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Abstract
Self-supervised representation learning often uses data augmentations to induce
some invariance to “style” attributes of the data. However, with downstream tasks
generally unknown at training time, it is difficult to deduce a priori which at-
tributes of the data are indeed “style” and can be safely discarded. To address this,
we introduce a more principled approach that seeks to disentangle style features
rather than discard them. The key idea is to add multiple style embedding spaces
where: (i) each is invariant to all-but-one augmentation; and (ii) joint entropy is
maximized. We empirically demonstrate the benefits of our approach on synthetic
datasets and then present promising but limited results on ImageNet.

1 Introduction
Learning useful representations from unlabelled data is widely recognized as an important step to-
wards more capable machine-learning systems (Bengio et al., 2013). In recent years, self-supervised
learning (SSL) has made significant progress towards this goal, approaching the performance of super-
vised methods on many downstream tasks (Ericsson et al., 2021). The main idea is to leverage known
data structures to construct proxy tasks or objectives that act as a form of (self-)supervision. This could
involve predicting one part of an observation from another (Brown et al., 2020), or, as we focus on in
this work, leveraging data augmentations/transformations to perturb different attributes of the data.

Most current approaches are based on the joint-embedding framework and use data augmentations as
weak supervision to determine what information to retain (termed “content”) and what information
to discard (termed “style”) (Bromley et al., 1994; Chen et al., 2020a; Zbontar et al., 2021; Bardes
et al., 2022). In particular, they do so by optimizing for representation similarity or invariance across
transformations of the same observation, subject to some form of entropy regularization, with this
invariance-entropy trade-off tuned for some particular task (e.g., ImageNet object classification).

However, at pre-training time, it is unclear what information should be discarded as one task’s style
may be another’s content. Ericsson et al. (2021) illustrated this point, finding ImageNet object-
classification accuracy (the task optimized for in pre-training) to be poorly correlated with downstream
object-detection and dense-prediction tasks, concluding that “universal pre-training is still unsolved”.

Example 1.1 (Color and Rotation). Suppose we want to make use of color and rotation transfor-
mations. While some invariance to (or discarding of) an image’s color and orientation features can
be beneficial for ImageNet object classification (Chen et al., 2020a), it can also be detrimental for
other tasks like segmentation or fine-grained species classification (Cole et al., 2022).

To address this shortcoming and ultimately learn more universal/transferrable representations, we
introduce a new joint-embedding framework for SSL which uses data augmentations to disentangle
style attributes of the data rather than discard them. In particular, as illustrated in Fig. 1, we
leverage M transformations to learn M+1 disentangled embedding spaces capturing both content
and style information—with one style space per (group of) transformation(s).
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Figure 1: Framework overview. Given M atomic transformations like color distortion or rotation (here, M=2),
we learn a “content” embedding space (Z0) that is invariant to all transformations and M “style” embedding
spaces (Z1, Z2) that are invariant to all-but-the-mth transformation. To do so, we construct M+1 transformation
pairs (tm, t′m) sharing different transformation parameters and use these to create M+1 transformed image pairs
(x̃m, x̃′m) sharing different features. After routing each pair to a different space, we: (i) enforce invariance within
each space; and (ii) maximize entropy across the joint spaces. The result is M+1 disentangled embedding spaces.

2 Background: Using data augmentations to discard
Joint-embedding methods are often categorized as contrastive or non-contrastive; while both employ
some invariance criterion Linv to encourage the same embedding across different views of the same
image (e.g., cosine similarity or mean squared error), they differ in how they regularize this invariance
criterion to avoid collapsed or trivial solutions. In particular, contrastive methods (Chen et al.,
2020a,b, 2021; He et al., 2020) do so by pushing apart the embeddings of different images, while
non-contrastive methods do so by architectural design (Grill et al., 2020; Chen and He, 2021) or by
regularizing the covariance of embeddings (Zbontar et al., 2021; Bardes et al., 2022; Ermolov et al.,
2021). We focus on contrastive and covariance-based non-contrastive methods which can both be
expressed as a combination of invariance Linv and entropy Lent terms (Garrido et al., 2023),

LSSL = Linv + Lent . (2.1)

Note these terms have also been called alignment and uniformity (Wang and Isola, 2020), respectively.
For concreteness, Table 3 of App. C.2 specifies Linv and Lent for some common SSL methods.

In general, the joint-embedding framework involves an unlabelled dataset of observations or images
x and M transformation distributions T1, . . . , TM from which to sample M atomic transformations
t1, . . . , tM, with tm ∼ Tm, composed together to form t = t1 ◦ · · · ◦ tM. Critically, each atomic
transformation tm is designed to perturb a different “style” attribute of the data deemed nuisance
for the task at hand. Returning to Example 1.1, this could mean sampling parameters for a color
distortion tc ∼ Tc and rotation tr ∼ Tr, and then composing them as t = tc ◦ tr. For brevity, this
sample-and-compose operation is often written as t ∼ T .

For each image x, a pair of transformations t, t′ ∼ pt is sampled and applied to form a pair of views
(x̃, x̃′) = (t(x), t′(x)). The views are then passed through a shared backbone network ϕ to form a
pair of representations (h, h′), with h = ϕ(x̃), and then through a smaller “projector” network g to
form a pair of embeddings (z, z′), with z = g(h) = g(ϕ(x̃)) ∈ Z . Critically, the single embedding
space Z seeks invariance to all transformations, thereby discarding each of the “style” attributes.

3 Framework: Using data augmentations to disentangle
We now describe our framework for using data augmentations to disentangle style attributes of the
data, rather than discard them—see Fig. 1 for an illustration. Given M transformations, we learn
M+1 embedding spaces {Zm}M

m=0 capturing both content (Z0) and style ({Zm}M
m=1) information—

with one style space per (group of) atomic transformation(s).
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Views. We start by constructing M + 1 transformation pairs {(tm, t′m)}M
m=0 which share different

transformation parameters. For m=0, we independently sample two transformations t0, t′0 ∼ T ,
which will generally not share any transformation parameters (i.e., t0

k ̸= t
′0
k ∀k). For 1 ≤ m ≤ M, we

also independently sample two transformations tm, t′m ∼ T , but then enforce that the parameters
of the mth transformation are shared by setting t′mm := tm

m. Finally, we apply each of these
transformation pairs to a different image to form a pair of views (x̃m, x̃′m) = (tm(xm), t′m(xm)).

Example 1.1 (continued). Suppose we can sample parameters for two transformations: color
distortion tc ∼ Tc and rotation tr ∼ Tr. As depicted in Fig. 1, we can then construct three transfor-
mation pairs sharing different parameters: (t0, t′0) = (t0

c ◦ t0
r , t′0c ◦ t′0r ) with no shared parame-

ters; (t1, t′1) = (t1
c ◦ t1

r , t1
c ◦ t′1r ) with shared color parameters t1

c ; and (t2, t′2) = (t2
c ◦ t2

r , t′2c ◦ t2
r )

with shared rotation parameters t2
r . Applying each transformation pair to a different image, we get

three pairs of views: (x̃0
cr′, x̃0

c′r′) for which only “content” information is shared as both color and
rotation differ; (x̃1

cr′, x̃1
cr′) for which “content” and color information is shared, but rotation differs;

and (x̃2
cr′, x̃2

c′r) for which “content” and rotation information is shared, but color differs.

Embedding spaces. As depicted in Fig. 1, the pairs of views (x̃m, x̃′m) are passed through a shared
backbone network ϕ to form pairs of representations (hm, h′m) and subsequently through separate
projectors gl to form pairs of embeddings (zm

l , z′ml ), with

zm
l = gl(hm) = gl ◦ ϕ(x̃m) = gl ◦ ϕ ◦ tm(xm) ∈ Zl (3.1)

the embedding of view x̃m in embedding spaceZl . We callZ0 “content” space as it seeks invariance
to all transformations, thereby discarding all style attributes and leaving only content. We call the
other M spaces {Zm}M

m=1 “style” spaces as they seek invariance to all-but-one transformation
tm, thereby discarding all-but-one style attribute (that which is perturbed by tm).

Loss. Given M+1 pairs of views {(x̃m, x̃′m)}M
m=0 sharing different transformation parameters, we

learn M+1 disentangled embedding spaces by minimizing the following objective:

Lours
(

f , {gm}M
m=0; {(x̃m, x̃′m)}M

m=0

)
= Linv

Z0
+ Lent

Z0︸ ︷︷ ︸
standard loss (content→Z0)

+
(

∑M
m=1 Linv

Zm

)
+ Lent

Z︸ ︷︷ ︸
additional terms (style→Zm’s)

, (3.2)

=
(

∑M
m=0 Linv

Zm

)
︸ ︷︷ ︸

M+1 inv. terms

+ Lent
Z︸︷︷︸

joint entropy

+ Lent
Z0︸︷︷︸

content entropy

, (3.3)

where the individual invariance (Linv
Zm

) and (content / joint) entropy (Lent
Z0

/ Lent
Z ) terms are given by

Linv
Zm

= λm Linv(zm
m, z′mm

)
, Lent

Z0
= Lent

(
{zm

0 , z′m0 }M
m=0

)
, Lent

Z = Lent
(
{zm, z′m}M

m=0

)
,

with zm = [zm
0 , . . . , zm

M] ∈ Z0 × ...×ZM the concatenated embeddings of x̃m across all spaces.
Eq. (3.2) highlights the additional terms we add to the standard contrastive loss. In particular, note that
we require two different entropy terms to ensure disentangled embedding spaces. Since “content”
is invariant to all transformations (by definition), we require Lent

Z to prevent redundancy (M additional
copies of content, one per style space) and Lent

Z0
to ensure content is indeed encoded in Z0 (otherwise

it could be spread across all M+1 spaces). As detailed in App. D.2, this is a key difference compared
to Xiao et al. (2021), who learn multiple embedding spaces but do not achieve disentanglement.

4 Experiments
We now present our experimental results which: (i) use a numerical dataset and a synthetic-image
dataset to illustrate how adapting our λ hyperparameter helps to fully disentangle content (see
App. C.3); and (ii) use ImageNet to illustrate the downstream performance benefits of retaining more
style information. App. C gives full implementation details.

Numerical dataset: Recovering only content. Following von Kügelgen et al. (2021, Sec. 5.1), we
generate synthetic data pairs (x, x̃) = ( f (c, s), f (c, s̃)) with shared content c and perturbed style
s, s̃ (see App. C.4 for details.). We then train a simple encoder ϕ (3-layer MLP) with SimCLR using
(i) fixed λ (ii) our adaptive λ (see App. C.3) to get learned embeddings z = ϕ(x). We then report
the r2 coefficient of determination in predicting the ground-truth c and s from z. Fig. 2 shows how
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Table 1: SimCLR’s sensitivity to augmentation strengths with
fixed and adaptive λ on ColorDSprites. r2 in predicting the ground-
truth factor values from the post-projector embedding z with a linear
classifier. Adapting λ ensures that z captures all of content (C=1)
and almost no style (S=0), regardless of the augmentation strengths.

λ
Augm. Content (C) Style (S) S (↓)
Strength Shape Color Scale Orient. PosX PosY

fixed
weak 1.0 0.93 0.89 0.30 0.82 0.83 0.75
medium 1.0 0.73 1.00 0.19 0.89 0.89 0.74
strong 1.0 0.31 1.00 0.05 0.23 0.30 0.38

adaptive
weak 1.0 0.21 0.17 0.00 0.01 0.01 0.08
medium 1.0 0.10 0.16 0.00 0.00 0.00 0.05
strong 1.0 0.10 0.11 0.00 0.00 0.00 0.04

5 10 15 20

dim(z)

0.0

0.5

1.0

r2 c (fixed λ)
s (fixed λ)
c (adapt. λ)
s (adapt. λ)

Figure 2: Recovering only content. r2

in predicting the ground-truth content c
and style s from the learned embedding z.

Table 2: Linear evaluation on ImageNet and a broad range of downstream tasks. We show top-1 accuracies
(%) for all but CUBbbox (r2), CUBkpt (r2), and VOC (AP50). We use frozen representations h and embeddings
z (post-projector). FT: our framework fine-tunes a base SimCLR model. Ct101: Caltech101. Cf10: CIFAR10.
Alg. Feat. ImNt Acft Ct101 Cars Cf10 Cf100 CUBbbox CUBcls CUBkpt DTD Flwrs Pets SUN VOC Avg.

SimCLR z 56.5 14.6 70.9 13.0 76.7 50.5 35.6 22.5 12.0 66.4 66.8 70.3 48.9 74.6 47.9
SimCLR-Ours z 49.0 25.9 77.6 14.4 81.8 56.2 60.5 15.1 17.6 64.4 63.4 60.7 45.9 73.6 50.6
SimCLR-Ours-FT z 57.8 15.9 72.4 14.6 77.8 53.6 36.2 22.5 12.6 67.0 67.3 70.6 49.5 74.9 48.8

SimCLR h 68.1 50.9 88.2 50.7 89.3 73.0 71.3 48.6 32.5 75.2 93.5 82.4 60.3 79.7 68.9
SimCLR-Ours h 61.7 46.2 86.5 37.5 87.2 67.4 70.6 29.6 23.6 72.6 86.8 73.3 55.1 77.2 62.6
SimCLR-Ours-FT h 67.9 51.0 88.1 51.0 89.4 72.9 71.4 48.5 32.9 75.9 93.5 82.6 60.2 79.7 69.0

varying the dimensionality of z affects the recovery of content c and style s, focusing on the scenario
where we have sufficient capacity to encode (all of) content c (i.e., dim(z) ≥ dim(c)). Similar to
von Kügelgen et al. (2021, Fig. 10), we find that with standard SimCLR (fixed λ), excess capacity is
used to encode some style information (since that increases entropy). However, by adapting λ using
the procedure of App. C.3, we prevent style “leaking in”, allowing us to recover only content in z.

ColorDSprites: Sensitivity to augmentation strengths. We now make use of a colored version
of the DSprites dataset (Locatello et al., 2019) which contains images of 2D shapes generated from
6 independent ground-truth factors (# values): color (10), shape (3), scale (6), orientation (40), x-
position (32) and y-position (32). We first train SimCLR and VICReg models on the (unlabelled)
dataset using different augmentation strengths (see Fig. 3 of App. C.1). We then train linear
classifiers on top of frozen embeddings z to predict the ground-truth factor values. Table 1 shows that:
(i) for fixed λ, the augmentation strengths severely affect SimCLR’s invariance-entropy trade-
off and, as a result, the amount (and type) of style information captured in z; and (ii) adapting λ
(see App. C.3) makes SimCLR’s invariance-entropy trade-off much more robust to the augmentation
strengths, ensuring that z captures all of content (C=1) and almost no style (S=0)—regardless of
the augmentation strengths. Table 5 of App. E.1 gives the corresponding results for VICReg.

ImageNet: Downstream performance. We train all models for 100 epochs on a blurred-face (for
legal reasons) ImageNet1k (Russakovsky et al., 2014) dataset using the standard transformations
(random crop, horizontal flip, color jitter, grayscale and blur). For our method, we group these
into spatial (crop, flip) and appearance (color jitter, greyscale, blur) transformations and thus learn
M = 2 style spaces. We then follow the setup of Ericsson et al. (2021) to evaluate models on a
broad range of downstream tasks, covering object/texture/scene classification, localization, and
keypoint estimation. With the post-projector z, Table 2 shows that: (i) using our framework from
scratch improves downstream performance at the cost of ImageNet performance; and (ii) using our
framework to fine-tune a SimCLR model (i.e., add in style spaces) leads to improved performance
both downstream and on ImageNet. Unfortunately, this improved performance with z did not translate
into improved performance with the pre-projector h. This highlights the importance of the projector,
but also our poor understanding of its role and impact on the retention of style information.

5 Discussion
Related work. Our framework is closely related to Xiao et al. (2021) who also learn multiple
embeddings by applying augmentations in a structured way. However, while the idea of additional
style embedding spaces is shared, our framework goes further by enforcing that these spaces are
disentangled (see App. D.2 for further details). In addition, we provide a theoretical analysis of when
this disentanglement is possible (see App. A). Further related work is discussed in App. D.1.

Outlook. We have presented a framework for learning disentangled representations in SSL. We
hope future work strives for disentanglement in SSL to enable broader transferability, and explores
new data augmentations designed for disentangling (rather than discarding).

4



References
Ahuja, K., Hartford, J. S., and Bengio, Y. (2022). Weakly supervised representation learning with

sparse perturbations. In Advances in Neural Information Processing Systems, volume 35, pages
15516–15528. [Cited on p. 12 and 16.]

Bardes, A., Ponce, J., and LeCun, Y. (2022). VICReg: variance-invariance-covariance regularization
for self-supervised learning. In International Conference on Learning Representations. [Cited on
p. 1, 2, 13, and 15.]

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828.
[Cited on p. 1 and 16.]

Bouchacourt, D., Tomioka, R., and Nowozin, S. (2018). Multi-level variational autoencoder: Learning
disentangled representations from grouped observations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32. [Cited on p. 16.]

Brehmer, J., De Haan, P., Lippe, P., and Cohen, T. (2022). Weakly supervised causal representation
learning. In Advances in Neural Information Processing Systems, volume 35, pages 38319–38331.
[Cited on p. 12 and 16.]

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature verification using
a "siamese" time delay neural network. Advances in Neural Information Processing Systems, 6.
[Cited on p. 1.]

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. In Advances in
Neural Information Processing Systems, volume 33, pages 1877–1901. [Cited on p. 1.]

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework for contrastive
learning of visual representations. In International Conference on Machine Learning, pages 1597–
1607. [Cited on p. 1, 2, and 13.]

Chen, T., Luo, C., and Li, L. (2021). Intriguing properties of contrastive losses. Advances in Neural
Information Processing Systems, 34:11834–11845. [Cited on p. 2.]

Chen, X., Fan, H., Girshick, R., and He, K. (2020b). Improved baselines with momentum contrastive
learning. arXiv:2003.04297. [Cited on p. 2.]

Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15750–15758. [Cited
on p. 2.]

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , and Vedaldi, A. (2014). Describing textures in
the wild. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
[Cited on p. 13.]

Cole, E., Yang, X., Wilber, K., Mac Aodha, O., and Belongie, S. (2022). When does contrastive
visual representation learning work? In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14755–14764. [Cited on p. 1.]

Dangovski, R., Jing, L., Loh, C., Han, S., Srivastava, A., Cheung, B., Agrawal, P., and Soljacic, M.
(2022). Equivariant self-supervised learning: Encouraging equivariance in representations. In
International Conference on Learning Representations. [Cited on p. 15.]

Darmois, G. (1951). Analyse des liaisons de probabilité. In Proc. Int. Stat. Conferences 1947, page
231. [Cited on p. 12.]

Daunhawer, I., Bizeul, A., Palumbo, E., Marx, A., and Vogt, J. E. (2023). Identifiability results
for multimodal contrastive learning. In The Eleventh International Conference on Learning
Representations. [Cited on p. 10 and 16.]

Desjardins, G., Courville, A., and Bengio, Y. (2012). Disentangling factors of variation via generative
entangling. arXiv preprint arXiv:1210.5474. [Cited on p. 16.]

5



Eastwood, C. and Williams, C. K. I. (2018). A framework for the quantitative evaluation of disentan-
gled representations. In International Conference on Learning Representations. [Cited on p. 16.]

Ericsson, L., Gouk, H., and Hospedales, T. M. (2021). How well do self-supervised models transfer?
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5414–5423. [Cited on p. 1, 4, and 15.]

Ermolov, A., Siarohin, A., Sangineto, E., and Sebe, N. (2021). Whitening for self-supervised
representation learning. In International Conference on Machine Learning, pages 3015–3024.
[Cited on p. 2.]

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2007). The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html. [Cited on p. 13.]

Garrido, Q., Chen, Y., Bardes, A., Najman, L., and LeCun, Y. (2023). On the duality between
contrastive and non-contrastive self-supervised learning. In International Conference on Learning
Representations. [Cited on p. 2.]

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y.,
and He, K. (2017). Accurate, large minibatch sgd: Training imagenet in 1 hour. ArXiv. [Cited on
p. 15.]

Gresele, L., Rubenstein, P. K., Mehrjou, A., Locatello, F., and Schölkopf, B. (2019). The incomplete
rosetta stone problem: Identifiability results for multi-view nonlinear ICA. In Proceedings of the
35th Conference on Uncertainty in Artificial Intelligence, volume 115, pages 217–227. PMLR.
[Cited on p. 12 and 16.]

Gresele, L., Von Kügelgen, J., Stimper, V., Schölkopf, B., and Besserve, M. (2021). Independent
mechanism analysis, a new concept? In Advances in Neural Information Processing Systems,
volume 34, pages 28233–28248. [Cited on p. 12.]

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Pires,
B. A., Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M. (2020).
Bootstrap Your Own Latent: A new approach to self-supervised learning. In Advances in Neural
Information Processing Systems. [Cited on p. 2.]

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9729–9738. [Cited on p. 2.]

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
CVPR. [Cited on p. 15.]

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerchner,
A. (2017). β-VAE: Learning basic visual concepts with a constrained variational framework. In
International Conference on Learning Representations. [Cited on p. 13 and 16.]

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429–439. [Cited on p. 12.]

Ilse, M., Tomczak, J. M., and Forré, P. (2021). Selecting data augmentation for simulating interven-
tions. In International Conference on Machine Learning, pages 4555–4562. PMLR. [Cited on
p. 11.]

Jing, L., Vincent, P., LeCun, Y., and Tian, Y. (2022). Understanding dimensional collapse in
contrastive self-supervised learning. In International Conference on Learning Representations.
[Cited on p. 16.]

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3d object representations for fine-grained
categorization. In 2013 IEEE International Conference on Computer Vision Workshops. [Cited on
p. 13.]

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. [Cited on p. 13.]

6



Kulkarni, T. D., Whitney, W. F., Kohli, P., and Tenenbaum, J. (2015). Deep convolutional inverse
graphics network. Advances in neural information processing systems, 28. [Cited on p. 16.]

Lee, H., Hwang, S. J., and Shin, J. (2020). Self-supervised label augmentation via input transforma-
tions. In International Conference on Machine Learning, pages 5714–5724. [Cited on p. 15.]

Lee, H., Lee, K., Lee, K., Lee, H., and Shin, J. (2021). Improving transferability of representations
via augmentation-aware self-supervision. In Advances in Neural Information Processing Systems.
[Cited on p. 15.]

Li, F.-F., Andreeto, M., Ranzato, M., and Perona, P. (2022). Caltech 101. [Cited on p. 13.]

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and Bachem, O. (2019).
Challenging common assumptions in the unsupervised learning of disentangled representations. In
36th International Conference on Machine Learning, pages 7247–7283. Curran Associates, Inc.
[Cited on p. 4, 13, and 16.]

Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., and Tschannen, M. (2020). Weakly-
supervised disentanglement without compromises. In International Conference on Machine
Learning, pages 6348–6359. PMLR. [Cited on p. 12 and 16.]

Loshchilov, I. and Hutter, F. (2017). Sgdr: Stochastic gradient descent with restarts. In ICLR. [Cited
on p. 15.]

Lyu, Q., Fu, X., Wang, W., and Lu, S. (2021). Understanding latent correlation-based multiview
learning and self-supervision: An identifiability perspective. In International Conference on
Learning Representations. [Cited on p. 12 and 16.]

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi, A. (2013). Fine-grained visual classifica-
tion of aircraft. arXiv preprint arXiv:1306.5151. [Cited on p. 13.]

Mitrovic, J., McWilliams, B., Walker, J. C., Buesing, L. H., and Blundell, C. (2021). Representation
learning via invariant causal mechanisms. In International Conference on Learning Representations.
[Cited on p. 11.]

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large number
of classes. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image
Processing. [Cited on p. 13.]

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. The Journal of Machine Learning
Research, 22(1):2617–2680. [Cited on p. 12.]

Parkhi, O., Vedaldi, A. ., Zisserman, A., and Jawahar, C. V. (2012). Cats and dogs. In IEEE
Conference on Computer Vision and Pattern Recognition. [Cited on p. 13.]

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge University Press. [Cited
on p. 11.]

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M. S., Berg, A. C., and Fei-Fei, L. (2014). Imagenet large scale visual recognition
challenge. CoRR. [Cited on p. 4 and 13.]

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y. (2021).
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634. [Cited on p. 10.]

Squires, C., Seigal, A., Bhate, S., and Uhler, C. (2023). Linear causal disentanglement via interven-
tions. In 40th International Conference on Machine Learning. [Cited on p. 12.]

Suter, R., Miladinovic, D., Schölkopf, B., and Bauer, S. (2019). Robustly disentangled causal
mechanisms: Validating deep representations for interventional robustness. In International
Conference on Machine Learning, pages 6056–6065. [Cited on p. 11.]

Tenenbaum, J. and Freeman, W. (1996). Separating style and content. In Advances in Neural
Information Processing Systems, volume 9. MIT Press. [Cited on p. 16.]

7



von Kügelgen, J., Sharma, Y., Gresele, L., Brendel, W., Schölkopf, B., Besserve, M., and Locatello, F.
(2021). Self-supervised learning with data augmentations provably isolates content from style. In
Advances in Neural Information Processing Systems, volume 34, pages 16451–16467. [Cited on
p. 3, 4, 10, 11, 12, 13, 15, and 16.]

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The caltech-ucsd birds-200-
2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology. [Cited on
p. 13.]

Wang, T. and Isola, P. (2020). Understanding contrastive representation learning through alignment
and uniformity on the hypersphere. In International Conference on Machine Learning, pages
9929–9939. PMLR. [Cited on p. 2 and 15.]

Wang, Y. and Jordan, M. I. (2021). Desiderata for representation learning: A causal perspective.
arXiv preprint arXiv:2109.03795. [Cited on p. 11.]

Xiao, J., Hays, J., Ehinger, K., Oliva, A., and Torralba, A. (2010). Sun database: Large-scale scene
recognition from abbey to zoo. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). [Cited on p. 13.]

Xiao, T., Wang, X., Efros, A. A., and Darrell, T. (2021). What should not be contrastive in contrastive
learning. In International Conference on Learning Representations. [Cited on p. 3, 4, 9, 15, 16,
and 17.]

You, Y., Gitman, I., and Ginsburg, B. (2017). Large batch training of convolutional networks. arXiv:
Computer Vision and Pattern Recognition. [Cited on p. 15.]

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. (2021). Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pages
12310–12320. [Cited on p. 1, 2, 13, and 15.]

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., and Brendel, W. (2021). Contrastive
learning inverts the data generating process. In International Conference on Machine Learning.
[Cited on p. 13.]

8



Appendices

Table of Contents
A Causal Representation Learning Perspective and Identifiability Analysis 10

B Proof of Thm. A.2 12

C Implementation Details 13
C.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
C.2 Invariance and entropy terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
C.3 Adaptive λm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.4 Numerical dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.5 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D Related Work 15
D.1 Self-supervised learning and disentanglement . . . . . . . . . . . . . . . . . . . 15
D.2 Detailed comparison with Xiao et al. (2021) . . . . . . . . . . . . . . . . . . . . 16

E Further Results 17
E.1 ColorDSprites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
E.2 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9



A Causal Representation Learning Perspective and Identifiability Analysis

In this section, we investigate what is actually learned by the structured use of data augmentations
in § 3, through the lens of causal representation learning (Schölkopf et al., 2021). To this end, we
first formalize the data generation and augmentation processes as a (causal) latent variable model,
and then study the identifiability of different components of the latent representation. Our analysis
strongly builds on and extends the work of von Kügelgen et al. (2021) by showing that the structure
inherent to different augmentation transformations can be leveraged to identify not only the block of
shared content variables, but also individual style components (subject to suitable assumptions).

Data-generation and augmentation processes. We assume that the observations x ∈ X result
from underlying latent vectors z ∈ Z via an invertible nonlinear mixing function f : Z → X ,

z ∼ pz , x = f (z) . (A.1)

Here, Z ⊆ Rd is a latent space capturing object properties such color or rotation; pz is a distribution
over latents; and X denotes the d-dimensional data manifold, which is typically embedded in a higher
dimensional pixel space. In the same spirit, we model the way in which augmented views (x̃, x̃′) are
generated from x through perturbations in the latent space:

z̃, z̃′ ∼ pz̃|z , x̃ = f (z̃) , x̃′ = f (z̃′) . (A.2)

The conditional pz̃|z, from which the pair of augmented latents (z̃, z̃′) is drawn given the original
latent z, constitutes the latent-space analogue of the image-level transformations (t, t′) ∼ T in § 3.
More specifically, z̃ ∼ pz̃|z captures the behavior of f−1 ◦ t ◦ f with t ∼ T acting on x = f (z).

Content-style partition. Typically, augmentations are designed to affect some semantic aspects
of the data (e.g., color and rotation) and not others (e.g., object identity). We therefore partition the
latents into style latents s, which are affected by the augmentations, and shared content latents c,
which are not affected by the augmentations. Further, pz̃|z in (A.2) takes the form

pz̃|z(z̃ | z) = δ(c̃− c)ps̃|s(s̃ | s) (A.3)

for some style conditional ps̃|s, such that z, z̃, and z̃′ in (A.2) are given by

z = (c, s), z̃ = (c, s̃) , z̃′ = (c, s̃′) . (A.4)

For this setting, it has been shown that—under suitable additional assumptions—contrastive SSL
recovers the shared content latents c up to an invertible function (von Kügelgen et al., 2021, Thm. 4.4).

Beyond content identifiability: separating and recovering individual style latents. Previous
analyses of SSL with data augmentations considered style latents s as nuisance variables that should be
discarded, thus seeking a pure content-based representation that is invariant to all augmentations (von
Kügelgen et al., 2021; Daunhawer et al., 2023). The focus of our study, and its key difference to
these previous analyses, is that we seek to also identify and disentangle different style variables, by
leveraging available structure in data augmentations that has not been exploited thus far.

First, note that each class of atomic transformation Tm (e.g., color distortion or rotation) typically
affects a different property, meaning that it should only affect a subset of style variables. Hence, we
partition the style block into more fine-grained individual style components sm,

s = (s1, ..., sM) , s̃ = (s̃1, ..., s̃M) , s̃′ = (s̃′1, ..., s̃′M) , (A.5)

and assume that the style conditional ps̃|s in (A.3) factorizes as follows:

ps̃|s(s̃ | s) =
M

∏
m=1

ps̃m |sm(s̃m | sm) , (A.6)

where each term ps̃m |sm on the RHS is the latent-space analogue of tm ∼ Tm.

Next, we wish for our latent variable model to capture the structured use of data augmentation through
transformation pairs with shared parameters, as described in § 3. Specifically, note that—unlike most
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prior approaches to SSL with data augmentations—we do not create a single dataset of (“positive”)
pairs (x̃, x̃′). Instead, we construct transformation pairs (tm, t′m) in M+1 different ways, giving rise
to M+1 datasets of pairs (x̃m, x̃′m), each differing in the shared (style) properties. In particular, the
mth atomic transformation is shared across (tm, t′m) by construction, such that (x̃m, x̃′m) should share
the same perturbed mth style components s̃m = s̃′m—regardless of its original value sm. To model
this procedure, we define M+1 different ways of jointly perturbing the style variables as follows:

p(m)(s̃, s̃′ | s) =
M

∏
l=1

p(m)(s̃l , s̃′l | sl) for m = 0, . . . , M,

where p(m)(s̃l , s̃′l | sl) =

{
ps̃l |sl

(s̃l | sl) δ(s̃′l − s̃l) if l = m
ps̃l |sl

(s̃l | sl) ps̃l |sl
(s̃′l | sl) otherwise

(A.7)

Together with z = (c, s) ∼ pz as in (A.1), the conditionals in (A.7) induce M+1 different joint

distributions p(m)
x̃,x̃′ over observation pairs (x̃m, x̃′m): analogous to (A.2), we have for m = 0, . . . , M,

s̃m, s̃′m ∼ p(m)
s̃,s̃′ |s , x̃m = f ([c, s̃m]) , x̃′m = f

(
[c, s̃′m]

)
. (A.8)

Remark A.1. In practice, we do not generate M+1 augmented pairs for each x = f (z) as described
above. Instead, each pair is constructed from a different observation with xl = f (zl) transformed
according to m := l mod M+1. In the limit of infinite data, these two options have the same effect.

Example 1.1 (continued). Denote the style component capturing color by sc and that capturing
rotation by sr. For m = 0, 1, 2, let zm = (cm, sm

c , sm
r ) be the latents underlying separate images xm.

Then the augmentations shown in Fig. 1 (left) are captured by the following changes to the latents:

m zm z̃m z̃′m Shared Latents

0 (c0, s0
c , s0

r ) (c0, s̃0
c , s̃0

r ) (c0, s̃′0c , s̃′0r ) only content

1 (c1, s1
c , s1

r ) (c1, s̃1
c , s̃1

r ) (c1, s̃1
c , s̃′1r ) content & color

2 (c2, s2
c , s2

r ) (c2, s̃2
c , s̃2

r ) (c2, s̃′2c , s̃2
r ) content & rotation

c

sc sr

x

Causal interpretation. The described augmentation procedure can also be interpreted in causal
terms (Ilse et al., 2021; Mitrovic et al., 2021; von Kügelgen et al., 2021). Given a factual observa-
tion x, the augmented views (x̃m, x̃′m) constitute pairs of counterfactuals under joint interventions
on all style variables, provided that (i) c is a root note in the causal graph, to ensure content invari-
ance in (A.3); and (ii) the style components sm do not causally influence each other, to justify the
factorization in (A.6) and (A.7).2 A causal graph compatible with these constraints is shown for Ex-
ample 1.1 above on the right. As a structural causal model (SCM; Pearl, 2009), this can be written as

c := uc, sm := fm(c, um) , for m = 1, . . . , M, (A.9)

with jointly independent exogenous variables uc, {um}M
m=0. The style conditionals ps̃m |s̃m in (A.6)

can then arise, e.g., from shift do(sm= fm(c, um) + ũm) or perfect do(sm=ũm) interventions with
independent augmentation noise ũm. Note that the latter renders s̃m independent of all other variables.

Style identifiability and disentanglement. By construction, {c, s̃m} is shared across (x̃m, x̃′m)
and can thus be identified up to nonlinear mixing by contrastive SSL on the mth dataset (von Kügelgen
et al., 2021, Thm. 4.4). However, it remains unclear how to disentangle the two and recover only s̃m,
i.e., how to “remove” c, which can separately be recovered as the only shared latent for m=0. The
following result, proven in App. B, shows that our approach from § 3 with M+1 alignment terms
and joint entropy regularization indeed disentangles and recovers the individual style components.

2The allowed structure is similar to Suter et al. (2019, Fig. 1); Wang and Jordan (2021, Fig. 9). However,
ours is more general as content does not only confound different sm, but also directly influences the observed x.
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Theorem A.2 (Identifiability). For the data generating process in (A.1), (A.7), (A.8), assume that

A1. Z is open and simply connected; f is diffeomorphic onto its image; pz is smooth and fully
supported on Z; each ps̃m |sm is smooth and supported on an open, non-empty set around any sm;

A2. pz and {ps̃m |sm}
M
m=1 are such that {c} ∪ {s̃m}M

m=1 are jointly independent;

A3. the latent dims. {dm}M
m=0 are known and {ϕm : X → (0, 1)dm}M

m=0 are smooth minimizers of

M

∑
m=0

E
p(m)

x̃,x̃′

[∥∥ϕm(x̃)− ϕm(x̃′)
∥∥

2

]
− H

p(0)x̃
([ϕ0(x̃), . . . , ϕM(x̃)]) . (A.10)

Then ϕ0 block-identifies (von Kügelgen et al., 2021, Defn. 4.1) the content c, and ϕm block-identifies
sm in the sense that ŝm = ϕm(x) = ψm(sm) for some invertible ψm for each m = 1, . . . , M.

Discussion of Thm. A.2. The technical assumption A1 is also needed to prove content identifia-
bility (von Kügelgen et al., 2021). Assumption A2, which requires that the augmentation process
renders c and {s̃m}M

m=1 independent, is specific to our extended analysis. It holds, e.g., if (a) pz is
such that c and {sm}M

m=1 are independent to begin with; or if (b) ps̃|s = ps̃ does not depend on s,
as would be the case for perfect interventions. As discussed in more detail in App. D, (a) relates to
work on multi-view latent correlation maximization (Lyu et al., 2021), nonlinear ICA (Gresele et al.,
2019), and disentanglement (Locatello et al., 2020; Ahuja et al., 2022), whereas (b) relates to work in
weakly supervised causal representation learning (Brehmer et al., 2022). In case (b), we could actu-
ally also allow for causal relations among individual style components sm → sm′ , as such links are
broken by perfect interventions. When A2 does not hold (e.g., for content-dependent style and imper-
fect interventions—arguably the most realistic setting), block-identifiability of the style components
seems infeasible, consistent with existing negative results (Brehmer et al., 2022; Squires et al., 2023).
However, in this case we posit that the exogenous style variables um in (A.9), which capture any style
information not due to c and are jointly independent by assumption, are recovered in place of sm.

B Proof of Thm. A.2

Theorem A.2 (Identifiability). For the data generating process in (A.1), (A.7), (A.8), assume that

A1. Z is open and simply connected; f is diffeomorphic onto its image; pz is smooth and fully
supported on Z; each ps̃m |sm is smooth and supported on an open, non-empty set around any sm;

A2. pz and {ps̃m |sm}
M
m=1 are such that {c} ∪ {s̃m}M

m=1 are jointly independent;

A3. the latent dims. {dm}M
m=0 are known and {ϕm : X → (0, 1)dm}M

m=0 are smooth minimizers of

M

∑
m=0

E
p(m)

x̃,x̃′

[∥∥ϕm(x̃)− ϕm(x̃′)
∥∥

2

]
− H

p(0)x̃
([ϕ0(x̃), . . . , ϕM(x̃)]) . (A.10)

Then ϕ0 block-identifies (von Kügelgen et al., 2021, Defn. 4.1) the content c, and ϕm block-identifies
sm in the sense that ŝm = ϕm(x) = ψm(sm) for some invertible ψm for each m = 1, . . . , M.

Proof. The proof follows a similar argument as that of von Kügelgen et al. (2021, Thm. 4.4), extended
to our setting with M+1 alignment terms instead of a single one, and with joint entropy regularization.

Step 1. First, we show the existence of a solution {ϕ∗m}M
m=0 attaining the global minimum of

zero of the objective in (A.10). To this end, we construct each ϕ∗m by composing the inverse of the
true mixing function with the cumulative distribution function (CDF) transform3 to map each latent
block to a uniform version of itself. Specifically, let ϕ∗0 := Fc ◦ f−1

1:d0
, and for m = 1, . . . , M, let

ϕ∗m := Fsm ◦ f−1
am :bm

with am = 1 + ∑m−1
l=0 dl and bm = ∑m

l=0 dl , where Fv denotes the CDF of v. By
construction, ϕ∗0 (x̃) is a function of c only, and uniformly distributed on (0, 1)d0 ; similarly, ϕ∗m(x̃) is
a function of s̃m only and uniform on (0, 1)dm for m = 1, . . . , M. Recall that, with probability one,

3Sometimes also referred to as “Darmois construction” (Darmois, 1951; Hyvärinen and Pajunen, 1999;
Gresele et al., 2021; Papamakarios et al., 2021).
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c is shared across (x̃, x̃′) ∼ p(0)x̃,x̃′ and s̃m is shared across (x̃, x̃′) ∼ p(m)
x̃,x̃′ . Hence, all the alignment

(expectation) terms in (A.10) are zero. Finally, since {c} ∪ {s̃m}M
m=1 are mutually independent

by assumption A2, and since each ϕ∗m for m = 0, ..., M is uniform on (0, 1)dm , it follows that[
ϕ∗0 (x̃), . . . , ϕ∗M(x̃)

]
is jointly uniform on (0, 1)d. Hence, the entropy term in (A.10) is also zero.

Step 2. Next, let {ϕm}M
m=0 be any other solution attaining the global minimum of (A.10). By

the above existence argument, this implies that (i) ϕm(x̃) = ϕm(x̃′) almost surely w.r.t. p(m)
x̃,x̃′ for

m = 0, . . . , M; and (ii) [ϕ0(x̃), . . . , ϕM(x̃)] is jointly uniform on (0, 1)d. As shown by von Kügelgen
et al. (2021), the invariance constraint (i) together with the postulated data generating process and
assumption A1 implies that each ϕm ◦ f can only be a function of the latents that are shared almost

surely across (x̃, x̃′) ∼ p(m)
x̃,x̃′ . That is, ϕ0(x) = ψ0(c) and ϕm(x) = ψm(c, sm) for m = 1, . . . , M.

By A1 and constraint (ii), ψ0 maps a regular density to another regular density and thus must be
invertible (Zimmermann et al., 2021, Prop. 5).

Step 3. It remains to show that ψm is invertible and actually cannot depend on c for m = 1, ..., M,
for this would otherwise violate the maximum entropy (uniformity) constraint (ii). Suppose for a
contraction that ψk depends on c for some k ∈ {1, . . . , M}. By constraint (ii), [ϕ0(x̃), ϕk(x̃)] =
[ψ0(c), ψk(c, s̃k)] is jointly uniform on (0, 1)d0+dk . Hence, ψ0(c) and ψk(c, s̃k) are independent.
Since ψ0 is invertible, this implies that c and ψk(c, s̃k) are independent, which (by smoothness of
ψk = ϕk ◦ f and independence of c and s̃k) contradicts the assumption that ψk depends on c.

Thus, by contradiction, we have that ϕm(x̃) = ψm(c, s̃m) = ψm(s̃m) for m = 1, . . . , M. Finally,
invertibility of ψm(s̃m) for m = 1, . . . , M follows from A1 and Prop. 5 of Zimmermann et al. (2021).
Together with ϕ0(x̃) = ψ0(c) (established above) concludes the proof of block-identifiability.

C Implementation Details

C.1 Datasets

The numerical data is based on the experiments of von Kügelgen et al. (2021), and the data samples
are generated programmatically. ColorDSprites is a synthetic image dataset based on DSprites
(Higgins et al., 2017), and extended by Locatello et al. (2019). The rest of the experiments are
based on models pretrained on ImageNet1k (Russakovsky et al., 2014), which are then evaluated on
the downstream datasets FGVC Aircraft (Maji et al., 2013), Caltech-101 (Li et al., 2022), Stanford
Cars (Krause et al., 2013), CIFAR10 (Krizhevsky, 2009), CIFAR100 (Krizhevsky, 2009), CUB (Wah
et al., 2011), DTD (Cimpoi et al., 2014), Oxford Flowers (Nilsback and Zisserman, 2008), Oxford-
IIIT Pets (Parkhi et al., 2012), SUN397 (Xiao et al., 2010) and VOC2007 (Everingham et al., 2007).

ColorDSprites samples. Fig. 3 depicts samples from the ColorDprites dataset when transformed
with transformations/augmentations of different strengths.

C.2 Invariance and entropy terms

To remain general and apply to any contrastive (e.g., SimCLR, Chen et al. 2020a) or non-contrastive
covariance-based SSL method (e.g., VICReg, Bardes et al. 2022), both Eq. (2.1) and Eq. (3.2)
are expressed as a combination of invariance Linv and entropy Lent terms. For concreteness, Ta-
ble 3 specifies these terms for some common SSL methods, namely SimCLR (Chen et al., 2020a),
BarlowTwins (BTs, Zbontar et al. 2021), and VICReg (Bardes et al., 2022). Note a slight mis-
alignment between Lent(Z, Z′) in Table 3 and our usage of it in Eq. (3.2). In particular, we write
Lent({zm, z′m}M

m=0
)

for brevity, but should write Lent(Z, Z′) with Z = [z0, z1, . . . , zM] to align
with Table 3.
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(a) Weak 1 (b) Weak 2

(c) Strong 1 (d) Strong 2

Figure 3: Augmentation strengths on ColorDSprites. Columns show augmentation pairs of the
same strength. Note that images are more similar across (a) & (b) than across (c) & (d), in terms of
color, orientation, scale, translation and X-Y position.

Table 3: Unified Perspective on SSL Objectives Through Invariance and Entropy. Many SSL methods
can be expressed as a (weighted) combination of invariance Linv and entropy Lent terms. Here, Z =
[z1, z2, . . . , zn] and Z′ = [z′1, z′2, . . . , z′n] are two batches of n vectors of d-dimensional representations
with Z, Z′ ∈ Rn×d; Z·j ∈ Rn is a vector composed of the values at dimension j for all n vectors in Z;
C(Z) = 1/(n− 1)∑i(zi − z)(zi − z)T is the (sample) covariance matrix of Z with z = 1/n ∑n

i=1 zi; and
λv, λc are hyperparameters for weighting the variance and covariance terms, respectively.

Algorithm Linv(Z, Z′) Lent(Z, Z′)

SimCLR − 1
n ∑n

i=1
zT

i z′i
||zi ||||z′i ||

1
n ∑n

i=1 log ∑n
j=1, ̸=i exp

(
zT

i z′j
||zi ||||z′j ||

)
BTs ∑d

j=1

(
1−

(Z·j)T Z′·j
||Z·j ||||Z′·j ||

)2

∑d
j=1 ∑d

k=1, ̸=j

(
(Z·j)T Z′·k
||Z·j ||||Z′·k ||

)2

VICReg − 1
n ∑n

i=1 ||zi − z′i||22 λv
d

(
∑d

j=1 max(0,1−
√

Var(Z·j)+ϵ)+max(0,1−
√

Var(Z′·j)+ϵ)

)
+

λc
d

(
∑n

i=1 ∑n
j=1, ̸=i [C(Z)]2i,j+[C(Z′)]2i,j

)
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C.3 Adaptive λm

We now describe our procedure for adaptively updating our λm hyperparameters in Eq. (3.2) using a
dual-ascent approach. To motivate this approach, first note that our placement of λm on the invariance
terms Linv differs from the standard approach of placing it on the entropy term Lent (Wang and Isola,
2020; Zbontar et al., 2021). Doing so allows us to:

• View Linv as a constraint that should be satisfied. We view the goal of Eq. (2.1) as the
soft/unconstrained version of the following constrained problem: maximize Lent, subject to Linv=
0. As a result, we then view λm as a Lagrange multiplier which should be set such that the
invariance constraint is satisfied to within some acceptable tolerance ϵ, i.e., Linv < ϵ. This way of
choosing λ diverges from the standard approach to choosing the invariance-entropy trade-off in
SSL (implicitly or explicitly), where it is chosen to maximize performance on some downstream
task (e.g., ImageNet object classification accuracy).

• Iteratively updating λm during training using a dual-ascent approach. While we could take
a standard grid-search approach to choose λm such that this invariance constraint is satisfied at
the end of training, we instead iteratively adapt λm during training using a dual-ascent approach.
In particular, given a step size or learning rate η and tolerance level ϵ, we perform iterative
gradient-based updates of both the model parameters θ (inner loop) and λm (outer loop) with
λt

m ← λt−1
m + η · relu(Linv(θt)− ϵ).

C.4 Numerical dataset

Following von Kügelgen et al. (2021, Sec. 5.1), we generate synthetic data pairs (x, x̃) =
( f (c, s), f (c, s̃)) with content c ∼ N (0, Σc), style s|c ∼ N (a + Bc, Σs), and perturbed style
s̃ ∼ N (s, Σs̃). We choose the simplest setup with Σc, Σs and Σs̃ set to the identity. See von Kügel-
gen et al. (2021, App. D) for further details on the data-generation process.

C.5 ImageNet

Pretraining. Our ImageNet1k pretraining setup is based on the settings in (Bardes et al., 2022), which
can be consulted for full details. We train ResNet50 (He et al., 2016) models for only 100 epochs, with
3-layer projectors of dimension 8196. The optimizer is LARS (You et al., 2017; Goyal et al., 2017), the
batch size is 2048 and the learning rate follows a cosine decay schedule (Loshchilov and Hutter, 2017).

The data augmentation also follows Bardes et al. (2022) and is applied asymetrically to the two views.
It includes crops, flips, color jitter, grayscale, solarize and blur. These atomic augmentations are split
into two groups: spatial (crops and flips) and appearance (color jitter, grayscale, solarize and blur).
Thus, the number of “style" attributes in this setting are M = 2.

While we aim for fair experiments that use default hyperparameters, projectors, and augmentation
settings, we note that these are optimized for existing SSL methods that prioritize information removal.
Perhaps other settings, such as different augmentations explored in Xiao et al. (2021) and Lee et al.
(2021), can be beneficial in our framework which instead aims to retain and disentangle information.

Downstream evaluation. Our downstream evaluation follows that of Ericsson et al. (2021). We
train linear models (logistic or ridge regression) on frozen pre-projector representations h and post-
projector embeddings z. Images are cropped to 224× 224, with L2 regularization searched using
5-fold cross-validation over 45 logarithmically spaced values in the range 10−6 to 105.

D Related Work

D.1 Self-supervised learning and disentanglement

Self-supervised learning. Xiao et al. (2021) also learn multiple embedding spaces in order to capture
style information. In our work, we further develop these ideas towards a fully disentangled embedding
space through a different use of augmentations and embedding spaces, as well as a different objective
function—see App. D.2 for a detailed comparison with Xiao et al. (2021). Other prior work sought to
retain some style information by predicting the augmentation parameters (Lee et al., 2020, 2021),
seeking transformation equivariance (Dangovski et al., 2022), or employing techniques that improve
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Table 4: High-level comparison with Xiao et al. (2021). While both use structured augmentations and multiple
embedding spaces to capture style attributes of the data, only ours seeks disentangled embedding spaces and
provides theoretical grounding/analyses.

Method Structured Multiple Disentangled Theoretical
augmentations embeddings embeddings underpinning

Xiao et al. (2021) ✓ ✓ ✗ ✗
Ours ✓ ✓ ✓ ✓

performance when using a linear projector (Jing et al., 2022). Importantly, we seek to both retain and
separate/disentangle style information using a theoretically-grounded framework.

Generative disentanglement. In a generative setting, disentangled representations are commonly
sought (Desjardins et al., 2012; Bengio et al., 2013; Higgins et al., 2017; Eastwood and Williams,
2018; Locatello et al., 2019), with the separation of “content” and “style” long sought in the vision-
as-inverse-graphics paradigm (Tenenbaum and Freeman, 1996; Kulkarni et al., 2015). More recently,
this generative disentanglement has been provably achieved with weak supervision in the form of
paired data (Bouchacourt et al., 2018; Locatello et al., 2020), which is perhaps the setting that is most
related to our work.

Identifiability in disentangled and causal representation learning. Our Thm. A.2 can be viewed
as an extension of the content block-identifiability result of von Kügelgen et al. (2021, Thm. 4.4),
which was generalized to a multi-modal setting with distinct mixing functions f1 ̸= f2 and additional
modality-specific latents by Daunhawer et al. (2023, Thm. 1). The two options discussed at the
end of App. A for satisfying assumption A2—(a) independent style variables, and (b) perfect
interventions—can be used to draw additional links to existing identifiability results. Option (a)
relates to a result of Lyu et al. (2021, Thm. 2) showing that the entire style blocks s̃ and s̃′ can be
block-identified through latent correlation maximization with invertible encoders, provided that c,
s̃, and s̃′ are mutually independent. Thm. A.2 establishes a more fine-grained disentanglement into
individual style components. On the other hand, Gresele et al. (2019) and Locatello et al. (2020)
prove identifiability of individual latents for the setting in which all latents are mutually independent
and subject to change (with probability > 0), i.e., without an invariant block of content latents.
Option (b) relates to a result of Brehmer et al. (2022, Thm. 1) showing that all variables (and the
graph) in a causal representation learning setup can be identified through weak supervision in the
form of pairs (x, x̃) arising from single-node perfect interventions by fitting a generative model
via maximum likelihood. Perhaps most closely related is the work of Ahuja et al. (2022) who do
not assume independence of latents, and also consider learning from M views arising from sparse
perturbations, but require perturbations on all latent blocks for full identifiability.

D.2 Detailed comparison with Xiao et al. (2021)

Table 4 presents the key differences between the framework of Xiao et al. (2021) and ours. Both rely on
structured augmentations, by which views are constructed using augmentations that either share or
do not share the same parameters. Both frameworks also learn multiple embedding spaces to capture
style attributes of the data. However, our goal is not only to learn multiple embedding spaces but to
fully disentangle them. This is achieved in our framework by the careful combination of invariance
and entropy terms in Eq. (3.2), including the removal of redundant information with an entropy term
across the joint embedding space. Furthermore, in Apps. A and B, we provide a theoretical analysis
with the conditions under which our framework identifies the underlying style attributes or features.

In addition to these key, high-level differences, there are several smaller differences at the implemen-
tation level. In particular, we use an optimization procedure that adaptively sets the λm hyperparam-
eters to guarantee the disentanglement of content and style (see App. C.3). We also adopt a more
general construction of our framework, instantiating it with multiple different SSL methods, Sim-
CLR, BTs and VICReg. Finally, our construction of image views allows more negative samples and
in a given batch, compared to the query-key construction of Xiao et al. (2021)—see Fig. 4.
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(a) Xiao et al. (2021)

content

color

rotation
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Positives Negatives

Pair of views
Post-projector 
embedding

Pre-projector
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(b) Ours

Figure 4: Comparison with Xiao et al. (2021). Note the differences in data augmentation modules,
as well as the embedding spaces in which positives and negatives are compared. See Xiao et al. (2021,
Sec. 3) for details on their query-key notation. See App. D.2 for further details on this comparison.

E Further Results

We now present additional results.

E.1 ColorDSprites

Table 5 shows VICReg’s sensitivity to augmentation strengths with fixed and adaptive λ on ColorD-
Sprites, complementing the results for SimCLR in Table 1.
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Table 5: VICReg’s sensitivity to augmentation strengths with fixed and adaptive λ on ColorDSprites. r2 in
predicting the ground-truth factor values from the post-projector embedding z with a linear classifier. Adapting
λ ensures that z captures all of content (C = 1) and almost no style (S = 0), regardless of the augmentation
strengths. SimCLR results in Table 1.

Algorithm λ Augm. Str. Content (C) Style (S) S (↓)
Shape Color Scale Orient. PosX PosY

VICReg fixed Weak 1.0 0.87 0.71 0.29 0.45 0.45 0.55
fixed Medium 1.0 0.40 1.00 0.05 0.56 0.56 0.51
fixed Strong 1.0 0.12 0.99 0.08 0.62 0.62 0.49
adaptive Weak 1.0 0.20 0.17 0.00 0.00 0.00 0.07
adaptive Medium 1.0 0.10 0.52 0.00 0.00 0.01 0.13
adaptive Strong 1.0 0.10 0.53 0.00 0.00 0.00 0.13

E.2 ImageNet

Table 6 give VICReg’s linear evaluation results on ImageNet for a broad range of downstream tasks,
complementing the results for SimCLR in Table 2.

Table 6: Linear evaluation on ImageNet and a broad range of downstream tasks. We show top-1 accuracies
(%) for all but CUBbbox (r2), CUBkpt (r2), and VOC (AP50). We use frozen representations h and embeddings
z (post-projector). FT: our framework fine-tunes a base VICReg model. Ct101: CalTech101. Cf10: CIFAR10.
Alg. Feat. ImNt Acft Ct101 Cars Cf10 Cf100 CUBbbox CUBcls CUBkpt DTD Flwrs Pets SUN VOC Avg.

VICReg z 55.7 10.6 69.5 9.5 75.0 48.3 27.6 17.1 10.8 64.6 61.3 68.4 46.1 75.6 45.0
VICReg-Ours-FT z 55.3 11.7 72.6 11.1 78.5 54.4 32.5 17.8 11.4 66.5 66.8 68.3 48.0 75.5 47.3
VICReg h 67.2 51.1 87.6 52.6 88.3 70.1 69.1 47.4 31.9 75.3 93.4 83.1 59.7 79.6 68.4
VICReg-Ours-FT h 66.9 50.1 87.5 52.4 88.4 70.3 69.8 47.2 32.8 75.7 93.6 82.7 59.8 79.6 68.5
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