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Abstract

Self-supervised learning (SSL) has proven to be very effective in learning represen-
tations from unlabeled data, especially in vision and NLP tasks. We aim to transfer
this success to user sequence modeling, where users perform a sequence of actions
from a large discrete domain (e.g. video views, movie ratings). Since the data
type is completely different from images or natural language, we can no longer
use pretrained foundation models and must find an efficient way to train from
scratch. In this work, we propose an adaptation of Barlow Twins, with a suitable
augmentation method and architecture for user sequence data. We evaluate our
method on the MovieLens 1M, MovieLens 20M, and Yelp datasets, observing an
8%-20% improvement in accuracy on three downstream tasks compared to the dual
encoder model, which is commonly used for user modeling in recommendation
systems. Our method can help to learn useful sequence-level information for user
modeling, and it is especially beneficial with limited labeled data.

1 Introduction

Self-supervised learning (SSL) aims to learn useful and meaningful representations on large datasets
without human-generated labels. The high-level idea is to apply transformations to the original
data and learn representations that capture the essential underlying information invariant to the data
transformations. It has achieved notable success in various domains such as computer vision [6, 5,
23, 10] and natural language processing [8, 14, 4, 17, 2], and it is a major driving force in recent
advances of powerful foundation models [3, 17]. Common techniques in SSL include generative
modeling [19, 18], reconstruction tasks [8, 12], and contrastive learning [5, 9].

We wish to transfer the great success of SSL in vision and NLP tasks to user sequence modeling, where
users perform a sequence of actions from a large discrete domain (e.g. video clicking, rate a movie).
A better model of user activities can significantly improve the performance of recommendation
systems, which are ubiquitous among mobile applications and online services. Moreover, in many
cases where visual, text, or voice input is limited, existing foundation models for vision and language
may no longer be useful, and thus we must leverage information from other user activities.
∗Work was completed during an internship at Google Research
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Figure 1: Illustration of Barlow Twins for user sequence data. Two independent augmentations are
applied to the same batch, and the loss function enforces statistically independent components.

Performing SSL on user sequence data is not trivial. First, user activities are often sporadic and
the intrinsic structure may not be as straightforward as images and natural language (e.g. images
contain shapes, and languages have grammar). Moreover, there are technical challenges. In computer
vision, many distortions (e.g. cropping, color jittering) used in SSL [5, 12] are specific to images
and do not apply to user sequence data. Contrastive learning is used in both vision [6] and NLP
tasks [9, 15, 16], but requires large batch with many negative samples. Several works [15, 13]
use pretrained model weights [8, 14] to facilitate training, but such resourse is unavailable for user
sequence data. Dual encoders [22] are commonly adopted in recommendation systems, which can
also learn sequence-level representations. However, they are usually trained on one specific task and
may not perform well for other purposes.

We propose to apply ideas from Barlow Twins [23] to user sequence modeling. Although originally
proposed for computer vision, we demonstrate that with suitable data augmentation, our adaptation of
Barlow Twins can learn meaningful sequence-level representations useful for a variety of downstream
tasks. Moreover, it enjoys the same benefits as discussed in [23]: no need to use negative samples,
robust to small batch sizes, and naturally avoids trivial (constant) embeddings.

On sequence data, Barlow Twins has been applied to audio [1], but the augmentation is in the spectral
domain which does not apply to our problem. Thus, we view our adaptation of Barlow Twins to user
sequence data as an important technical contribution.

2 Barlow Twins for user sequence data

Figure 1 shows an illustration of Barlow Twins adapted to user sequence modeling. The input is a
sequence of user items with length `, denoted by u = (u1, . . . , u`) ∈ N`. Each ui is an integer-valued
identifier that uniquely represents a user’s action (e.g. a movie watched by the user). Then u is
passed through an item embedding layer E : N` 7→ Rde×`, which converts each integer ID into a
de-dimensional embedding vector. Then, a representation network R : Rde×` 7→ Rdr transforms
each sequence of embeddings into a sequence-level representation with dr dimensions. Finally, we lift
the sequence-level representation into higher dimensions using a projection network P : Rdr 7→ Rdp .
We denote the full model as BT := P ◦R ◦ E.

During training, for each batch of sequences U = [u1, . . . ,ub], we apply two independent augmenta-
tions and obtain two batches of augmented sequences U1,U2 (in our experiments, we use random
masking in which each item in the sequence is masked independently with probability p = 0.2).
Two augmented batches are passed through the same model BT and the output is subsequently
mean-centered along the batch dimension, denoted by Yi = [yi

1, . . . ,y
i
dp
], i = 1, 2. We minimize

the Barlow Twins loss,

LBT :=

dp∑
i=1

(1− Cii) + λ
∑
i6=j

C2ij , Cij :=
∑b

j=1 y
1
1,jy

1
2,j√∑b
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√∑b
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where C is the cross correlation matrix along the batch dimension, and λ is a hyperparameter that
balances the two terms. The loss enforces C to be close to an identical matrix, which guides the
model to learn statistically independent components.

3 Experiments

We evaluate the quality of representations learned by the self-supervised learning algorithm with the
MovieLens 1M, MovieLens 20M, and Yelp tips datasets. More specifically, we train a representation
model with each dataset and evaluate the representations on two different types of downstream tasks:
sequence-level classification tasks and next movie prediction. We only show part of the results for
MovieLens 1M in this section. More experiments on other datasets and tasks are in the appendix.

3.1 Setup

Dataset The Movielens 1M dataset contains about 1 million movie ratings created by 5839 users
over 3012 movies. Each movie is associated with a unique movie ID, the title, the year, and a list of
genres. Each user is labeled with gender, age group, and occupation. For training and evaluation, we
break down each user’s movie sequence into smaller sequences of length 16 which only contain movie
IDs, creating a training set with 800k sequences and a validation and test set with 100k sequences.

Pre-training We train a representation model on the training set with both the Barlow Twins model
and a dual encoder baseline. The item embedding (i.e., embedding for the movies) dimension is set
to 16. We vary the batch size over 128, 256, 512, and 1024. For the Barlow Twins model, we apply
random masking on each pair of input sequences where each item in the sequence is masked out
with probability 0.2. The representation network is a 2-layered 1D-CNN, where each layer has 16
convolution filters of size 3 followed by max pooling of size 3. The projection network is an MLP
where the size of the layers is [256, 256]. We set the trade-off parameter λ = 10.

The baseline dual encoder has a context and an item tower. The context tower uses the same item
embedding and representation network structure as the Barlow Twins model, followed by an MLP of
size [32,16]. The item tower is simply the item embedding layer that shares weights with that in the
context tower. During training, a batch of user sequence is passed through the context tower, and the
batch of ground truth next movie is passed through the item tower. The outputs of the two towers are
then used to compute the contrastive loss which is minimized during training.

Downstream evaluation We perform evaluation on a variety of downstream tasks. The input to
these tasks is a sequence of movies watched by a user.

Sequence-level classification: predict the most frequent movie genre in the sequence (Favorite
genre prediction, 18 genres) and occupation label (Occupation classification, 21 categories)

Next movie prediction (for Barlow Twins): predict the next movie.

For sequence classification, we take the pretrained Barlow Twins and dual encoder models up to
the sequence embedding and add a 2-layered MLP with 20 hidden units and the same number of
output units as the number of label categories in each task. The models are trained with either fixed
or trainable weights for the sequence representation layers. As a baseline, we train a model with the
same architecture from scratch. During training, 1%, or 100% of training data is used with batch size
of 64, and the model is validated on the full validation dataset. Note that with less than 10% training
data, the data used for training is (significantly) less than the validation/test dataset.

To evaluate the Barlow Twins model on the next movie prediction task, we initialize the item
embedding and representation network in a dual encoder model with Barlow Twins pretrained
weights. The model is trained on the full dataset with either trainable or fixed weights for sequence
embedding and is compared to the performance of the dual encoder.

3.2 Results

Sequence-level classification Table 1 shows the best validation accuracy for the sequence classi-
fication tasks trained with 1% training data. The item embedding dimension=16 and convolution
filters [32, 32]. Using Barlow Twins pretrained weights consistently outperforms other methods.
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Task SSL batch size BT trainable BT fixed DE trainable DE fixed Baseline

FG

128 0.8247 0.8405 0.7325 0.7133

0.7350256 0.8235 0.8462 0.7460 0.7077
512 0.8100 0.8402 0.7549 0.7072

1024 0.8222 0.8505 0.7405 0.7049

Occ

128 0.1534 0.1540 0.1384 0.1335

0.1407256 0.1430 0.1558 0.1324 0.1361
512 0.1563 0.1558 0.1345 0.1324

1024 0.1517 0.1548 0.1402 0.1330
Table 1: Best validation accuracy of different models after training on 1% training data.

Figure 2: Favorite genre prediction with 1% (left) and 100% (right) training data. The batch size for
SSL pretraining is 1024.

Interestingly, using fixed weights is generally preferred over trainable weights. We will argue in
Figure 2 that this is because using fixed weights prevents overfitting. More results are in the appendix.

We show the validation curves for favorite genre prediction on 1% and 100% training data in Figure 2.
With only 1% training data, models with trainable weights suffer from over-fitting, largely due to a
very small training set compared to the validation set. Training with fixed weights from the Barlow
twins model prevents over-fitting and yields the best and most stable performance. With 100%
training data, using fixed weights yields bad performance, and the final validation accuracy of Barlow
Twins and the baseline gradually converge. This is expected because with enough labeled data for
a task, directly training from scratch is sufficient. However, we observe that using Barlow Twins
weights, the accuracy curve converges much faster than the baseline, and consistently outperforms
the model with weights from pretrained dual encoder (the latter even underperforms the baseline with
fully trainable weights), which again demonstrates the advantage of Barlow Twins.

Next movie prediction In this experiment we use Barlow twins pretrained weights to build a
dual-encoder model and compare with the dual encoder model which is trained specifically for
this task. The error metric is top k recall where k = 1, 5, 10, which represents the percentage that
ground-truth movie is in the top k nearest movies in terms of cosine similarity. Figure 3 shows the
validation curves. Despite that the dual encoder model is trained specifically for the task, applying
Barlow Twins pretrained weights even slightly improves the performance. We observe that with the
pretrained weights fixed, the performance is significantly worse. This may be due to the fact that the
Barlow Twins loss directly optimizes sequence-level embeddings and only indirectly affects item
embeddings. More discussion is in Appendix C.

4 Conclusion

We explore applying self-supervised learning to learning general-purpose sequence-level represen-
tations in user modeling tasks. Our experiments show that Barlow Twins enjoys several practical
benefits: 1. Barlow Twins learns useful sequence-level representations that are versatile for various
downstream tasks; 2: it improves model performance and reduces overfitting with limited training
data for downstream tasks; 3. it facilitates training without hurting the performance when the down-
stream task has sufficient data. The disadvantage is that the method focuses more on sequence-level
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Figure 3: Top k validation recall for next movie prediction

representation rather than item-level representations, and therefore we may need to incorporate other
techniques to improve the quality of item embeddings.
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A Detailed Experiment Setup

We evaluate the self-supervised learning pipeline on three datasets: Movielens 1M, Movielens
20M [11], and Yelp. For each dataset, we first train a representation model, and then evaluate it on
different downstream tasks. The Barlow Twins model is compared to a dual encoder baseline solely
trained for next-item prediction.

A.1 Datasets

The Movielens 1M dataset contains about 1 million movie ratings created by 6040 users over 3952
movies. Each movie is associated with a unique movie ID, the title, the year, and a list of genres.
Each user is labeled with gender, age group, and occupation. The Movielens 20M dataset contains 20
million movie ratings over 27278 movies created by 138493 users. The Yelp dataset contains user
check-in and review data for 150346 businesses. We only use a small subset which contains 908915
tips made by 301758 users.

For training and evaluation, we break down each user’s activity history into smaller sequences of
length 16 which contain at least item IDs. Sequences with less than 16 items are padded with the
empty [mask] token. Users with less than 10 actions are omitted. Note that the sequences only
contain IDs and do not contain any other attributes of the items. The train-validation-test split is
80%-10%-10%. The dataset sizes are listed in Table 2

A.2 Pre-training

Models We train a representation model on the training set with both the Barlow Twins model and
a dual encoder baseline. The item embedding (i.e., embedding for the movies) dimension is set to 16.
We vary the batch sizes over 128, 256, 512, and 1024.

For the Barlow Twins model, the sequence representation network U is a 2-layered 1D-CNN, where
each layer has 32 convolution filters of size 3 followed by max pooling of size 3. The projection
network is an MLP where the size of the layers is [256, 256]. We set the trade-off parameter λ = 10.
For augmentation methods, we explored random masking with p = 0.2, 0.4, 0.6, 0.8, segment
masking with p = 0.2, and permutation.

The baseline dual encoder has a context and an item tower. The context tower uses the same item
embedding and representation network structure as the Barlow Twins model, followed by an MLP of
size [32,16]. The item tower is simply the item embedding layer that shares weights with that in the
context tower. During training, a batch of user sequence is passed through the context tower, and the
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MovieLens-1M MovieLens-20M Yelp tips
# Users 6040 138493 301758
# Items 3952 27278 150436

# Actions ∼ 106 ∼ 2× 107 908915
# Categories 18 18 1311

Train 795335 10776260 253317
Val and test 99417 1347032 28146

Table 2: Dataset statistics and the number of train/val/test sequences after preprocessing.

batch of ground truth next movie is passed through the item tower. The outputs of the two towers are
then used to compute the contrastive loss which is minimized during training.

Augmentation Methods In our experiments, we tested on three different augmentation: random
masking and segment masking.

1. Random masking (RM): each item in the sequence replaced with the mask token [mask]
independently with probability p ∈ (0, 1).

2. Segment masking (SM): randomly select a subsequence of length bp`c, p ∈ (0, 1) and
replace all items in the subsequence with the mask token [mask]

3. Permutation: the input sequence is permuted uniformly at random. This augmentation
method may be useful for position-invariant downstream tasks.

A.3 Downstream Evaluation

A.3.1 Tasks

we evaluate the quality of sequence representations on two types of tasks: sequence-level classification
tasks and next item prediction. For the former, the performance metric is prediction accuracy, and for
the latter, the metric is top k recall (or hit-ratio) where k = 1, 5, 10.

For MovieLens 1M, we can perform a variety of sequence-level classification tasks along with next
item prediction. For MovieLens 20M and Yelp, we only perform favorite genre/category and next
item prediction.

Sequence-level classification:

• Favorite category prediction: predict the most frequent movie category in the sequence
(18 genres in MovieLens-1M and 20M, 1000+ categories in Yelp)
• User classification (MovieLens-1M only): predict age group and occupation labels. There

are 7 age groups and 21 occupation categories.

Next item prediction: predict the next item given a user’s history interactions with items.

A.3.2 Model architecture and training setup

For sequence classification, we take the pretrained Barlow Twins and dual encoder models up to
the sequence embedding and add a 2-layered MLP with 20 hidden units and the same number of
output units as the number of label categories in each task. The models are trained with either fixed
or trainable weights for the sequence representation layers U . As a baseline, we train a model with
the same architecture (i.e. item embedding, 2-layered CNN, 2-layered MLP) from scratch.

During training, only a very small proportion of the training data is used with batch size of 64, and
the model is validated on the full validation dataset. We ise 1% for MovieLens-1M, 1%,0.1%,0.01%
for MovieLens-20M, and 5%,1% for Yelp tips. Note that with only 1% training data, the data used
for training is (significantly) less than the validation/test dataset.

To evaluate the Barlow Twins model on the next item prediction task, we initialize the item embedding
and representation network in a dual encoder model with Barlow Twins pretrained weights. The
model is trained on the full dataset with either trainable or fixed weights for sequence embedding and
is compared to the performance of the dual encoder.

8



Task SSL BS RM Train RM Fixed SM Train SM Fixed Per Train Per Fixed DE train DE fixed Baseline

FG

128 0.8247 0.8405 0.8474 0.861 0.7984 0.8002 0.7325 0.7133

0.7350256 0.8235 0.8462 0.8392 0.8511 0.7968 0.8003 0.7460 0.7077
512 0.8100 0.8402 0.8375 0.8465 0.7954 0.7949 0.7549 0.7072

1024 0.8222 0.8505 0.8485 0.8405 0.7844 0.7812 0.7405 0.7049

Occ

128 0.1534 0.154 0.1471 0.1548 0.1359 0.1523 0.1384 0.1355

0.1407256 0.1430 0.1558 0.1403 0.1558 0.1483 0.1557 0.1324 0.1361
512 0.1563 0.1558 0.1446 0.1535 0.1488 0.1533 0.1345 0.1324

1024 0.1517 0.1548 0.1508 0.154 0.1457 0.1556 0.1402 0.133

Age

128 0.4055 0.4015 0.4035 0.4004 0.4 0.4001 0.4017 0.397

0.3992256 0.4078 0.3998 0.4 0.4002 0.4023 0.4001 0.4034 0.397
512 0.4112 0.4017 0.4092 0.4004 0.4016 0.3975 0.4011 0.397

1024 0.403 0.3993 0.4079 0.4002 0.3996 0.3992 0.3973 0.397

Table 3: Best validation accuracy of different models after training on 1% training data on MovieLens-
1M. FG: favorite genre, Occ: occupation, SSL BS: SSL batch size, RM: random masking, SM:
segment masking, Per: permutation, DE: dual encoder, Train: trainable. The highest accuracy in each
row is in bold.

Task SSL BS R0.2 Train R0.2 Fixed R0.4 Train R0.4 Fixed R0.6 Train R0.6 Fixed R0.8 Train R0.8 Fixed

FG

128 0.8247 0.8405 0.8047 0.8135 0.799 0.7366 0.7653 0.7411
256 0.8235 0.8462 0.8163 0.7989 0.7766 0.7604 0.7612 0.6694
512 0.8100 0.8402 0.8062 0.7953 0.7742 0.7328 0.7503 0.6747
1024 0.8222 0.8505 0.7994 0.7928 0.7735 0.7236 0.7768 0.6591

Occ

128 0.1534 0.154 0.1389 0.1523 0.145 0.1515 0.1464 0.1411
256 0.1430 0.1558 0.1462 0.1505 0.1406 0.1491 0.1348 0.1434
512 0.1563 0.1558 0.1391 0.1516 0.134 0.15 0.1426 0.1408
1024 0.1517 0.1548 0.1522 0.1544 0.1402 0.1481 0.138 0.1401

Age

128 0.4055 0.4015 0.4026 0.3974 0.4001 0.3999 0.4089 0.3978
256 0.4078 0.3998 0.402 0.3989 0.403 0.3979 0.3975 0.3973
512 0.4112 0.4017 0.4086 0.3978 0.4106 0.3989 0.4083 0.3973
1024 0.403 0.3993 0.413 0.3995 0.4078 0.3977 0.4026 0.3973

Table 4: Best validation accuracy of random masking with different masking ratios after training on
1% training data on MovieLens 1M. R0.2, R0.4, R0.6, and R0.8 refer to the masking ratios of 0.2,
0.4, 0.6, and 0.8, respectively.

B Results

B.1 Sequence-level Classification

Table 3 and shows the best validation accuracy for the sequence classification tasks trained with 1%
training data on MovieLens 1M. The item embedding dimension=16 and convolution filters [32, 32].

We observe that the best performing model for all tasks uses weights from Barlow Twins. For favorite
genre and occupation, using Barlow Twins pretrained weights consistently outperforms the baseline
methods (dual encoder fixed/trainable, baseline from scratch) by a large margin. Interestingly, using
fixed weights is generally preferred over trainable weights. We will argue in Figure 5 that this is
because using fixed weights prevents overfitting with extremely limited labeled training data.

For age classification, the advantage of Barlow Twins is less significant compared to the other two
classification tasks, and we do not observe that Barlow Twins with fixed weights outperforms the
fully trainable counterpart. However, models using Barlow Twins weights generally outperforms the
baseline and their dual encoder counterpart (i.e., BT trainable > DE trainable, and BT fixed > DE
fixed).

BS
Training Data Ratio

0.01 0.001 0.0001
Baseline RM Train RM Fixed Baseline RM Train RM Fixed Baseline RM Train RM Fixed

128

0.812

0.817 0.714

0.6447

0.7207 0.7059

0.4871

0.5765 0.662
256 0.8172 0.6986 0.7165 0.6903 0.5841 0.6532
512 0.8203 0.6973 0.7085 0.6923 0.5587 0.6504
1024 0.8195 0.6807 0.7068 0.6713 0.571 0.6304

Table 5: Best validation accuracy for favorite genre prediction on MovieLens-20M. Segment masking
and permutation have similar performance to random masking.

9



Figure 4: Validation recall (hit-ratio) for next movie prediction on MovieLens-1M. Barlow Twins/dual-
encoder batch size=128. Three types of augmentations for Barlow Twins. Top to bottom: top 1, 5,
10 recall. Left to Right: random masking+ fixed weight, random masking + trainable weight, all
augmentations + fixed weight, all augmentations + trainable weight.

On the contrary, models using representations from the dual encoder sometimes even under-performs
the baseline with fully trainable weights, suggesting that dual encoder representation transfers poorly
to other tasks.

Favorite category results for MovieLens-20M and Yelp tips dataset are reported in Table 5 and 6. For
random masking we only report p = 0.2 which achieves the best result among all mask ratios for all
classification tasks on MovieLens-1M. Similar to MovieLens-1M, using Barlow Twins weights is
preferred over training from scratch. We vary the percentage of training data and discover that as the
training data size decrease, using fixed weights becomes more advantageous.

B.2 Next Item Prediction

In this experiment we use Barlow twins pretrained weights to build a dual-encoder model and compare
with the dual encoder model which is trained specifically for this task. The error metric is top k recall
where k = 1, 5, 10, which represents the percentage that ground-truth movie is in the top k nearest
movies in terms of cosine similarity.

For MovieLens-1M, Figure 4 shows the validation curves using different augmentations for Barlow
Twins. The plots reported use a batch size of 128. Despite that the dual encoder model is trained
specifically for the task, applying Barlow Twins pretrained weights can further improve the perfor-
mance with trainable weights. Remarkably, with segment masking at p = 0.2, even using fixed
weights (i.e., just training a very small MLP head in the context tower) can beat the dual encoder
baseline.

We report the top-5 and 10 recalls for MovieLens-20M and Yelp tips dataset in Table 7. We omitted
top-1 recall because these two datasets have a very large number of items as shown in Table 2. Thus
precisely identifying the exact next item becomes a formidable task. Despite no longer observing the
miracle that Barlow Twins with fixed weights outperform the baseline, we still observe significant
improvement over dual encoders for models pretrained using Barlow Twins with fully trainable
weights .

C Discussion

C.1 Effect of Different Augmentation Methods

We only discuss the results with fixed weights as it directly implies the quality of the learned
representations.
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BS
Training Data Ratio

0.01 0.05
Baseline RM T RM F Baseline RM T RM F

128
0.2082

0.208 0.2113
0.4061

0.4468 0.2193
256 0.2081 0.2177 0.4536 0.2237
512 0.217 0.2142 0.4438 0.2241

Table 6: Best validation accuracy for favorite category prediction on Yelp dataset. RM T: random
masking trainable, RM F: random masking fixed. Segment masking and permutation have similar
performance to random masking.

Dataset Metric SSL BS RM Train RM Fixed SM Train SM Fixed Per Train Per Fixed DE (baseline)

MovieLens 20M

Top-5

128 0.0291 0.0183 0.0301 0.0218 0.0291 0.0183

0.0265256 0.0264 0.0148 0.0301 0.0232 0.0264 0.0148
512 0.0292 0.0134 0.0303 0.0191 0.0292 0.0134

1024 0.0294 0.0132 0.0298 0.021 0.0294 0.0132

Top-10

128 0.0544 0.0352 0.0557 0.0404 0.0544 0.0352

0.0503256 0.0505 0.0276 0.0562 0.0432 0.0505 0.0276
512 0.0554 0.0268 0.0555 0.0372 0.0554 0.0268

1024 0.0548 0.0259 0.0548 0.0395 0.0548 0.0259

Yelp

Top-5

128 0.0753 0.0483 0.0756 0.0608 0.0639 0.0309

0.0578256 0.0751 0.0483 0.0737 0.066 0.0605 0.0388
512 0.0768 0.0512 0.0751 0.0577 0.068 0.0505

1024 0.0709 0.0458 0.0709 0.0492 0.0619 0.048

Top-10

128 0.0935 0.07 0.0954 0.0847 0.0817 0.0492

0.0717256 0.0931 0.0669 0.0931 0.0899 0.0776 0.0601
512 0.0966 0.0672 0.0939 0.076 0.0867 0.0708

1024 0.0889 0.0577 0.0891 0.0616 0.0795 0.0647

Table 7: Best validation top-5 and top-10 recall (HR) of next item prediction task on MovieLens
20M and Yelp datasets. SSL BS: SSL batch size, RM: random masking, SM: segment masking, Per:
permutation, DE: dual encoder, Train: trainable. The highest accuracy in each row is in bold.

For random masking, high masking ratio (p = 0.6, 0.8) leads to poor performance as shown in
the first column of Figure 4. We argue that when the ratio is too high, a lot of information in the
sequence is discarded and thus it is hard to learn useful representations. p = 0.2 and p = 0.4 achieves
decent performance for sequence-level classification tasks. However, for next item prediction, the
performance is worse than the dual encoder baseline.

Segment masking at p = 0.2 is overall the best augmentation method, and is the only method that
outperforms dual encoder baseline in next movie prediction. Interestingly, it outperforms random
masking with the same mask ratio. We hypothesize that recovering a consecutive sub-sequence is
more helpful for learning higher-level information about the user than recovering random isolated
points in the sequence, as the former requires deeper understanding of user behaviors (e.g., user
intention, habits, preferences), while the latter could be easily done by inferring from neighboring
tokens.

Permutation is generally not preferred, even on permutation-invariant tasks like favorite genre
prediction. A possible reason is that permutation breaks the temporal dependency in the sequence,
which is crucial in understanding user behaviors.

C.2 Effect of SSL on the Training Process of Downstream Tasks

We show the validation curves on MovieLens 1M for favorite genre prediction on 1% and 100%
training data in Figure 5. With only 1% training data, there are only less than 8k sequences for
training while the validation set is more than 10 times as large. In this extreme but practically relevant
setting, models with trainable weights suffer from over-fitting. This is further confirmed in Table 8
which shows the validation accuracy at the final step of training. Observe that using fixed weights
from Barlow Twins consistently achieves the best final performance while only suffering very modest
performance drop compared to the best validation accuracy. Thus we can conclude that training with
fixed weights from the Barlow twins model prevents over-fitting when training on limited labeled
data and yields the best and most stable performance.
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Task SSL batch size BT trainable BT fixed DE trainable DE fixed Baseline

FG

128 0.7885 0.8394 0.7314 0.7122

0.7223256 0.7936 0.8451 0.7461 0.7041
512 0.7894 0.8385 0.7528 0.7027

1024 0.8028 0.8494 0.7402 0.6971

Occ

128 0.1317 0.1522 0.1258 0.1296

0.1293256 0.1308 0.1535 0.1266 0.1356
512 0.1313 0.1523 0.1199 0.1275

1024 0.1307 0.1515 0.1282 0.1298

Table 8: Final validation accuracy of sequence-level classification for different models with 1%
training data on MovieLens-1M.

With 100% training data, using fixed weights yields bad performance, and the final validation
accuracy of Barlow Twins and the baseline gradually converge. This is expected because with enough
labeled data for a task, directly training from scratch is sufficient. However, we observe that using
Barlow Twins weights, the accuracy curve converges much faster than the baseline, and consistently
outperforms the model with weights from pretrained dual encoder (the latter even underperforms the
baseline with fully trainable weights), which again demonstrates the advantage of Barlow Twins.

Figure 5: Favorite genre prediction with 1% (left) and 100% (right) training data. The batch size for
SSL pretraining is 1024.

On next item prediction, we also observe that SSL pretraining can help reduce overfitting. The fact
is most evident in the last column of Figure 4, where the accuracy of dual encoder gradually drops,
while the performance of SSL-pretrained models remains steady and even slightly increases.

C.3 Effect of SSL Batch Size

From Tables 3 to 8 we can see that small batch sizes have no significant adverse effect on both types
of downstream tasks. In rare cases, smaller batch size even has higher performance than large batch
size (e.g. Table 3 FG, SM fixed; Table 7 Yelp dataset, SM Train). These results echo the findings
in the original Barlow Twins paper [23]. In practice, training with smaller batch size requires less
computational resource and increases convergence speed.

C.4 Item Embedding Visualization

To qualitatively evaluate the item embeddings, we draw the t-SNE plots (Figure 6) of the movie
embeddings from three different genres (romance, horror, sci-fi) obtained from dual encoder and
Barlow Twins with p = 0.2 random masking and segment masking trained on MovieLens-1M dataset.
Intuitively, these three genres are drastically different and a good item embedding should be able to
separate them into clusters. We can see that the three genres are well separated for the dual encoder,
but poorly separated for Barlow twins.

We speculate that the reason for poor item embeddings of Barlow Twins is that the item embedding
layers receive insufficient training signals from Barlow Twins loss, which is only applied at the very
end of the model. On the other hand, the item embeddings receives direct signal in the item tower
when minimizing the contrastive loss.
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Figure 6: t-SNE plots of movie embeddings from 3 movie genres. Left: dual encoder. Middle:
Barlow Twins with random masking. Right: Barlow Twins with segment masking.

We believe that the quality of sequence-level representations can be further improved with better
item embeddings. Possible methods to improve item embeddings include reconstructing the masked
actions similar to BERT [8] and training Barlow Twins in conjunction with next item prediction
objective as was done in several previous works [21, 7, 20].
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