 67.9% respectively. dBOT achieves comparable
linear probing performances with MAE.

E Distill from Bigger Teachers

Inspired by canonical practices in knowledge distillation [20], we use larger teachers to distill smaller
students, showcasing the potential of MKD in general. Specifically, we attempt to use ViT-L/H
as teacher networks to distill ViT-B, and ViT-H as the teacher network to distill ViT-L. All larger
teachers are first distilled for 2 stages with the default setup. We resize the image to 196x 196 for
ViT-H/14 to keep the length of its output the same as that of ViT-B/L. While we do not find substantial
gains on classification results, the results by distilling from ViT-H are significantly better for dense
prediction tasks compared to the default setup, i.e., +0.8 points of AP*°* and +1.3 points of mloU
with ViT-B as the student. The performance gain in distilling ViT-L from ViT-H is diminished but still
valid, i.e., +0.1 APP°* and +0.7 mIoU. We also consider MKD with data-richer teachers, e. g.CLIP,
as exploratory experiments and set new state-of-the-art results for self-supervised learning. Refer
to Appendix F for details.
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method APbox APmask
ViT-B ViT-L ViT-B ViT-L
iBOT [40] 48.6 50.6 43.1 44.7
data2vec [2] 41.1 46.1 37.0 41.0
MAE [18] 50.2 53.5 44.8 47.4
dBOT 514 54.0 45.8 48.0

Table D11: Object detection and instance segmentation results on COCO using Mask R-CNN. We
report the result both with ViT-B and ViT-H. All results are based on our implementation with official
released pre-trained model.

teacher | student cls. det. seg.

ViT-L | ViT-B | 84.6 (+0.1) 53.1 (+0.4) 50.1 (+0.6)
ViT-H 84.6 (+0.1) 53.5(+0.8) 50.8 (+1.3)
VitH | YTl 86,8 (10.2) 56.1(+0.1) 55.2(+0.7)
Table E12: Results of classification (cls.) on IN1K, object detection (det.) on COCO, and semantic
segmentation (seg.) on ADE20K. For same-size teachers (colored ), students are pre-trained
with default settings. For bigger teachers, students are pre-trained for 1-stage from 2-stage distilled
teachers.

F Distill from Data-Richer Teachers

We explore to use models pre-trained with richer data (i.e., CLIP [29] with 400M Image-Text pairs)
as the initialized teacher to seek a potential upper-bound of MKD.

F.1 Pre-Training

Compared to the default setup, there exist two major disparities of the pre-training recipes for models
distilled from data-richer teachers, discussed next. The following practice is summarized as recipe™
detailed in Table C7.

Vanilla Architecture. We find that not using the asymmetric encoder-decoder architecture [18]
is optimal, as shown in Table F13. While an asymmetric architecture generates momentum for
bootstrapping models similar to [17], which lies crucial for distillation with random teachers, it hurts
the performance when distilling with stronger pre-trained teachers.

Hypothetically, the significance of the decoder in asymmetrical encoder-decoder architecture lies in
the need for separate layers to decode low-level details when the targets contain little semantics (e.g.,
pixels and random mappings of pixels). Such a need is eased when the target contains high-level
semantics (e.g., DINO and CLIP). The existence of the decoder, in this case, may even restrain the
encoder to grasp full knowledge from the teacher, inducing degraded performances.

1-Stage MKD. We use different models as teachers to distill students for one stage with longer epochs,
i.e., 1600. Results are shown in Table F14. Empirically, the performance gains for multi-stage MKD
over 1-stage MKD decrease as teachers’ fine-tuning performance increases. Stronger teachers, such
as DINO and MAE, induce similarly performed students with 1-stage MKD (1x1600) compared to
2-stage MKD (2x800).

Specifically, when using CLIP as the pre-trained teacher, the performance for 2-stage MKD is, to our
surprise, 0.9% lower than that of 1-stage MKD. Understandably, although the fine-tuning result of
the student after 1-stage distillation is better than that of CLIP, the student is essentially trained on
IN1K and may not contain faithfully data information stored in the CLIP model. Therefore, strong
teachers work well with 1-stage MKD, especially for models pre-trained on extra richer data.
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initialized teacher pre-training data asym. enc-dec acc

random IN1K X 83.8
6

DINO [6] IN1K X 84.8

CLIP [29] INIK + 400M ITp. v 84.9

CLIP [29] INIK + 400M ITp. X 85.7

Table F13: Image classification on IN1K with DINO and CLIP as initialized teachers, as well as
random ones. Students with DINO and CLIP as teachers are distilled for 1 stage.

pre-training epochs | random DALL-E[30] DeiT[31] DINO[6] MAE[18] | CLIP[29]
0 717.3 81.1 81.8 83.2 83.6 84.8
1x1600 83.6 83.6 83.6 84.4 84.4 84.9
2x800 84.5 84.4 84.3 84.5 84.4 84.0
A +0.9 +0.8 +0.7 +0.1 +0.0 -0.9

Table F14: ImageNet-1K classification results of 1 stage masked knowledge distillation with different
teachers. Total epochs are shown in the format of (stages x epochs_per_stage). /A denotes performance
gaps between entries of 2x800 and 1x1600.

F.2 Downstream Tasks

Implementation Details. For fine-tuning, we also use a slightly different recipe from default one
with smaller learning rates and drop path, dubbed as recipe’™ detailed in Table C8. For object
detection, instance segmentation, and semantic segmentation, we follow the default setup detailed
in Appendices C.3 and C.4.

Results. Results for downstream tasks are shown in Table F15. ViT-B distilled from CLIP-B achieves
an 85.7% top-1 accuracy and a 52.9 mloU, surpassing all previous arts. With CLIP-L as the teacher,
ViT-H with image resolution 448 achieves an 89.1% top-1 accuracy, setting a new state-of-the-art
image recognition result.

F.3 Conflict with Main Conclusion

It can be observed that MKD with CLIP [29] as the teacher performs much better than that with the
random teacher and multi-stage distillation, which seems contradictory to our main conclusion that
teacher networks do not matter with multi-stage masked knowledge distillation. Notably, CLIP is
trained with 400M image text pairs (300 larger than ImageNet-1K), which is a drastically different
setup from multi-stage distillation on ImageNet-1K only. Exploring CLIP as a target representation
gains popularity [35] recently but is beyond the main scope of this paper. We present these results to
corroborate the validity and to explore the upper bound of MKD in general. We note that the exact
solution to resolve the conflict is to perform multi-stage distillation using the CLIP’s in-house 400M
data to which we have no access. It is hypothesized that two results should be matched in light of
experiments on ImageNet-1K, which is left to future work.

initialized teacher | student cls. det. seg.
CLIP-B [29] VITB | 657 (112) 53.6(+0.9) 52.9 (+3.4)
CLIP-L [29] VITL | 878 (+12) 56.8(+0.8) 56.2(+1.7)
CLIP-L [29] VITH | gg5(11.1 ) - -

Table F15: Results of classification (cls.) on IN1K, object detection (det.) on COCO, and semantic
segmentation (seg.) on ADE20K with CLIP [29] as the teacher. Students are distilled for 1 stage.
The det. results with CLIP as teachers are with absolute positional embedding.
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