
BarcodeBERT: Transformers for Biodiversity Analysis

Pablo Millan Arias1∗, Niousha Sadjadi1∗, Monireh Safari1∗, ZeMing Gong3†,
Austin T. Wang3†, Scott C. Lowe4,7, Joakim Bruslund Haurum6, Iuliia Zarubiieva2,4,

Dirk Steinke2, Lila Kari1, Angel X. Chang3,5, Graham W. Taylor2,4‡
1University of Waterloo, 2University of Guelph, 3Simon Fraser University,
4Vector Institute for AI, 5Alberta Machine Intelligence Institute (Amii),
6Aalborg University and Pioneer Centre for AI, 7Dalhousie University

Abstract

Understanding biodiversity is a global challenge, in which DNA barcodes—short
snippets of DNA that cluster by species—play a pivotal role. In particular, inverte-
brates, a highly diverse and under-explored group, pose unique taxonomic com-
plexities. We explore machine learning approaches, comparing supervised CNNs,
fine-tuned foundation models, and a DNA barcode-specific masking strategy across
datasets of varying complexity. While simpler datasets and tasks favor supervised
CNNs or fine-tuned transformers, challenging species-level identification demands
a paradigm shift towards self-supervised pretraining. We propose BarcodeBERT,
the first self-supervised method for general biodiversity analysis, leveraging a
1.5 M invertebrate DNA barcode reference library. This work highlights how
dataset specifics and coverage impact model selection, and underscores the role
of self-supervised pretraining in achieving high-accuracy DNA barcode-based
identification at the species and genus level. Indeed, without the fine-tuning step,
BarcodeBERT pretrained on a large DNA barcode dataset outperforms DNABERT
and DNABERT-2 on multiple downstream classification tasks. The code repository
is available at https://github.com/Kari-Genomics-Lab/BarcodeBERT

1 Introduction

The task of estimating and understanding the biodiversity of our planet remains a monumental
challenge, as traditional methods of taxonomic analysis often struggle to keep pace with the discovery
and identification of new species. In this context, a 658 base pair long fragment of the Cytochrome c
Oxidase Subunit I (COI) gene [13], commonly called the DNA barcode for animals [11], has emerged
as a fundamental tool in biodiversity analysis [9] as it can be used to address the challenges related to
the large number of unidentified species and the general complexities of taxonomic identification.

Among the numerous taxonomic groups on our planet to which DNA barcoding is applicable, in-
vertebrates, in particular arthropods, stand out as an incredibly diverse and taxonomically complex
group [4], where multiple new species are described every day. As a result, the pursuit of effective
algorithmic approaches to decipher and understand their taxonomy has become a primary goal in
the utilization of barcodes for broader species- and genus-level identification, with previous method-
ologies yielding promising results in related tasks [15, 1]. Furthermore, the adoption of machine
learning (ML) has gained traction, given the classification-oriented nature of these tasks. Recent
studies [2] propose a Bayesian framework based on convolutional neural networks (CNN) which,
when combined with visual information, achieves high accuracies in species-level identification of
seen species and genus-level inference of novel species in a dataset of ∼32,000 insect DNA barcodes.
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Transformer-based models [17] have revolutionized various ML tasks, even those typically dominated
by convolutional neural networks (CNNs) [16, 6]. These models, known for their ability to capture
complex patterns in sets and sequences, have found applications across diverse domains thanks to
their effectiveness in learning from large unlabelled datasets [5, 16]. Transformers pretrained with
self-supervised learning (SSL) at scale, a.k.a. foundation models, are often task-agnostic and expected
to perform well after fine-tuning for various downstream tasks. Yet, their application for taxonomic
identification using DNA barcodes has not been extensively explored. Foundation models for DNA
primarily target human sequences [12, 18, 7], which intuitively makes them unsuitable for barcode
data. In response, this paper delves into the intersection of genomics, ML, and biodiversity, aiming to
unlock the potential of transformer-based architectures for species-level identification of insects.

We propose BarcodeBERT, a self-supervised method using DNA barcodes for general biodiversity
analysis. BarcodeBERT leverages a reference library containing 1.5 M invertebrate barcodes [8] for
the training of a masked language model (MLM) that is effective in learning meaningful embeddings
of the data and that can be used for successful species-level classification of DNA barcodes of
insects in general scenarios. In our evaluations, BarcodeBERT is compared against recent DNA-
based foundation models [18] and a CNN baseline, all trained/fine-tuned on a medium-size dataset
comprising DNA barcodes from 1,390 species. While all models excelled on the DNA barcode-based
species-level identification task, the results for the challenging task of zero-shot learning of images
with barcodes as side-information evidenced the superiority, for general biodiversity analysis, of
transformer models pretrained on domain-specific datasets.

The main contributions of this paper are: (1) Introducing BarcodeBERT, a pioneering self-supervised
method employing DNA barcodes for biodiversity analysis through transformer-based models; (2)
An in-depth comparison across several taxonomic classification tasks between BarcodeBERT, an
earlier successful CNN baseline, and two fine-tuned foundation models pretrained on human DNA
(DNABERT) and multi-species DNA (DNABERT-2); (3) A pipeline demonstrating how transformer-
based DNA barcode encoders facilitate zero-shot classification of insect images. Unlike prior
work [1] that utilized DNABERT for DNA barcode feature extraction, our strategy emphasizes that
direct masked pretraining on barcodes can bridge the performance gap between supervised and
semi-supervised training paradigms.

2 Methods

This section presents an account of the data processing pipeline, including the steps taken to curate
the dataset from the reference library, and a description of the used architectures and metaparameters.
In addition, it describes the evaluation framework and the downstream tasks used for testing.

2.1 Dataset

The primary source of data for this study is the reference library for Canadian invertebrates [8],
containing 1.5 M DNA samples, which was collated from the Barcode of Life Database (BOLD) [14].

Data Preprocessing. To ensure data integrity and consistency, we performed a series of preprocessing
steps over this dataset. First, empty entries were removed and IUPAC Ambiguity Codes (non-
ACGT symbols), including alignment gaps, were uniformly replaced with the symbol N. Duplicated
sequences, even with different identifiers, were removed to avoid redundancy and increase the
complexity of the training and pretraining tasks. Sequences with trailing N’s were truncated. Finally,
sequences falling below 200 base pairs or exhibiting over 50% N content were excluded.

Data Split. After preprocessing, 974,057 sequences were obtained. The dataset was divided into three
subsets for various evaluation purposes: (i) Fine-Tuning subset: This dataset was curated to assess
the model’s efficacy in classifying known species. It consists of 67,267 barcodes from 1,653 species
representing 500 different genera. Each genus is represented by at least 20 barcodes and at most 50
barcodes. This subset was further divided into training (70%), testing (20%), and validation (10%)
splits. (ii) Unseen evaluation subset: This dataset was created to simulate the real-world scenario of
encountering previously unknown species. We sampled a maximum of 20 barcodes from each of
the 500 representative genera present in the Fine-Tuning subset, for genus-level identification. This
subset comprises 4,278 sequences from 1,826 “rare” species, all of which are absent from the training
data and have fewer than 20 barcodes in total in the reference dataset. (iii) Unsupervised pretraining
subset: The remaining barcodes, including sequences with incomplete taxonomic annotations at
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Table 1: Classification accuracy of DNA barcode models under different SSL evaluation strategies.
Some models supported variable stride length; for these we show results at several k-mer lengths.

Species-level acc (%) Genus-level acc (%)
of seen species of unseen species

Model Fine-tuned Linear-probe 1-NN probe

CNN baseline 98.2 51.8 47.0
DNABERT-2 98.3 87.2 40.9

k-mer length k=4 k=5 k=6 k=4 k=5 k=6 k=4 k=5 k=6

DNABERT 96.3 96.9 97.4 47.1 38.4 41.2 38.2 41.6 48.5
BarcodeBERT (ours) 97.6 97.0 98.1 93.0 88.6 84.0 49.0 58.4 57.6

various levels, were used. We excluded all sequences belonging to the species present in Unseen.
Finally, to benchmark against prior work, we also utilized the INSECT dataset as introduced in [1].

2.2 Network Architectures

CNN baseline. Adapted from [1], it comprises three convolutional layers, each followed by batch
normalization and max-pooling. The output of the third convolutional layer is flattened, batch
normalized, and connected to a linear layer with 500 units that are then connected to the output layer.

Foundation models. Our comparison includes two pretrained foundation models based on the
Bidirectional Encoder Representations from Transformers model (BERT). These are capable of
converting sequence inputs into embedding vectors and they can be further trained using self-
supervised and/or supervised objectives. Within this transformer-based architecture, multi-head
attention units play a vital role in capturing relations among input sequences at various scales,
encompassing both small-scale and large-scale interactions. The first model, DNABERT, captures
global and transferable genomic understanding by leveraging nucleotide contexts using an overlapping
k-mer window for tokenization. The model is highly accurate at predicting splicing and transcriptor
factor binding sites. The second, DNABERT-2, pioneers the use of Byte-Pair Encoding (BPE) in this
domain and overcomes inefficiencies in genomic tokenization through non-overlapping k-mers.

BarcodeBERT. Inspired by the BERT architecture, BarcodeBERT features 12 attention heads, 12
layers, and a maximum sequence length of 512. After DNA barcodes are segmented into non-
overlapping k-mers, BarcodeBERT encodes the sequence of k-mers into a sequence of d-dimensional
vectors (d=768). Since our primary objective is to generate an embedding vector that encapsulates
information across the entire DNA barcode, following a self-supervised training phase, we merge
these d-dimensional vectors for each DNA sequence to create a comprehensive vector representation
for the entire sequence using global average pooling. During training, we focused exclusively
on masked token prediction, masking 50% of the input tokens and performed experiments across
different k-mer lengths (4 ≤ k ≤ 6) to observe the impact of k-mer length on embedding quality.

3 Experiments

To explore the transformer architecture applicability for DNA barcode-based biodiversity analyses, we
employ various SSL evaluation strategies [3], comparing their performance to a supervised baseline.

3.1 Taxonomic classification of DNA barcodes

Methodology. We first perform task-specific fine-tuning, i.e., we fine-tune the models on the
supervised training dataset and assess their performance at species-level classification. Second, we
gauge the influence of pretraining on DNA barcodes by using the models as feature extractors. We
first implement genus-level 1-NN probing on sequences from unseen species, providing insights into
the models’ ability to generalize to new taxonomic groups. Additionally, we perform species-level
classification using a linear classifier trained on embeddings from the pretrained models. Similar to
training, we tokenize DNA barcodes into non-overlapping k-mers and feed the sequence of tokens
into the model. We average over the k-mer outputs to generate an overall embedding for the barcode.
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Table 2: Evaluation of DNA barcode models in a Bayesian zero-shot learning task on the INSECT
dataset. The pretraining and fine-tuning data source is indicated by the respective DNA type and ‘–’
signifies the absence of training of that type. We also indicate the most specific taxon subset. For the
baseline CNN encoder, we report the original paper result (left) and reproduced result (right).

Data sources Species-level acc (%)

Model SSL pretraining Fine-tuning Seen Unseen Harmonic Mean

CNN encoder – Insect 38.3 / 39.4 20.8 / 18.9 27.0 / 25.5
DNABERT Human – 35.0 10.3 16.0
DNABERT Human Insect 39.8 10.4 16.5
DNABERT-2 Multi-species – 36.2 10.4 16.2
DNABERT-2 Multi-species Insect 30.8 8.6 13.4

BarcodeBERT (ours) Arthropod – 38.4 16.5 23.1
BarcodeBERT (ours) Arthropod Insect 37.3 20.8 26.7

Results. As detailed in Table 1, fine-tuning revealed no significant performance gap, with DNABERT-
2 marginally outperforming all other models. In the genus-level 1-NN probing task, both Barcode-
BERT and DNABERT-2 outperformed the baseline, with DNABERT-2 performing less competitively.
Linear probing, however, favored our pretrained models and DNABERT-2 over the baseline and
DNABERT. It is noteworthy that both BarcodeBERT and DNABERT-2 outperformed DNABERT in
two out of three tasks. This likely stems from the non-overlapping tokenization approach and the
fact that DNABERT-2 was not exclusively pretrained on human data. Although the baseline model
performed well, the transformer-based models demonstrate their potential to contribute significantly
to the field of DNA barcode analysis.

3.2 Bayesian zero-shot learning of images with DNA as side information

Methodology. Following [1], we evaluate BarcodeBERT’s performance in the context of Bayesian
zero-shot learning (BZSL) on the INSECT dataset for species claneen species using the K-nearest
seen classes in the DNA feature space, with local priors defined by image features. We evaluate use
of the DNA feature embeddings directly from the pretrained BERT models as well as after fine-tuning
the models on the species classification task on the INSECT dataset. We utilize image features
from the INSECT dataset [1], pre-extracted using ResNet-101 [10], to ensure that our results can be
compared effectively to the baseline supervised CNN used in [1]. We tokenize the barcode data using
overlapping k-mers for DNABERT, with k = 6 and the BPE tokenizer for DNABERT-2. We did not
align barcodes as in [1], as we found that it did not significantly affect the results. For each model, we
perform a grid search over the same hyperparameter space used by [1] for the Bayesian model. The
accuracy for seen and unseen test species, as well as the harmonic mean, are presented in Table 2.

Results. Even without fine-tuning, BarcodeBERT substantially outperforms DNABERT and
DNABERT-2 on unseen species, regardless of whether they had been fine-tuned previously or
not. BarcodeBERT achieves similar performance to the reported baseline CNN results [1] and
improves on the harmonic mean score by 1.2% and unseen accuracy by 1.9%, respectively. We thus
find that in the zero-shot learning task of predicting insect species, employing BERT-like models that
have also been pretrained on insect DNA barcodes as DNA encoders can improve performance.

4 Conclusions

Our research shows that pretraining masked language models on DNA barcode data, as demonstrated
by BarcodeBERT, is both effective and essential for arthropod species identification. This underscores
the need to diversify datasets beyond human DNA sequences, to advance the field of biodiversity
science. While we have made strides in improving the classification of arthropod species from both
DNA sequences and images, our findings point to a wealth of untapped data, e.g., the BOLD dataset,
currently comprising 14 million DNA barcodes, continuously augmented by data from previously
seen or unseen species. Future work includes further investigation of such DNA barcode data, to
develop more robust and scalable self-supervised models for taxonomic classification.
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A Appendix

Details about dataset distribution, training, and optimization are provided in this section.

A.1 Dataset Distribution

We designed a data split that mirrored real-life conditions, with a trade-off between dataset size,
challenging scenarios and suitability for evaluation purposes. The Fine-tuning and Unseen subsets
contain data from 500 representative genera, sampled according to the original dataset distribution,
resulting in 500 genera from the class Insecta. Figure A.1 displays the distribution of the most
relevant orders present in each dataset. It is important to note that the inclusion of more "rare" species
is evidenced in the increased percentage of "other" orders in the Unseen dataset with respect to the
Fine-Tuning dataset. Table A.1 displays the distribution of sequences obtained from the reference
library for Canadian invertebrate [8]. These sequences were used for pretraining of our models
following the preprocessing step. The dataset contains 14,794 unique species, with the majority
classified under the Arthropoda phylum. Note that several sequences with incomplete taxonomy were
included in this dataset.

Diptera

50.6%

Lepidoptera17.1%

Hymenoptera

11.7%

Coleoptera

8.6%

Hemiptera

7.6%Other

4.4%

Order Distribution: Fine-tuning Dataset

Diptera
35.3%

Lepidoptera

20.3%

Hymenoptera15.5%

Coleoptera

12.8%

Hemiptera

10.1%Other

6.0%

Order Distribution: Unseen Dataset

Figure A.1: Distribution of orders in the Fine-tuning (left) and unseen (right) datasets.

Table A.1: The distribution of barcode sequences used in the pre-training phase.

Phylum name # ID # BIN # Class # Order # Family # Genus # Species # Sequences

Annelida 2102 516 2 16 48 150 329 2102
Arthropoda 888934 61328 14 67 929 6211 13991 888934
Brachiopoda 20 2 1 2 2 2 2 20
Bryozoa 5 4 3 3 3 2 2 5
Chordata 289 102 5 18 37 67 89 289
Cnidaria 112 46 4 10 24 25 24 112
Echinodermata 276 79 5 17 26 43 74 276
Hemichordata 4 2 1 1 1 2 1 4
Mollusca 1912 372 6 30 97 162 271 1912
Nematoda 24 8 2 5 10 5 2 24
Nemertea 56 22 3 2 5 5 5 56
Platyhelminthes 1 1 0 0 0 0 0 1
Porifera 7 5 1 3 4 4 3 7
Priapulida 1 1 1 1 1 1 1 1
Tardigrada 1 1 1 1 1 0 0 1
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A.2 Training and Optimization

Pretraining. As previously mentioned, our method entails the segmentation of each DNA barcode
into a series of non-overlapping k-mers. The standard DNA alphabet comprises the nucleotides A,
C, G, and T. However, note that certain DNA barcodes may incorporate other symbols, such as N’s
or alignment gaps ‘-’ within their sequences, denoting ambiguity. Our vocabulary encompasses all
possible combinations of k-length strings derived from the nucleotide alphabet, supplemented by
two special tokens: <MASK> and <UNK>. The <MASK> token is utilized for masking k-mers during the
training phase, and k-mers containing any symbol that is not present in the nucleotide alphabet, are
assigned the <UNK> token. Consequently, the total vocabulary size is determined by the expression
4k + 2.

We implement BarcodeBERT using the Hugging Face Transformers library and PyTorch. During
training, we focused exclusively on masked token prediction, masking 50% of the input tokens and
optimizing the network with a cross-entropy loss. We utilize the AdamW optimizer and incorporate a
linear scheduler with an initial learning rate of 10−4 during the optimization process. Additionally,
we performed experiments across different k-mer lengths (4 ≤ k ≤ 6) to observe the impact of k-mer
length on embedding quality.

The network is trained for 40 epochs with a batch size of 16. Figure A.2 displays the pretraining loss
over the course of these 40 epochs. The loss behavior demonstrates convergence, regardless of the
k-mer length.
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Figure A.2: Mask prediction loss over 40 epochs of training for different k-mer lengths.

Linear-Probing. As outlined in the experimental section, one of the evaluation methodologies
involves the utilization of linear probing. For this purpose, a linear classifier is applied to the
embeddings generated by pretrained models for species-level classification. The linear classifier
is a simple linear perceptron model implemented using the Scikit-learn library in Python. This
evaluation procedure is conducted across a range of models, including the base model, which is
the Convolutional Neural Network (CNN), as well as two foundational models, DNABERT and
DNABERT-2, and BarcodeBERT for different k-mers values (4 ≤ k ≤ 6).

A.3 Zero-shot Learning

The INSECT dataset [1] consists of 21,212 total images across 1,213 unique insect species, with
images and associated DNA barcodes from the Barcode of Life dataset [14]. The species are
distributed among three orders—Diptera, Coleoptera, and Hymenoptera—with the most species
coming from Coleoptera. We use the same splits as in [1] for fine-tuning and evaluation, where 10%
of the species are set aside as unseen classes for the test set, and 10% of the remaining species are
used as unseen classes for the validation set. The remaining seen species are split 80/20% for training
and testing, ensuring in all cases that no instance of a given insect is assigned to multiple splits.
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We use the same image features from [1], extracted from a base ResNet-101 model pretrained on
ImageNet using images resampled to 256× 256 and center-cropped.

Fine-tuning with supervised learning. BarcodeBERT was fine-tuned for 12 epochs with a batch
size of 32 and learning rate of 5× 10−3, using the SGD optimizer and step learning rate scheduler of
0.5 decay per 3 epochs. Cross entropy was used for the loss function. The classifier consisted of two
linear layers with a tanh activation and dropout of 0.2. For tokenization, we used non-overlapping
6-mers, as with the pretrained model. A similar training setup was used for DNABERT but with
overlapping 6-mers with as the tokenizer.

DNABERT-2 [18] was fine-tuned for 20 epochs using the released DNABERT-2 fine-tuning code and
defaults, with a learning rate of 3× 10−5 and batch size of 32. AdamW was used as the optimizer,
and a warmup learning rate scheduler was used during training. Tokenization was performed using
the BPE method described in [18], with a maximum length of 265 tokens to approximately allow it
to encode the entire barcode sequence. Surprisingly, we found that fine-tuning DNABERT-2 in all
variations of our experiments ended up decreasing performance on the test set rather than improving
it, unlike for BarcodeBERT and DNABERT. All fine-tuned models achieved similar accuracy—over
95%—on the supervised task.

Bayesian model tuning. For each model, before and after fine-tuning, PCA was applied to the image
features, reducing the dimensionality of the embeddings down to 500 before passing it to the Bayesian
model. We applied a metaparameter grid search to find the optimal parameters for the Bayesian
model. The metaparameters were as follows: the scaling constant (k0) for the dispersion of centers
of metaclasses around a global mean; the scaling constant (k1) for the dispersion of actual class
means around the corresponding metaclass means; the dimension (m) of the Wishart distribution
for sampling covariance matrices of metaclasses; a scalar (s) for the mean of class covariances; and
the number of nearest-seen classes (K) to use in defining the PPD. Following [1], our grid search
space was over k0 = [0.1, 1], k1 = [10, 25], m = [2500, 12500, 50000, 250000], s = [1, 5, 10], and
K = [1, 2, 3]. The best hyperparameters were selected on a validation partition.
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