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Abstract
Time series data is a crucial form of information that has vast opportunities. With
the widespread use of sensor networks, large-scale time series data has become ubiq-
uitous. One of the current state-of-the-art SSL frameworks in time series is called
ts2vec. ts2vec specially designs a hierarchical contrastive learning framework that
uses loss-based training, which performs outstandingly against benchmark testing.
However, the computational cost for ts2vec is often significantly greater than other
SSL frameworks. In this paper we present a new self-supervised learning loss,
named adaptive resolution loss. The proposed solution reduces the number of
resolutions used for training the model via an adaptive selection score, leading to
an efficient adaptive resolution loss based learning algorithm. In the experiment,
we demonstrate that the proposed method preserves the original model’s integrity
while significantly enhancing its training time.

1 Introduction
Time series data is a crucial form of information that has vast opportunities [6, 14, 19, 12, 1, 15, 18]
. Recently, with the widespread use of sensor networks, large-scale time series data have become
ubiquitous. Such data gives us a dense amount of valuable information. The task of mining time
series could help us harvest important trends, patterns, and crucial behaviors, which ultimately benefit
various applications. One of the most prominent problems in time series data mining is representation
learning: transforming time series into low-dimensional representations that can represent their
semantic similarity while benefiting various downstream tasks[20]. Recently, with the introduction of
self-supervised learning frameworks (SSL) for image, video, and natural language representation
learning [21, 13, 10, 2, 9, 3, 8], numerous research has focused on designing an effective SSL for
time series data. One of the current state-of-the-art SSL frameworks in time series is called ts2vec
[20]. ts2vec specially designs a hierarchical contrastive learning framework that uses loss-based
training, which performs outstandingly against benchmark testing.

While ts2vec outperforms existing state-of-the-art models, the model’s computational cost is much
heavier than other self-supervised learning frameworks. It utilizes hierarchical enumeration to
compute the loss in each resolution of the time series, which significantly increases the computational
burden. In this work, on top of the existing ts2vec framework, we propose an adaptive single
resolution-based loss function to train the model. We observe that the loss generated by each time

37th Conference on Neural Information Processing Systems. Self-Supervised Learning: Theory and Practice
Workshop



series resolution are highly correlated. Therefore, we proposed a strategy to adaptive selects the most
important resolutions throughout the training, which can optimize the overall loss while reducing
the computation cost. Our empirical findings indicate the overall improvement of data sets with the
proposed implementation.

2 Methodology

Figure 1: Proposed Framework: Starting with original and augmented time series T and T ′, the data
is encoded into representations z and z′. The framework computes loss across multiple resolutions
using Temporal Contrastive methods combined with 1-Dimensional MaxPooling. The framework
calculates losses L1 to LN across multiple resolutions. Each loss is associated with a score that
evaluates its significance. Based on these scores, the adaptive sampling decides which resolution’s
loss to focus on for a specific training epoch.

Our proposed framework is illustrated in Fig. 1. Given B number of D-dimensional multivariate
time series data of length N (X ∈ RB×D×N ), following the ts2vec training framework [20], we first
perform cropping based augmentation operation. Specifically, the augmentation operator randomly
crops two views T and T ′ where T ∩ T ′ ̸= ∅ from every time series X (shown in blue and green in
the Fig. 1.top). T and T ′ are then passed through an encoder h(.) to generate embedding sequence
(z = h(T ) and z′ = h(T ′), where z ∈ RM×D′×n and z′ ∈ RM×D′×n′

). Then the hierarchical
contrastive learning force to push the latent representation of the overlapping region of T and T ′ to
be similar (the overlapped region embedding denoted as d and d′ respectively). Specifically, given a
resolution r, the latent embedding sequence d and d′ are first down-sample to resolution r (e.g. d
downsampled to a sequence only consists r time stamps) and perform 1) temporal-wise contrastive
loss, which consider the embedding at differing timestamps as negative samples and 2) instance-wise
contrastive loss, which consider other time series instances as negative samples:

ℓtemp
r =

∑
i

∑
t

−log
exp(di,t · d′i,t)∑

t′

(
exp(di,t · d′i,t′) + 1[t ̸=t′]exp(di,t · di,t′)

) (1)

ℓinstr =
∑
i

∑
t

−log
exp(di,t · d′i,t)∑B

j=1

(
exp(di,t · d′j,t) + 1[i ̸=j]exp(di,t · dj,t)

) (2)
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Afterwards, both losses are then added together to create an overall loss value:

Lr = αℓtemp
r + (1− α)ℓinstr (3)

where α is a hyper parameter control the importance of temporal and instance loss. In ts2vec model,
the training loss is defined as

Lhier =
∑

i=1,i<logm

L2i (4)

.

where m denotes the length of input embedding sequence d or d′, in order to capture the semantic
similarity of time series in multi-resolutions.

However, each Lr is highly correlated because the losses are aggregation from same resources. In fact,
we found that during the training, by training Lr of a fixed resolution, the loss in multiple resolutions
are improved as well. Meaning, by optimizing one loss value, the aggregation is then changed thus
changing it’s entire loss value for the subsequent epoch to base itself from. Therefore, we propose an
adaptive loss selection approach to adaptive choose the loss computed in a specific resolution to train,
instead of training loss of every resolution in every epoch. By doing so, we enhance the subsequent
training time of the model while maintaining the same model performance as optimizing L(hier).

Specifically, we measure the loss evolving trend, as an indicator of whether the loss is indirectly
co-trained in a specific epoch when optimizing loss of another resolution, and utilizes it to determine
which Lr will be picked in the next epoch. Intuitively, throughout the training, the loss tends to trend
downward when the Lr is indirectly trained and the loss is either plateaus or it increases when Lr

cannot be indirectly trained. Specifically, given the loss value of Lr′,e in the eth epoch of resolution
i, we measure this co-training behavior based on:

si =
exp(Li,e − Li,e−1)∑

r∈D exp(Lr,e − Lr,e−1)
(5)

where D denotes all resolutions used to compute Lhier Eq. 5 measures whether the loss can be
indirectly trained and normalize the value scale. In the proposed work, we essentially pick the loss
value that cannot be indirectly trained in current epoch to optimize. Specifically, the algorithm will
sample one resolution r′ from a multinomial distribution:

r′ ∼ Multinomial(s) (6)

Finally, the training loss used in the e+ 1 epoch is:

La = Lr′ (7)

In summary, in each epoch, we use the current loss trend to pick a new resolution to train in the next
epoch. By adaptively selecting the resolution and by fully utilizing the correlation between losses to
only train the model, we are able to efficiently train the overall hierarchical loss Lhier.

3 Experiment
3.1 Experiment Setup
We compare our proposed method with the original ts2vec framework through classification accuracy
performance, as well as training time comparisons. Following the evaluation protocol adopted in
ts2vec, we use the trained model h(.) to convert the multivariate time series into K dimension
representation. Then, the latent embedding is applied with a logistical regression classifier to perform
the classification task. We use ten longest UEA/UCR multi-variate time series data sets excluding the
longest data set, Eignworm due to memory issue. The experiments conducted in Google Colab with
an NVIDIA T4 in most of the data and A100 GPU was used if T4 cannot fulfilled the computation
resource. Both models are trained in the same environment. We evaluate the effective by classification
accuracy and evaluate the efficiency by the training time. For all comparison experiments, we repeated
experiments five times for each dataset and reported the average performance.
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3.2 Comparison Evaluation
The comparison results is shown in Table 1. From the table, training through both loss functions
achieve very similar accuracy performance in all datasets. This indicate the proposed loss La can
achieves similar downstream task performance compared with using original loss Lhier. Besides, we
also observed an increased efficiency throughout all of tested data sets. On average, we improved
the original model’s training time by on average 40.21%. Moreover, we observed a slightly more
improvements when analyzing data sets of larger length. Overall, the result shows that our proposed
approach is successful at improving original model’s efficiency, while maintaining the integrity of its
accuracy.

Proposed La Original Lhier

Dataset Length Execution Time (s) acc. Execution Time (s) acc.

HandMovementDirecton 400 28.87 0.26 43.24 0.28
HeartBeat 405 32.55 0.74 52.92 0.73

AtrialFibrilation 640 22.65 0.29 35.12 0.29
SelfRegulationSCP1 896 84.94 0.80 171.22 0.80
PhoneMe 1024 336.85 0.14 506.38 0.15
SelfRegulationSCP2 1152 86.40 0.54 173.86 0.53

Cricket 1197 55.84 0.91 100.40 0.91
EthanolConcentration 1751 389.92 0.28 624.04 0.27

StandWalkJump 2000 45.90 0.51 65.75 0.44

MotorImagery 3000 665.68 0.53 1297.92 0.52

Total Time - 1749.6 - 3070.85 -

Table 1: Comparsion Experiment Result in 10 long multivariate time series data

3.3 Embedding Visualization
To better understand the performance of our proposed loss, we visualize both the training data
embeddings, and testing data embeddings generated by the model. We uses two types of embedding
- average pooling and flattened embedding. The t-Distributed Stochastic Neighbor Embedding (t-
SNE)[17] visualization is shown in Fig. 2. The color of each points indicates its class label. From the
figure, the proposed loss can obtain similar data embeddings as the original Lhier

(a) Proposed avg. pooling (b) Original avg. pooling (c) Proposed flattened (d) Original flattened

Figure 2: t-SNE visualization of Embedding Space for Cricket Dataset

3.4 Conclusion
In this paper, we proposed a method to improve the computational efficiency of the ts2vec model for
time series representation learning. Our method involves the use of an adaptive resolution setting, in
the model’s loss function which allows us to reduce the computational load of the training process
without sacrificing the model’s performance. Our experimental results confirm our proposed method
is effective. Our model achieved similar classification accuracy in a range of 10 UCR/UEA datasets
while consistently reducing the training time. These findings suggest that our method can be a
valuable tool for researchers and practitioners working with large-scale time series data.

4 Acknowledge
This work is supported by the National Science Foundation (NSF) under grant 2318682
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Supplementary Materials

A Related Work

Recently, the self-supervised learning (SSL) framework [21, 13, 10, 2, 9, 3, 8] is introduced for
vision representation learning in the research domain of computer vision. The goal of SSL is to train
a deep learning model to understand the semantic-level invariance characteristic through carefully
designed pretext tasks from high-level semantic understanding related to image data (e.g. learning
rotation-invariant representation for images) [21, 11, 7]. Recently, an increasing amount of time series
representation learning research have been focused on designing the self-supervised deep learning
framework [20, 5, 16, 4]. Most models are designed based on the unsupervised contrastive learning
framework SimCLR [2].

Franceschi et al.[5] introduces an unsupervised contrastive learning framework by introducing a
novel triplet selection approach based on segment’s context. Similarly, Tonekaboni et al. proposed a
framework named Temporal Neighborhood Coding (TNC) [16]. TNC aims to utilizes the temporal
correlation along neighboring segments to learn the representation. Eldele et al. [4] introduces a
Temporal and Contextual Contrast (TS-TCC) based framework. In TS-TCC, two types of augments,
strong augmentation and weak augmentation are used to perform contrastive learning. Zhang et
al. [? ] proposes a time-frequency consistent loss for contrastive learning where temporal and
frequency of the same neighborhoods pushed closer together for optimal loss accuracy. Yue et al. [20]
proposed a framework named ts2vec. The proposed framework introduces a random cropping based
augmentation and a hierarchical loss to stabilize the obtained embedding. It achieved significantly
better performance compared with previous methods.However, we found the computational burden
for ts2vec is also higher than existing works.

B Additional Details: Adaptive Resolution Loss

Figure 3: Adaptive Resolution Loss Overview: (a): aligned resolution loss L. (b): Every absented
loss value is replaced by its prior recorded loss L′. (c): Each loss is passed through Eq. 5 and generate
probability. (d):Sampling from the generated distribution.

B.1 Index shift function:

Since the overlapping area between T and T ′ can be an arbitrary length between [1, L − 1], the
resolution indices r in different epochs do not represent the same resolution. Therefore, the proposed
algorithm will first align each resolution across different epochs. In order to accurately compute the
score, we design a flip and shift function that properly reorders the resolutions. Firstly, the algorithm
reorders the resolutions and obtains the number of resolutions from the given dataset. Secondly, we
interpolate the most current loss value for any resolution absent, as the respective resolutions must
have a score assigned to them later in the process. By properly pre-aligning the array of resolutions,
we can now suitably assign them a score value.
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B.2 Score Function

Once the resolutions are aligned with each epoch, a score function is used to evaluate the importance
of each resolution. Intuitively, at a given epoch, the algorithm computes the loss difference between
current and previous epoch. Then the algorithm will compute the score via a softmax function based
off of the respective resolution’s loss. The score is correlated to the loss value given, the greater
the loss the greater the score assigned. This generates a probability array that we can then use to
select the most important resolution based on a random multinomial function. Note that this function
ignores any absented resolution in the original loss array, which means this array is usually smaller
than logL size.

B.2.1 Probability function:

The probability function is the final part of the adaptive resolution setting. It utilizes the probability
array produced by the score function via softmax, to select the most weighted resolution. It does
so through a multinomial distribution random variable sampling function, which makes a selection
based on the given probabilities. Finally, the chosen value is then used to update the weights of the
resolutions in the model. Giving the chosen resolution priority over the rest.

C Datasets

Each Datasets used for experimentation’s characteristics are shown below.

Data Sets

Name Abbrev. Train Size Test Size Length No. of Classes Type

HandMovementDirection HMD 160 74 400 4 EEG

HeartBeat HB 204 205 405 2 AUDIO

AtrialFibrilation AF 15 15 640 3 ECG

SelfRegulationSCP1 SCP1 268 293 896 2 EEG

PhoneMe PM 214 1896 1024 39 SOUND

SelfRegulationSCP2 SCP2 200 180 1152 2 EEG

Cricket Cr 108 72 1197 12 HAR

EthanolConcentration EC 261 263 1751 4 OTHER

StandWalkJump SWJ 12 15 2500 3 ECG

MotorImagery MI 278 100 3000 2 EEG
Table 2: Tested Datasets Information

D Additional Encoder Details

Our model’s base architecture is adopted from the original TS2Vec model architecture, which
comprises of three main components: an Input Projection Layer, Random Cropping Augmentation,
and Time Stamp Masking Module.

D.1 Encoder h(.)

Unlike classical contrastive learning other field[2], the function h(.) generates an embedding series
zi (i.e. defined as another time series with K-dimensional observations in each time step), instead
of simple K-dimensional vector. The generated series will be used to compute the hierarchical
contrastive loss used in TS2Vec. Note that only the overlapping region shared by zi and z′i are used
to compute loss. Following the architecture in TS2Vec, h(.) function is modeled through a dilated
convolution neuron network without the final pooling and FCN layers.
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D.2 Random Cropping Augmentation

Given an input time series, the model first generates two augmentations based on random cropping.
Intuitively, the model generates two overlapped sub-sequences T and T ′ where T ∩ T ′ ̸= ∅.

D.3 Time Stamp Masking Module

: A random masking is applied to generate an augmented context view by masking latent vectors at
randomly selected timestamps (via dropout). It essentially hides some of the information by creating
a slightly different version of the data from the original, allowing the model to learn more robust
representations.

Both the cropped-and-masked sub-sequences will pass through encoder to obtain the embedding
z = h(T ) and z′ = h(T ′), where z ∈ RM×D′×n and z′ ∈ RM×D′×n′

)

D.4 Detailed Implementation Parameters

Throughout the experiment, we set embedding size K = 16. The number of dilated convolution layer
to 2, and learning rate is 1e− 3. The final embedding is computed through global average pooling
across all timestamps during the comparison evaluation.

E Additional Result: Embedding Visualization results

We provided t-SNE visualization of all the tested dataset as following:

(a) EC TS2Vec
(avg pool)

(b) EC Proposed
(avg pool)

(c) EC TS2Vec
(flatten)

(d) EC Proposed
(flatten)

(e) SWJ TS2Vec
(avg pool)

(f) SWJ Proposed
(avg pool)

(g) SWJ TS2Vec
(flatten)

(h) SWJ Proposed
(flatten)

(i) MI TS2Vec
(avg pool)

(j) MI Proposed
(avg pool)

(k) MI TS2Vec
(flatten)

(l) MI Proposed
(flatten)

Figure 4: Visualizing embedding instances via t-SNE
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(a) Cr TS2Vec
(avg pool)

(b) Cr Proposed
(avg pool)

(c) Cr TS2Vec
(flatten)

(d) Cr Proposed
(flatten)

(e) HMD TS2Vec
(avg pool)

(f) HMD Proposed
(avg pool)

(g) HMD TS2Vec
(flatten)

(h) HMD Proposed
(flatten)

(i) HB TS2Vec
(avg pool)

(j) HB Proposed
(avg pool)

(k) HB TS2Vec
(flatten)

(l) HB Proposed
(flatten)

(m) AF TS2Vec
(avg pool)

(n) AF Proposed
(avg pool)

(o) AF TS2Vec
(flatten)

(p) AF Proposed
(flatten)

(q) SCP1 TS2Vec
(avg pool)

(r) SCP1 Proposed
(avg pool)

(s) SCP1 TS2Vec
(flatten)

(t) SCP1 Proposed
(flatten)

(u) PM TS2Vec
(avg pool)

(v) PM Proposed
(avg pool)

(w) PM TS2Vec
(flatten)

(x) PM Proposed
(flatten)

(y) SCP2 TS2Vec
(avg pool)

(z) SCP2 Proposed
(avg pool)

() SCP2 TS2Vec
(flatten)

() SCP2 Proposed
(flatten)

Figure 5: Visualizing embedding instances via t-SNE (CONT’D)
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