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Abstract

A common phenomenon in self-supervised learning is dimensional collapse (also
known as rank degeneration), where the learned embeddings are mapped to a low
dimensional subspace of the embedding space. Despite employing mechanisms
to prevent dimensional collapse, previous self-supervised approaches have not
succeeded in completely alleviating the problem. We propose WERank, a new
regularizer on the weight parameters of the neural network encoder to prevent rank
degeneration. Our regularization term can be applied on top of any existing self-
supervised method without significant computational cost. We provide empirical
and mathematical evidence to demonstrate the effectiveness of WERank in avoiding
dimensional collapse.

1 Introduction

The goal of Self-Supervised Learning (SSL) methods is to learn useful representations of data
without relying on human annotations. Recent advances in SSL have shown that it is possible to
learn self-supervised representations that are competitive with supervised labels in a variety of
settings including visual and graph domains [1, 8, 5, 3, 14, 6, 4]. SSL methods enforce the model to
learn similar representations for semantically similar inputs. However, simply enforcing similarity
between similar points will result to the model trivially learning to output a single embedding vector
for every input. This phenomena, namely complete collapse, is undesirable since it will provide
no gradients for learning and the representations offer no information for the downstream task.
Complete collapse is commonly avoided using contrastive losses, regularization techniques, or
architectural tricks [4, 8, 5, 3, 14, 6]. Though complete collapse can easily be prevented, it is still
common for SSL learned representations to map to a low dimensional subspace of the representation
space. Avoiding this kind of dimensional/partial collapse has remained a challenging problem across
different SSL approaches [2, 7]. Dimensional collapse is linked with strong correlations between
axes, which results in relatively uninformative embeddings [10]. In simple terms, it is desirable to
take full advantage of the embedding space to represent more information. Learning dimensionally
collapsed, or rank-deficient representations has shown to be a bottleneck in SSL models achieving
high performance on downstream tasks [2, 7].

In contrastive methods which employ positive and negative pairs in the loss function, it seems
intuitive that the repulsive effect of negative samples prevents rank degradation and encourages full
use of all dimensions. Contrary to this intuition, contrastive methods still suffer from dimensional
collapse, particularly in the presence of strong augmentations or an over-parameterized encoder
[11]. Distillation methods such as BYOL [8], SimSiam [5] employ architectural tricks inspired by
knowledge distillation [9] to prevent collapse. While the dynamics of the alignment of eigenspaces
between the predictor and its input correlation matrix plays a role in preventing collapse, distillation
methods have no explicit mechanism to avert dimensional collapse and are thus prone to rank
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degradation [13]. Finally, information maximization methods add an explicit regularization term
to the loss function to ensure that redundancy is minimized in the embedding space. However,
prominent information maximization methods still suffer from dimensional collapse in practice [7].

While the above SSL approaches aim to alleviate rank degradation in the final embedding space, they
fail to address it in earlier layers of the neural network. For deep networks, enforcing the regularization
term on the output of the final layer does not necessarily prevent rank degradation at earlier layers.
The implicit regularization present in deep networks causes dimensional collapse across layers of
the network [11] 1. Thus, the low rank solution found in an early layer would propagate to deeper
layers. We propose WERank, a new Weight rEgularization term which serves as a complementary
Rank degradation prevention mechanism on top of any SSL method. WERank prevents dimensional
collapse throughout the network rather than the final layer. Unlike previous information maximization
approaches employing variance/covariance/cross-covariance terms, WERank is directly computed on
the weights of the network and is computationally more efficient.

2 WERank Regularization

Given a set of N input data points D, denote X ∈ RN×K as the corresponding data feature matrix,
where K is the feature dimension of each data point. The embeddings Z ∈ RN×M , are obtained
via a network fθ, namely Z = fθ(X). Given a set of augmentations T , two distorted views ti(x)
and tj(x) are obtained for an input x ∈ D by applying transformations ti, tj ∈ T . The model fθ is
pre-trained to learn useful node representations by enforcing the embeddings of distorted views ti(x)
and tj(x) to be similar. In general, SSL approaches minimize a loss function of form:

L(θ) = Ex∼D,ti,tj∼T sim(fθ(ti(x)), fθ(tj(x)))

where sim is a similarity function such as cosine or euclidean similarity. The representations learned
by the trained model fθ can be used on the downstream task defined for the particular domain,
such as image/node/graph classification or prediction. Collapse is often prevented by introducing a
regularization term to the loss (such as the variance and covariance terms in VICRreg). Alternatively,
contrastive loss functions prevent collapse by pushing dissimilar pairs apart and distillation methods
leave the loss unmodified but prevent collapse using architectural tricks.

2.1 Rank Degradation Prevention by Weight Regularization

We aspire WERank from the feature decorrelation losses in information maximization methods. Such
methods prevent collapse by enforcing decorrelation between the axes of the embedding vectors
in Z via an explicit regularization term in the loss function. Covariance decorrelation makes all
the components of embeddings in Z linearly independent from each other, encouraging different
dimensions to represent different semantic content. The foundational issue, however, is that the
regularization term is applied too late in the process. We aim to derive a computationally efficient
method which prevent dimensional collapse at different layers of the network.

Consider a neural network with L trainable weight matrices W1,W2, ...,WL. We can write the output
of the lth linear layer with input X(l) as:

X(l+1) = σ(X(l)Wl) = σ(H(l)Wl)

Given an embedding dimension M , and N data points, we can defined the covariance matrix
C ∈ RM×M as:

C =
1

N

N∑
i=1

(zi − z)(zi − z)T

where z =
∑N

i=1 zi/N . Similar to information maximization methods, dimensional collapse can
be alleviated by enforcing feature decorrelation in the embedding space. A straight forward way to
achieve feature decorrelation is by introducing the Forbenious norm between the covariance matrix
of the embedding vector and the identity as a regularizer to the loss function:

||C − I(M×M)||F
1refer to section 3 and supplementary materials (section 4.2) for supporting results
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However, our objective is to apply the regularizer to earlier layers of the network rather than to
the final output. Thus, we aim to compute the regularization term on the weights of the network
W1,W2, ...,WL instead of the final output while achieving the same impact as the above regularizer
at every layer.

Proposition: Denote λi as the ith eigenvalue of the covariance matrix C, and W ∈ Rdin×dout a
single layer model, where without loss of generality the input dimension is larger than the output
dimension. Then, ||C − I(dout×dout)||F is minimized if WTW is as close as possible to the diagonal
matrix with its ith diagonal element di = 1

λ2
i (H)

.

Proof: We can write the Forbenious norm between the covariance matrix of output and identity as a
function of the eigenvalues of the covariance matrix:

||C − I(dout×dout)||F =

√
tr

(
(C − I)(C − I)T

)
=

√
tr(CCT )− 2tr(C) + I

=
√∑dout

i=1 (λ
2
i (C)− 2λi(C) + 1) =

√∑dout

i=1 (λi(C)− 1)2

The ith eigenvalue of the covariance matrix can be bounded as follows:

λi(C) = λi(W
THTHW ) ≤ λi(W

THTH)λdout
(W ) ≤ λ2

i (H)λ2
dout

(W )

Where λdout
(W ) and λ1(W ) are the largest and smallest non-zero eigenvalues of W respectively.

Thus, from the above we get:

||C − I(dout×dout)||F =

√√√√dout∑
i=1

(λi(C)− 1)2 ≤

√√√√dout∑
i=1

(λ2
i (H)λ2

dout
(W )− 1)2

Since the input H to the network is not controllable, the only way for controlling the eigenvalues
of covariance is regularizing the weights during training. A perfect whitening is only possible
if all eigenvalues values of the matrix H are the same and we regularize WTW to be as close
as possible to a diagonal matrix with diagonal elements 1

λ2
i (H)

. However, even in the case of
having the same eigenvalues, calculating this regularization term requires performing Eigenvalue
Decomposition for each batch and each layer during all epochs which makes it computationally
intractable. Additionally, if we perform the training in batch format, the optimization will likely be
unstable since the eigenvalues will be different for each batch. We resort to making the identity as
the target matrix for WTW . We will show that this regularization term makes all λ2

iW ’s as close
as possible to 1, and as a result, will prevent the degradation of the rank of input matrix. We thus
propose the following regularization term applied to every layer of the network:

Lreg =

L∑
l=1

αl

∣∣∣∣∣∣WT
l Wl − I

∣∣∣∣∣∣
F

where αi controls the intensity of regularization for different layers. If at any layer l, the output di-
mension dout is larger than din, we can replace the regularization term with

∣∣∣∣∣∣WlW
T
l −I,

∣∣∣∣∣∣
F

. Notice

the regularization term whitens the matrix WT
l Wl or WlW

T
l with the largest rank max(din, dout).

WERank can be serve as a complimentary rank degeneration prevention mechanism on top of any
SSL method by simply being added to the original SSL loss term:

L = LSSL + Lreg

3 WERank is Effective in Preventing Dimensional Collapse

To empirically support the effectiveness of WERank, we test the regularizer on SSL models un-
der the two identified causes of collapse [11]; namely (i) implicit regularization caused by over-
parameterization and (ii) strong augmentation (relevant results can be found in Appendix 4.1).
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Figure 1: The singular values of the weight matrices and the embedding space covariance matrix during
training (top) VICReg with no regularization (button) VICReg with the WERank regularizer. The augmentation
magnitude (k) is set to 0.1
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Figure 2: Embedding space singular values after training the models for 5000 epochs. L denotes the number of
layers, dashed lines depict the model with WERank regularization. Training each model + WERank for 10000
epochs would result in all singular values converging to 1, while models without WERank face rank degradation.

Though previous work [11] identified the above causes of collapse for contrastive methods, we show
that similar conditions can cause collapse in other SSL methods. 2 Following the same experimentsal
setup, we sample 1000 points from a 16 dimensional isotropic Gaussian with covariance matrix∑

i,j(xi − xj)(xi, xj)
T /N = I . Two views of the sample xi are then generated from an additive

Gaussian with covariance matrix
∑

i(x
′

i − xi)(x
′

i − xi)
T /N = block-diagonal(0, k ∗ I), where the

block is 8× 8. We consider two models with InfoNCE [4] and VICRreg [3] loss functions, as well as
one model trained under the student-teacher Exponential Moving Average (EMA) algorithm (similar
to BYOL [8]). For each model, we train an identical model with WERank added to the loss with a
coefficient of 0.1. The models are trained for 1000 epochs in the full batch regime. We apply basic
stochastic gradient descent without momentum or weight decay.

Due to the implicit regularization caused by over-parameterization, the smallest group of singular
values 3 grow significantly slower throughout training [11]. We study the impact of WERank on
the simplest over-parameterized setting by having a two-layer linear MLP with no bias. We denote
the weight matrices of the network as W1,W2 ∈ R16×16. Figure 1 depicts the evolution of the
singular values of the weight and embedding space covariance matrices of VICReg with and without
WERank. The whitening loss applied by VICReg on the output of the final layer does not prevent
dimensional collapse at earlier layers. However, WERank helps with preventing collapse resulted
from the implicit regularization present in deep models by explicitly pushing the singular values up at
every layer. In Figure 2, we plot the singular values of the embedding space of different models with
and without WERank regularization applied. Evidently, WERank is effective in preventing rank
degradation in deeper networks, where the impact caused by implicit regularization aggravates.

2It is possible to verify that the theoretical justification provided by Jing et al. [11] can be extended to other
SSL methods.

3We note that pushing the eigenvalues to 1 has the same impact as pushing the singular values to 1. We
visualize singular values for consistency with previous work by Jing et al.[11]
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4 Appendix

4.1 WERank and Augmentation Strength

In networks with limited capacity, strong augmentation along feature dimensions is a secondary
cause for dimensional collapse [11]. To test the impact of the magnitude of augmentation k, we
choose a simple linear network with weights W1 ∈ R16×16. In figure 3, we find that our method
is most impactful when the augmentation is weak. However, the regularization term becomes less
effective as the magnitude of augmentation increases. From an analytical lens, collapse in this case
happens due to the dynamics of the time derivative of the weight matrix W being determined by
the augmentation distribution covariance matrix, refer to section 4.2 in [11]. This is expected, since
extreme augmentation limits the amount of common information between the distorted views which
can be used by the model for learning. Thus, the model will inevitably collapse in the presence of
strong augmentation. We note that the results for VICReg and VICReg + WERank aren’t much
different because WERank is simply enforcing the same variance/covariance terms as VICReg if only
applied to a single layer.
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Figure 3: Weight matrix singular value spectrum with different augmentation amplitudes k, measured
at the end of training. Solid lines depict the model with no regularizer and dotted lines depict model +
WERank. (Left) EMA model (middle) InfoNCE model (right) VICReg model.

4.2 Additional Results on Implicit Regularization

In addition to the VICReg model, we provide plots depicting the evolution of singular values in
InfoNCE and EMA models. All models are trained for 10000 epochs in the full batch regime.

We apply basic stochastic gradient descent without momentum or weight decay when training the
VICReg and InfoNCE models. However, we find that applying the same optimizer on the EMA
model results in the singular values remaining constant throughout training. Thus, we apply the
AdamW [12] optimizer with a learning rate of 0.01 and weight decay 0.0003. 4

The WERank coefficient is set to 0.1 for all models. The variance, invariance, covariance coefficients
for VICReg are set to 10, 10 and 1 respectively. The EMA model is implemented in a similar fashion
to BYOL [8], where the teacher network is updated with an exponential moving average with a factor
of 0.995.

The first eight singular values converge to one in VICReg and InfoNCE models. However, the EMA
model has trouble pushing the first eight singular values higher. We suspect this is due to the lack of
a mechanism to encourage high rank representations in the EMA model.

4In general, the traning dynamics of the EMA model is highly sensitive to the choice of the optimizer.
However, changing the hyperparameters of the AdamW optimizer does not result in the singular values converging
to 1.
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Figure 4: The singular values of the weight matrices and the embedding space covariance matrix
during training (top) InfoNCE model with no regularization (button) InfoNCE model with the
WERank regularizer. The augmentation magnitude (k) is set to 0.1
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Figure 5: The singular values of the weight matrices and the embedding space covariance matrix
during training (top) EMA model with no regularization (button) EMA model with the WERank
regularizer. The augmentation magnitude (k) is set to 0.1
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