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Abstract

In this work, we provide theoretical insights on the implicit bias of the BarlowTwins1

and VICReg loss that can explain these heuristics and guide the development of2

more principled recommendations. Our first insight is that the orthogonality of the3

features is more important than projector dimensionality for learning good represen-4

tations. Based on this, we empirically demonstrate that low-dimensional projector5

heads are sufficient with appropriate regularization, contrary to the existing heuris-6

tic. Our second theoretical insight suggests that using multiple data augmentations7

better represents the desiderata of the SSL objective. Based on this, we demonstrate8

that leveraging more augmentations per sample improves representation quality9

and trainability. In particular, it improves optimization convergence, leading to10

better features emerging earlier in the training. Remarkably, we demonstrate that11

we can reduce the pretraining dataset size by up to 4x while maintaining accuracy12

and improving convergence simply by using more data augmentations. Combining13

these insights, we present pretraining recommendations that improve wall-clock14

time by 2x and downstream performance on CIFAR-10/STL-10 datasets.15

1 Introduction16

A prominent subgroup among non-contrastive SSL methods is the family of Canonical Correlation17

Analysis (CCA) algorithms, which includes BarlowTwins [Zbontar et al., 2021] and VICReg [Bardes18

et al., 2021]. These methods aim to enforce orthogonality among the learned features in addition to19

learning to map similar images to nearby points in feature space and have been shown to achieve20

competitive performance on benchmark computer vision datasets. These methods have become the21

preferred strategy for representation learning in several domains due to the lack of need for negative22

samples and their simple formulation. However, despite the apparent simplicity of their loss functions,23

the behavior of this family of algorithms is not well understood. Therefore, researchers often use24

empirically driven heuristics to design successful applications, such as using (i) a high-dimensional25

projector head or (ii) two augmentations per image.26

Alongside relying on heuristics and researchers’ intuition for design, existing SSL algorithms are27

extremely data-hungry. In particular, state-of-the-art algorithms often rely on large-scale datasets28

[Russakovsky et al., 2015] or data engines [Oquab et al., 2023] to achieve good representations.29

While this strategy works exceptionally well in natural-image settings, its application is limited in30

other critical domains, such as medical imaging, where the number of samples is scarce.31

With these challenges in mind, the primary focus of this work is making progress toward establishing32

theoretical foundations underlying the family of non-contrastive SSL algorithms (NC-SSL) with an33

eye toward sample efficiency. In particular, we analyse the BarlowTwins and VICReg losses and34

show that they implicitly learn the data similarity kernel that is defined by the chosen augmentations.35

We find that learning the data similarity kernel is helped by greater orthogonality in the projector36
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Figure 1: Existing SSl algorithms make design choices often driven by heuristics. (A) We investigate
the theoretical underpinnings of two choices (i) the number of augmentations and (ii) the dimensional-
ity of the projector. (B) We show that the generalized NC-SSL algorithm with multiple augmentations
and low-dimensional projectors outperforms existing heuristics, using ∼ 4× fewer samples.

outputs and more data augmentations. As such, increasing the orthogonality of the projector output37

eliminates the requirement for a high-dimensional projector head, and increasing the number of data38

augmentations decreases the number of unique samples required.39

We empirically verify our theoretical insights using the popular ResNet-50 backbone on benchmark40

datasets, CIFAR-10 and STL-10. Strikingly, we show that our multi-augmentation approach can learn41

good features even with a quarter of the number of samples in the pretraining dataset. In summary,42

our core contributions are:43

• Eigenfunction interpretation: We demonstrate that the loss functions of the CCA family44

of non-contrastive SSL algorithms are equivalent to the objective of learning eigenfunctions45

of the augmentation-defined data kernel.46

• Role of heuristics: We provide a mechanistic explanation for the role of projector di-47

mensionality and the number of data augmentations, and empirically demonstrate that48

low-dimensional projector heads are sufficient and using more augmentations leads to49

learning better representations.50

• Data efficient NC-SSL: Leveraging the convergence benefits of the multi-augmentation51

framework, we demonstrate that we can learn good features with significantly smaller52

datasets (upto 25%) without harming downstream performance.53

2 Data augmentation kernel perspective of non-contrastive SSL54

We will define two notions of the data augmentation kernel. Given two images, x, z, the first kernel,55

which we call the forward data augmentation covariance kernel, is given by56

kDAF (x, z) = Ex0∼ρX
[p(x | x0)p(z | x0)] (1)

This covariance kernel measures the similarity between x, z in terms of how likely they are to be57

reached from x0, weighted by the distribution of x0. Note that this is indeed the edge strength58

between nodes x, z in the augmentation graph. We can also define a (backward) data augmentation59

covariance kernel kDAB(x, z), which reverses the roles of (x,z) and x0.60

SSL aims to learn features that preserve the covariance kernel structure (imposed by this choice of61

mapping M ) [Dubois et al., 2022]. Therefore, we want to define a loss which determines vector62

features, F : X → Rd, which factor a data augmentation kernel kDA(x, z) = F (x)⊤F (z). Doing63

this directly is prohibitively data intensive at scale, since it involves a search over data augmented64

images. However, since the covariance kernels are PSD, they define a Reproducing Kernel Hilbert65

space (RKHS). This allows us to apply Mercer’s theorem to find vector features as in Deng et al.66

[2022a,b], Pfau et al. [2018].67

Theorem 2.1. Let G(x) be the infinite Mercer features of the backward data augmentation covariance68

kernels, kDAB . Let F (x) = (f1(x), f2(x), . . . , fk(x)) be the features given by minimizing the69

following data augmentation invariance loss70

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (2)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , V (F ) → V (G) as Nk → ∞.71
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3 Experiments72

In our experiments, we seek to serve two purposes (i) provide empirical support for our theoretical73

insights and (ii) present practical primitives for designing efficient self-supervised learning routines.74

In summary, with extensive experiments across learning algorithms (BarlowTwins, VICReg) and75

training datasets (CIFAR-10/STL-10), we establish that76

• low-dimensional projectors as sufficient for learning good representations.77

• multi-Augmentation improves sample efficiency in SSL pretraining, i.e. recovering similar78

performance with significantly fewer unlabelled samples.79

Experiment Setup: We evaluate the effectiveness of different pretraining approaches for non-80

contrastive SSL algorithms using image classification as the downstream task. Across all experiments,81

we use linear probing with Resnet-50 as the feature encoder backbone. On CIFAR-10, all models are82

pretrained for 100 epochs, and STL-10 models are pretrained for 50 epochs (averaged over 3 seeds).83

3.1 Sufficiency of Low-dimensional projectors84

Figure 2: Low-dimensional projectors are sufficient for good feature learning. We demonstrate
that using a higher orthogonality constraint (λ for D, F and λeff = 1

dλ for E) for lower projector
dimensionality can achieve similar performance over a wide range of projector dimensions (d).

Existing works recommend using high-dimensional MLPs as projectors (e.g., d=8192 for Imagenet85

in Zbontar et al. [2021], Bardes et al. [2021]), and show significant degradation in performance for a86

fixed redundancy coefficient (λ). To reproduce this result, we run a grid search to find the optimal87

coefficient (λ∗
8192) for d = 8192 and show that performance progressively degrades for lower d if the88

same coefficient λ∗
8192 is reused for d ∈ {64, 128, 256, 512, 1024, 2048, 4096, 8192}.89

Our insights in Appendix B.2 suggest low-dimensional projectors should recover similar performance90

with appropriate orthogonalization. To test this, we find the best λ by performing a grid search91

independently for each d ∈ {64, 128, 256, 512, 1024, 2048, 4096, 8192}. As illustrated in Figure 2,92

low-dimensional projectors are indeed sufficient. Strikingly, we also observe that the optimal93

λd ∝ 1/d, is in alignment with our theoretical insights.94

3.2 Sample Efficient Multi-View Learning95

Although some SSL pretraining approaches, like SWaV, incorporate more than two views, the most96

widely used heuristic in non-contrastive SSL algorithms involve using two views jointly encoded by97

a shared backbone. In line with this observation, our baselines for examining the role of multiple98

augmentations use two views for computing the cross-correlation matrix.99

To understand the role of multiple augmentations in pretraining in light of the augmentation-kernel100

interpretation, we propose Equation (10), which generalizes Barlow-Twins and VICReg to the101

multi-augmentation setting. In particular, for #augs ∈ {2, 4, 8}, we pretrain Resnet-50 with the102

generalized NC-SSL loss for 100 epochs on CIFAR-10 and 50-epochs for STL-10. Building on the103

insight from the previous section, we use a 256-dimensional projector head for all experiments. Here,104
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we use the linear evaluation protocol as outlined by Chen et al. [2022]. In line with previous work,105

we observe that pretraining with multiple augmentations outperforms the 2-augmentation baseline106

(see Appendix). Although using more augmentations increases the per-epoch time during pretraining,107

we observe that the four-augmentation pre-trained models achieve the same accuracy faster (both108

in terms of the number of epochs and wall-clock time) than their two-augmentation counterparts.109

Data Augmentation can be viewed as a form of data-inflation, where the number of training samples110

is increased by a factor of k (for k augmentations). Therefore, we seek to investigate if multiple111

augmentations in SSL pretraining pipeline can compensate for less unique samples in the dataset.112

Figure 3: Multi-augmentation improves sample efficiency, recovering similar performance with sig-
nificantly less number of unique samples in the pretraining dataset. Across BarlowTwins and
VICReg pretraining on CIFAR-10 and STL-10, for the same effective dataset size (#augs ×
#unique_samples), using more patches improves performance at the same epoch (A-C) or wall
clock time (D-F). However, there exists a tradeoff wherein doing more data augmentations fails to
improve performance in the very low data regime.

To this effect, we fixed the effective size of the inflated dataset by varying the fraction of the unique113

samples in the pretraining dataset depending on the number of augmentations k ∈ {2, 4, 8}, e.g.114

we use 1/2 the dataset for 4 views. We then evaluate the performance of the pre-trained models115

on the downstream task, where the linear classifier is trained on the same set of labeled samples.116

Strikingly, Figure 3 shows that using multiple augmentations can achieve similar (sometimes even117

better) performance with lesser pretraining samples, thereby indicating that more data augmentations118

can be used to compensate for smaller pretraining datasets.119

4 Discussion120

Pareto Optimal SSL In the context of sample efficiency,
training a model using two augmentations with different
fractions of the dataset leads to a natural Pareto frontier,
i.e. training on the full dataset achieves the best error
but takes the most time (Baseline (2-Aug)). Our extensive
experiments demonstrate that using more than two augmen-
tations improves the overall Pareto frontier, i.e. achieves
better convergence while maintaining accuracy (Multi-
Aug). Strikingly, as shown in Figure 4, we observe that for
a target error level, we can either use a larger pretraining
dataset or more augmentations. Therefore, the number of
augmentations can be used as a knob to control the sample
efficiency of the pretraining routine.

Figure 4: Using > 2 augmentations with
a fraction of dataset improves Pareto
frontier, with runtime boost by ∼ 2×.

Limitations Our algorithm relies on multiple views of the same image to improve the estimation of121

the data-augmentation kernel. Although this approach does add some extra computational overhead,122

it significantly speeds up the learning process.123
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A Additional Results154

Figure 5: Using multiple augmentations improves representation learning performance and conver-
gence. (A-C) Across BarlowTwins and VICReg for CIFAR-10 and STL-10 pretraining, using 4
augmentations instead of 2 helps improve performance. (D-F) Although the 4-augmentations take
longer for each epoch, its performance still trumps the 2-augmentation version of the algorithm at the
same wall clock time.

B Data augmentation kernel perspective of non-contrastive SSL155

Following the previous section, we will now present an augmentation kernel perspective of Bar-156

lowTwins and VICReg losses. Specifically, we show that the these losses are equivalent to the157

optimization problem of learning eigenfunctions of the augmentation-defined data covariance kernel.158

Subsequently, we argue that using a high-dimensional projector yields better overlap with the top159

eigenvectors of the data augmentation kernel at initialization as compared to a low-dimensional160

projector. Therefore, our analysis suggests using a stronger orthogonalization constraint during161

optimization for lower-dimensional projectors to ensure that features learned are equivalent to those162

learned with high-dimensional projectors. Furthermore, we also argue that using more number of163

augmentations improves our estimate of the augmentation-defined data covariance kernel, thereby164

aiding the eigenfunction optimization problem. Therefore, our analysis suggests using an averaging165

operator with more data augmentations to better estimate the true augmentation kernel.166

B.1 Features in terms of data augmentation kernels167

We will define two notions of the data augmentation kernel. Given two images, x, z, the first kernel,168

which we call the forward data augmentation covariance kernel, is given by169

kDAF (x, z) = Ex0∼ρX
[p(x | x0)p(z | x0)] (3)

This covariance kernel measures the similarity between x, z in terms of how likely they are to be170

reached from x0, weighted by the distribution of x0. Note that this is indeed the edge strength171

between nodes x, z in the augmentation graph. We can also define a (backwards) data augmentation172

covariance kernel which reverses the roles of (x,z) and x0:173

kDAB(x, z) = Ex0∼ρX
[p(x0 | x)p(x0 | z)] (4)

The goal of SSL is to learn features that preserve the covariance kernel structure (imposed by this174

choice of mapping M ) [Dubois et al., 2022]. Therefore, we want to define a loss which determines175

vector features, F : X → Rd, which factor a data augmentation kernel kDA(x, z) = F (x)⊤F (z).176

Doing this directly is prohibitively data intensive at scale, since it involves a search over data177

augmented images. However, since the covariance kernels are PSD, they define a Reproducing Kernel178

Hilbert space (RKHS). This allows us to apply Mercer’s theorem to find vector features as in Deng179

et al. [2022a,b], Pfau et al. [2018].180
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The construction of features using Mercer’s theorem goes as follows. Given a PSD data augmentation181

kernel, kDA, define the Tk operator, which takes a function f and returns its convolution with the182

data augmentation kernel.183

Tkf(x) = Ez∼ρX
[k(z, x)f(z)] (5)

We will also make use of the the following operator,184

TMf(x) = Ex0 [p(x0 | x)f(x0)] (6)

which averages the values of the function, f , over the augmented images x0 = M(x) of the data, x.185

Since the operator Tk is compact and positive, it has a spectral decomposition consisting of eigen-186

functions ϕi and corresponding eigenvalues λi. Using these eigenpairs, we can define the (infinite187

sequence of square summable) spectral features, G : X → ℓ2, (where ℓ2 represents square summable188

sequences), by189

G(x) = (
√
λ1ϕ1(x), . . . ,

√
λdϕd(x), . . . ) (7)

Then, Mercer’s theorem gives190

kDA(x, z) = G(x) ·G(z) (Mercer)
and ensures that the inner product is finite. These are the desired features, which factor the kernel.191

However, computing the eigenfunctions of Tk is costly. Instead we propose an alternative using the192

more efficient operator TM . Both operators lead to equivalent features, according to Definition B.1.193

Definition B.1. Let F (x) = (f1(x), . . . fd(x)) be a d-dimensional feature vector (a vector of194

functions). Define the subspace195

V = V (F ) = {h : X → R | h(x) = w · F (x), w ∈ Rd} (8)

to be the span of the components of F . Given an n-dimensional feature vector, G(x) =196

(g1(x), . . . , gn(x)) we say the features G and F are equivalent, if V (F ) = V (G).197

Theorem B.2. Let G(x) be the infinite Mercer features of the backward data augmentation covariance198

kernels, kDAB . Let F (x) = (f1(x), f2(x), . . . , fk(x)) be the features given by minimizing the199

following data augmentation invariance loss200

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (9)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , V (F ) → V (G) as Nk → ∞.201

The idea of the proof uses the fact that, as linear operators, TkDAB = T⊤
MTM and that TkDAF =202

TMT⊤
M . Then we use spectral theory of compact operators, which is analogue of the Singular Value203

Decomposition in Hilbert Space, to show that eigenfunctions of T⊤
MTM operator are the same as204

those obtained from optimizing L(F ). A similar result can be obtained using kDAF and T⊤
M .205

Note that L(F ) is the constrained optimization formulation of the BarlowTwins loss. Furthermore,206

L(F ) with the additional constraint that (fi, fi) ≥ γ ∀i ∈ {1, 2 . . . Nk} is the constrained optimiza-207

tion formulation of the VICReg loss.208

B.2 Corollary 1: Low-dimensional projectors are sufficient209

While BarlowTwins and VICReg frameworks have advocated the use of high-dimensional projectors210

to facilitate good feature learning on Imagenet, our kernel perspective challenges this notion. Since the211

intrinsic dimensionality of Imagenet is estimated to be ∼ 40 [Pope et al., 2020], it is not unreasonable212

to expect that the span of desired features would be of similar dimensionality. It is, thus, intriguing213

that these frameworks mandate the use of an ∼ 8192 − d projector head to capture the intricacies214

of corresponding data augmentation kernel. This discrepancy can be explained by observing the215

learning dynamics of a linearized model under the BarlowTwins loss optimization [Simon et al.,216

2023]. These dynamics reveal that initializing the projection weight matrix in alignment with the217

eigenfunctions of the data kernel retains this alignment throughout the learning process. Notably,218

a high-dimensional projector is more likely to have a greater span at initialization compared to its219

low-dimensional counterpart, increasing the likelihood of overlap with the relevant eigenfunctions.220

We hypothesize that it is possible to rectify this issue by using a stronger orthogonalization constraint221

for low-dimensional projectors, thereby rendering them sufficient for good feature learning.222
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B.3 Corollary 2: Multiple augmentations improve optimization223

Theorem B.2 implies that the invariance loss optimization would ideally entail using the TM operator,224

thereby requiring many augmentations for each sample x. Using only two augmentations per sample225

yields a noisy estimate of TM , yielding spurious eigenpairs [Vershynin, 2010] (see Appendix). These226

spurious eigenpairs add stochasticity to the learning dynamics, and hinder the alignment of the227

learned features with the eigenfunctions of the data kernel [Simon et al., 2023]. We hypothesize that228

improving this estimation error by increasing the number of augmentations could ameliorate this229

issue and improve the speed and quality of feature learning.230

Increasing the number of augmentations (say m) in BarlowTwins and VICReg comes with added231

compute costs. A straightforward approach would involve computing the invariance loss for every232

pair of augmentations, resulting in O(m2) operations. However, Theorem B.2 proposes an alternative233

method that uses the sample estimate of TM , thereby requiring only O(m) operations. Both these234

strategies are functionally equivalent (see Appendix), but the latter is computationally more efficient.235

In summary, Theorem B.2 establishes a mechanistic role for the number of data augmentations,236

paving the way for a computationally efficient multi-augmentation framework:237

L̂(F ) = Ex∼ρX

Nk∑
i=1

m∑
j=1

∥fi(x)− fi(xj)∥2L2(ρX)

 , subject to (fi, fj)ρX
= δij (10)

where fi(x) =
1
m

∑m
j=1 fi(xj) is the sample estimate of TMfi(x).238

C Data augmentation kernel perspective of non-contrastive SSL239

Theorem C.1. Let G(x) be the infinite Mercer features of the backward data augmentation covari-240

ance kernels, kDAB . Let F (x) = (f1(x), f2(x), . . . , fk(x)) be the features given by minimizing the241

following data augmentation invariance loss242

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (11)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , V (F ) → V (G) as Nk → ∞.243

The idea of the proof uses the fact that, as linear operators, TkDAB = T⊤
MTM and that TkDAF =244

TMT⊤
M . Then we use spectral theory of compact operators, which is analogue of the Singular Value245

Decomposition in Hilbert Space, to show that eigenfunctions of T⊤
MTM operator are the same as246

those obtained from optimizing L(F ). A similar result can be obtained using kDAF and T⊤
M .247

Note that L(F ) is the constrained optimization formulation of the BarlowTwins loss. Furthermore,248

L(F ) with the additional constraint that (fi, fi) ≥ γ ∀i ∈ {1, 2 . . . Nk} is the constrained optimiza-249

tion formulation of the VICReg loss.250

C.1 Proof of theorem 3.2251

We show we can factor the linear operator, leading to a practical algorithm. Here, we show that we252

can capture the backward data augmentation kernel with the forward data augmentation averaging253

operator254

Lemma C.2. Using the definitions above, and with k in equation 5 given by kDAB ,255

Tk = T⊤
MTM

Proof. First, define the non-negative definite bilinear form256

BV AR(f, g) = (TMf, TMg)ρX
(12)

Given the backwards data augmentation covariance kernel, kDAB , define257

BDAB(f, g) = (Tkf, g)ρX
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We claim, that258

BV AR = BDA,B (13)
This follows from the following calculation,259

BDA,B(f, g) = (Tkf, g)ρX
(14)

= Ex[Tkf(x), g(x)] = ExEz[kDA,B(z, x)f(z)g(x)] (15)
= ExEzEx0 [p(x | x0)p(z | x0)f(z)g(x)] (16)
= Ex0

[Ex[p(x | x0)g(x)],Ez[p(z | x0)f(z)], ] = Ex0
TMf(x0)TMg(x0) (17)

= (TMf, TMg)ρX
= BV AR(f, g) (18)

260

For implementations, it is more natural to consider invariance to data augmentations.261

Theorem C.3 (equivalent eigenfunctions). Assume that TM is a compact operator. Define the262

invariance bilinear form263

BINV (f, g) = (TMf − f, TMg − g) (19)
Then BINV , BV AR share the same set of eigenfunctions. Moreover, these are the same as the264

eigenfunctions of BDA,B . In particular, for any eigenfunction fj of BV AR, with eigenvalue λj , then265

fj is also and eigenfunction of BINV , with the corresponding eigenvalue given by (
√
λj − 1)2.266

Proof. Define TMM by,267

TMMf = T⊤
MTMf (20)

Define268

TMS = (TM − I)⊤(TM − I) (21)
Note, by the assumption of compactness, TM has the Singular Value Decomposition, (see the Hilbert269

Space section for equation SVD),270

TM (h) =

∞∑
j=1

λj(h, gj)fj (SVD)

Let fj be any right eigenvector of TM , with eigenvalue µj . Then fj is also a right eigenvector TM −I ,271

with eigenvalue µj − 1. So we see that TMM has fj as an eigenvector, with eigenvalue λj = µ2
j and272

TMS has fj as an eigenvector, with eigenvalue (
√
λj − 1)2. Finally, the fact that there are no other273

eigenfunctions also follows from equation SVD.274

The final part follows from the previous lemma.275
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