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Abstract

Transformer-based speech self-supervised learning (SSL) models, such as HuBERT,
show surprising performance in various speech processing tasks. However, huge
number of parameters in speech SSL models necessitate the compression to a more
compact model for wider usage in academia or small companies. In this study, we
suggest to reuse attention maps across the Transformer layers, so as to remove
key and query parameters while retaining the number of layers. Furthermore,
we propose a novel masking distillation strategy to improve the student model’s
speech representation quality. We extend the distillation loss to utilize both masked
and unmasked speech frames to fully leverage the teacher model’s high-quality
representation. Our universal compression strategy yields the student model that
achieves phoneme error rate (PER) of 7.72% and word error rate (WER) of 9.96%
on SUPERB benchmark.

1 Introduction

Transformer-based speech SSL models [9, 19, 20] have been actively studied in speech processing
field [21] as SSL arises as a successful representation learning approach in recent years [3, 5, 8, 22].
Especially for wav2vec 2.0 [2], HuBERT [16], and wavLM [7], all of which are inherited from
BERT [10], show surprising performance in automatic speech recognition (ASR), comparable to
supervised learning approaches [13, 17]. Since the versatility of speech SSL becomes also crucial,
the above models have been further explored in various applications including automatic speaker
verification (ASV) [30] or emotion recognition (ER) [25].

However, these models have huge number of parameters and are trained for very long time, which
makes it hard for the resource-limited groups to train their own models. For instance, wav2vec 2.0
LARGE with 317M parameters should be pretrained for more than 290 days on a single V100 GPU [2]
on LibriSpeech dataset [24]. This necessitates us to build a compressed model that allows much more
parameter-efficient training and lower computational overhead.

Knowledge distillation (KD) [15] is a common model compression technique where a smaller student
model is being trained by distilling the knowledge from a teacher model. Prior efforts in distilling
large-scale speech SSL models have been made with reducing the number of Transformer layers
or shrinking their width. DistilHuBERT [6] is distilled in a way of predicting multi-layer outputs
of HuBERT, with most of the Transformer layers removed. FitHuBERT [18], instead of removing
the layers, suggests cutting down the width of attention and feed-forward network (FFN) in each
Transformer layer. LightHuBERT [29] creates a prunable supernet through distillation and conducts
architecture search to make a small student.
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Figure 1: Our compression strategy involves reusing the attention map of the previous layer and ex-
tending the distillation process to masked (red arrow) and unmasked (blue arrow) representations. The
input masked frames are identical for both teacher and student.

Despite the effectiveness of previous approaches in mitigating the performance drop by compression,
they still face several issues. (1) Wide and shallow students [1, 6] still exhibit degradation on content-
related downstream tasks. (2) Layer-to-layer (L2L) distillation is proved to be effective [1, 18],
however, it is counter-intuitive in terms of compression since every layer’s parameters are required.
(3) Pruning by architecture search [29] prepares an additional teacher-sized supernet using 32 GPUs,
which is not end-to-end (E2E) and cannot be easily trained by resource-limited groups.

We suggest reusing attention maps across the student’s Transformer layers, which is inspired by
previous works [4, 32] that claimed the similarity between attention maps. Attention map reusing
enables us to remove key and query parameters in certain Transformer layers, making it unnecessary
to retain all layer parameters for L2L distillation. Furthermore, we can reinvest the saved parameters
to other parts of Transformer. We also propose a masking with L2L distillation for better speech
representation quality of our student model. Masking speech frames is a widely used technique in
speech SSL models [2, 16], trained by predicting the masked representation. This technique has been
simply applied to distilling HuBERT [29], but not in the L2L manner. Our novel masking distillation
scheme aims to fully leverage the teacher’s representation by extending the distillation loss to both
masked and unmasked speech frames. We emphasize that our scheme is an E2E fashion and enhances
the general quality of speech representation, especially in content- and semantics-related tasks.

Combining our two approaches described (Fig. 1), we reinvest the saved parameters from attention
map reusing to FFN, and create our flagship model, ARMHuBERT (Attention map Reused Mask
HuBERT). As evaluated on the SUPERB benchmark [31], ARMHuBERT achieves overall score [7]
of 78.1, the state-of-the-art E2E distillation. It also reaches 7.72% PER in phoneme recognition (PR)
task, and 9.96% WER in ASR task.

2 Preliminaries on Transformer-based Speech SSL Models
Recent dominant SSL models in speech field are wav2vec 2.0 [2], HuBERT [16], and wavLM [7],
where these three model structures are identical except for detailed level. Specifically, they share 12
or 24 Transformer [28] layers and 7-layer 1D-CNN. Their pretraining schemes are based on masked
prediction, estimating the codewords by output representations of the masked frames. Despite the
superiority and scalability of speech SSL models, large number of parameters and their computational
overhead make it difficult to train or utilize these models. We thus implement the model compression
on HuBERT and wavLM, the two dominant SSL models in speech, to demonstrate the effectiveness
of our compression strategy.

3 Methodology

3.1 Attention Map Reusing

Attention map reusing is a technique for substituting the present layer’s attention map with the
previous one, which has been covered in several domains [27, 32]. Prior works [4, 32] have pointed
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out the similarity of the attention maps across heads and layers in pretrained Transformer models,
such as BERT [10] and ViT [11]. We leverage this property by reusing the attention maps to compress
the student model. Alternatively, we can reassign the amount of parameters saved by attention map
reusing, without increasing the total number of parameters. Appx. A gives brief description and
notations for multi-head self-attention (MHSA) module of Transformers.

Attention map reusing is to replace the attention map Ah with the previous layer’s one. For instance,
if we reuse the k-th previous attention map on the current layer ℓ, the ReuseMHSA module is

ReuseMHSA(x) =
[
Aℓ−k

1 V ℓ
1 , . . . , A

ℓ−k
H V ℓ

H

]
W ℓ

o . (1)

Accordingly, computing Kh and Qh can be omitted, reducing the number of multiplications and
additions by (2nd2 + n2d). Assuming d/H = dv = dk, the omitted computation accounts for half of
the original computation for MHSA, which is (4nd2 + 2n2d). Hence, less parameters and multiply-
accumulates (MACs) are required as more ReuseMHSA modules are employed (see Appx. C.1).

3.2 Masking Distillation

Attention map reusing has reduced the number of parameters, however, it may affect the represen-
tation quality of the student model. To improve the student’s representation learning, we offer a
novel masking distillation scheme that leverages the teacher’s representation knowledge in a more
sophisticated way. Speech frame masking involves learning representation through masked prediction,
where the model learns to represent masked frames accurately based on other unmasked frames.
LightHuBERT [29], inspired by data2vec [3], has first applied the masking strategy to distilling
HuBERT. In this approach, teacher model guides the representation of masked frames. Let µ(x) be a
masked input, and f t and fs the teacher and student model. Then, the masked loss function becomes

L(x) = 1

|M |
∑
i∈M

∥∥f t
i (x)− fs

i (µ(x))
∥∥
2

(2)

where fi is the i-th frame of the speech representation, and M is the set of the masked frames.

In addition to the masked part loss (eq. 2), we suggest to employ an unmasked loss since the teacher
model can provide high-quality representation even on the unmasked frames. However, if the masking
process removes essential frames, distilling the intact form of f t(x) can leak such essential knowledge
that should have been removed. This induces biased predictions of the student, as it learns information
that cannot be inferred from the masked input.

To prevent this, we make the teacher model receive the same masked input as the student does when
distilling the unmasked part. Hence, the entire distillation loss becomes

L(x) =
∑
ℓ

αℓ

[
Lm,ℓ(x) + Lu,ℓ(x)

]
(3)

=
∑
ℓ

αℓ

|M |
∑
i∈M

∥∥f t
i,ℓ(x)− fs

i,ℓ(µ(x))
∥∥
2
+

∑
ℓ

αℓ

n− |M |
∑
i/∈M

∥∥f t
i,ℓ(µ(x))− fs

i,ℓ(µ(x))
∥∥
2

where αℓ is the layerwise coefficient. Lm,ℓ and Lu,ℓ represent masked loss and unmasked loss of the
ℓ-th layer, respectively. In summary, our novel masking distillation strategy appropriately guides the
student’s knowledge acquisition, by distilling not only the masked representation of unmasked data
but also the unmasked representation of masked data (see Fig. 1). In Appx. C.2, we investigate the
strength of our masking strategy compared to other types of losses.

4 Results

4.1 Model Description

To verify our masking distillation strategy, we first build a student model, MaskHuBERT, which
employs masking distillation only. MaskHuBERT has the width of (attention, FFN) as (480, 640).
Then, 2by6 reuse pattern is applied to MaskHuBERT, leading to 10.3% of parameter reduction. We
extend this model to two options: ARMHuBERT and ARMHuBERT-S. ARMHuBERT is a reinvested
version of MaskHuBERT, where the saved parameters from attention map reusing are reassigned to
FFN, resulting in increased width of (480, 864). ARMHuBERT-S is a reduced version to match the
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Table 1: Evaluation results on the SUPERB benchmark. For the details on this benchmark, refer
to Appx. B.3. Metrics include parameter size in million, PER%, WER% (w/o language model),
accuracy (Acc%), maximum term weighted value (MTWV), equal error rate (EER%), diarization
error rate (DER%), F1 score (F1%), and concept error rate (CER%). “Overall” denotes the average
scoring of all tasks proposed in [7]. LightHuBERT [29] works by two-stage training, where HuBERT-
sized supernet needs to be trained first, thus not compared with E2E distillation models.

Content Speaker Semantics Paral.

Params Overall PR ASR KS QbE SID ASV SD IC SF ER

Models Millions ↓ Score ↑ PER ↓ WER ↓ Acc ↑ MTWV ↑ Acc ↑ EER ↓ DER ↓ Acc ↑ F1 ↑ CER ↓ Acc ↑
Baselines
FBANK [31] 0 40.5 82.01 23.18 8.63 0.0058 8.5E-4 9.56 10.55 9.1 69.64 52.94 35.39
HuBERT BASE [16] 94.70 80.8 5.41 6.42 96.30 0.0736 81.42 5.11 5.88 98.34 88.53 25.20 64.92
wavLM BASE [7] 94.70 81.9 4.84 6.21 96.79 0.0870 84.51 4.69 4.55 98.63 89.38 22.86 65.94
LightHuBERT aSmall [29] 94.7→ 27.00 79.1 6.60 8.33 96.07 0.0764 69.70 5.42 5.85 98.23 87.58 26.90 64.12

960h distillation – # params: 26.4M∼ 31.6M
FitW2V2 [18] 31.63 76.5 12.22 11.44 96.04 0.0475 64.71 6.65 6.44 93.38 86.65 29.40 62.35
3-L ONE-Pred [1] 30.58 76.8 13.34 12.23 96.69 0.0489 75.71 6.48 6.56 94.15 82.89 34.65 63.95
12-L HALF-L2L [1] 26.87 77.6 10.67 10.96 97.24 0.0604 69.52 6.13 6.81 96.97 86.11 30.93 63.24
MaskHuBERT (ours) 26.64 77.8 7.30 9.77 96.36 0.0664 62.83 5.38 6.79 97.05 87.31 27.10 62.37
ARMHuBERT (ours) 26.45 78.1 7.72 9.96 96.88 0.0635 65.03 5.68 7.10 97.07 87.59 26.06 62.86

960h distillation – # params: 22.4M∼ 23.5M
DistilHuBERT [6] 23.49 75.9 16.27 13.37 95.98 0.0511 73.54 8.55 6.19 94.99 82.57 35.59 63.02
FitHuBERT [18] 22.49 74.5 13.32 12.09 96.27 0.0489 55.71 8.00 6.84 91.25 84.06 32.46 59.82
ARMHuBERT-S (ours) 22.39 77.5 8.63 10.82 96.82 0.0720 63.76 5.58 7.01 97.02 86.34 29.02 62.96
ARMwavLM-S (ours) 22.39 78.9 7.42 10.03 97.01 0.0741 71.29 5.99 7.11 97.76 87.41 26.97 64.54
100h distillation
FitW2V2 [18] 22.49 73.1 16.50 14.77 94.68 0.0380 51.65 7.43 6.94 90.03 81.95 34.74 62.87
FitHuBERT [18] 22.49 74.5 14.05 12.66 96.23 0.0579 54.24 7.88 7.19 94.20 83.41 34.00 61.67
ARMHuBERT-S (ours) 22.39 76.8 9.17 11.83 96.01 0.0569 66.48 5.92 6.23 95.97 83.89 33.29 63.29
ARMwavLM-S (ours) 22.39 77.0 8.33 11.37 96.30 0.0579 65.40 6.38 7.41 96.76 84.89 31.95 63.41

parameters with previous works, having the width of (432, 816). To establish the universality of our
strategy, we introduce ARMwavLM-S that is structurally identical to ARMHuBERT-S, with the only
change in teacher from HuBERT [16] to wavLM [7]. Refer to Appx. B for implementation details.

4.2 SUPERB Benchmark Results

In Table 1, we evaluate our student models on the SUPERB benchmark [31]. We follow the default
fine-tuning recipes, including a learning rate scheduler, with the learning rate scaled to 10× in SID
task. MaskHuBERT outperforms 12-L HALF-L2L, the previous state-of-the-art E2E distillation
method, with less parameters used. Our observation indicates that incorporating our masking strategy
into the L2L distillation [1, 18] results in enhancing the student’s representation quality. Especially,
MaskHuBERT highly improves the performances in content- and semantics-related tasks.

ARMHuBERT achieves a better overall score of 78.1 with less parameters than MaskHuBERT. De-
spite the removal of certain attention parameters, increasing the FFN width contributes to better quality
of speech representation, achieving 7.72% PER and 9.96% WER. We find out that ARMHuBERT
shows promising improvements when compared to MaskHuBERT in SF and SID tasks, exhibiting
a similar level of performance in other tasks. In the end, the number of parameters and MACs in
ARMHuBERT have decreased to 28% and 30% of the teacher model, HuBERT BASE [16].

In a smaller parameter group, ARMHuBERT-S, the parameter-reduced version, outperforms DistilHu-
BERT and FitHuBERT by a large margin. Specifically, ARMHuBERT-S also shows the outstanding
results in content- and semantics-related tasks, which means the consistency of the representations
produced by MaskHuBERT and ARMHuBERT-S. In addition, the result that ARMwavLM-S sur-
passes ARMHuBERT-S implies the universality of our strategy: without any modifications of the
student model structure, replacing with a superior teacher model creates a better student. The results
of the LibriSpeech [24] 100h distillation are also consistent with the formerly demonstrated results.

5 Conclusion and Future Work

In summary, we have proposed the universal compression strategy which involves attention map
reusing and novel masking distillation. Our parameter-reinvested model, ARMHuBERT, achieves
great performance in content- and semantics-related tasks. Our strategy can be applied to any
Transformer-based speech SSL models, and contributes to enhancing the general quality of speech
representation. Future work can focus on further improving our model on speaker-related tasks.
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Appendix

A Multi-head Self-attention of Transformers

In Transformer’s multi-head self-attention (MHSA) module [28], the input x ∈ Rn×d with the
sequence length n is transformed to H independent queries, keys, and values by transformation
matrices Wh,k,Wh,q ∈ Rd×dk , and Wh,v ∈ Rd×dv , respectively, for each head h. Here, dk, dv , and
d are the width of the keys, values, and model, respectively.

Kh = Wh,kx, Kh ∈ Rn×dk ,
Qh = Wh,qx, Qh ∈ Rn×dk ,
Vh = Wh,vx, Vh ∈ Rn×dv

(4)

Then, key and query are multiplied along the width axis to obtain a scaled dot-product attention map,
Ah ∈ Rn×n. Linear combinations of the attention map and value for each head are concatenated, and
then projected to the original width.

Ah = softmax
(
QhK

⊤
h /

√
dk

)
, (5)

MHSA(x) =
[
A1V1, . . . , AHVH

]
Wo, Wo ∈ RHdv×d (6)

B Implementation Details

B.1 Training

We distilled the two dominant Transformer-based speech SSL models, HuBERT BASE [16] and
wavLM BASE [7], that are pretrained on LibriSpeech 960 hours dataset [24]. Our student model
consists of 12 layers of Transformers as the teachers, while the detailed design mostly follows
FitHuBERT [18]: width of attention and FFN reduced and linear projections adopted at each layer.
The layerwise coefficients αℓ are set to 0.1 except for the last layer, where it is set to 1. Unless
specified, the LibriSpeech [24] dataset is distilled for 200 epochs with effective batch size of 72
including gradient accumulation.

B.2 Reuse pattern

We employ an alternating reuse pattern for the attention maps, whereby the attention map of an
even-numbered Transformer layer is repeated by that of the previous odd-numbered layer. We denote
this pattern as 2by6, our default setting. We examine other reuse patterns in Appx. C.1 in terms of
performance, number of parameters, and MACs.

B.3 SUPERB Benchmark

The beginning of speech SSL models focused on content-related downstream tasks such as ASR or
PR [23, 26], however, their versatility to other tasks has been recognized as crucial recently [7]. In
this context, SUPERB benchmark [31] has been proposed to evaluate the generalizability of speech
SSL models, covering the aspects of content, speaker, semantics, and paralinguistics. We evaluate
our representation against the SUPERB benchmark to verify the generalizability of our student
model. The SUPERB downstream tasks include PR, ASR, keyword spotting (KS), query-by-example
spoken term detection (QbE), speaker identification (SID), ASV, speaker diarization (SD), intent
classification (IC), slot filling (SF), and ER.

C Discussions on Experiments

In this section, we explore which layer’s attention map should be reused in other layers and how to
implement the masking distillation. Unless specified, we have conducted the distillations on 100-hour
of LibriSpeech [24] and evaluated on the ASR, ASV, and SF tasks of the SUPERB benchmark [31].
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C.1 Where to Reuse

Table 2 summarizes the performance depending on various attention map reusing patterns, and in
general, the 2by6 pattern performs the best. Other reuse patterns have reduced the Transformer’s
representation capacity due to overly frequent reusing. Assigning more parameters to FFN (-up) still
has limit in terms of the performance gain. Comparing to no reuse pattern applied, the performance
decrease of 2by6 is small, but it takes advantages in 9.13% and 8.16% reduction of parameters and
MACs, respectively. We note that the number of MACs in a single reuse MHSA module (eq. 1) is
reduced by half, from 13.2G to 6.6G.

Table 2: Performance comparisons of various reusing patterns. Parameter size (M) and MACs (G) are
additionally measured [12]. The width of (attention, FFN) for each model is (432, 816), while “-up”
suffix denotes more parameters assigned to FFN to match with 2by6. Masking is not applied here.

pattern reused layers params MACs WER ↓ EER ↓ F1 ↑ CER ↓
6by2 {1,7} 20.90 423 13.52 6.30 83.69 34.92
3by4 {1,4,7,10} 21.65 437 12.37 5.67 83.29 33.60
6by2-up {1,7} 22.39 440 13.18 5.89 83.07 34.79
3by4-up {1,4,7,10} 22.39 445 12.39 6.06 83.79 33.49
2by6 {1,3,5,7,9,11} 22.39 450 12.18 5.95 84.91 32.29

None - 24.64 490 11.94 5.87 84.78 31.38

C.2 How to Mask

Masking strategy Table 3 shows the efficacy of our masking strategy. We first eliminated the loss
function on the unmasked frames (Lu,ℓ), making it equivalent to the L2L version of the LightHu-
BERT [29] distillation loss. This approach severely damaged performances, particularly in the ASR
and ASV tasks. Next, we modified the unmasked loss function to distill from the unmasked input,
i.e., only f t(x) being distilled to the student. This also led to degraded performance in most tasks,
revealing that our unmasked loss with masked input properly guides the knowledge acquisition
without imposing biased predictions.

Table 3: Ablation study on our masking strategy.

methods WER ↓ EER ↓ F1 ↑ CER ↓
MaskHuBERT-100h 11.56 5.87 84.31 32.28
[–] distil. unmasked part 13.23 7.96 82.78 33.53
[–] distil. from masked input 11.65 6.09 84.29 31.41

Masking ratio High value of masking ratio can lead to a student model producing good repre-
sentation, as it has less information to infer with [14, 16]. However, it can also make the learning
process more difficult. In Table 4, we examine the optimal masking ratios for each training set. For
LibriSpeech 960h [24], both ratios of 0.4 and 0.8 produce excellent results. On the other hand, for the
100h dataset, ratio of 0.4 produces the best results overall. This implies that lower masking ratio is
preferred in low-resource distillation setting. Accordingly, in our main experiments, we have used the
ratios of 0.8 and 0.4 for the 960h and 100h distillation, respectively.

Table 4: Performance comparisons with different masking ratios. “sch” indicates linear scheduling of
the ratio as 0.4 to 0.8.

models ratio WER ↓ EER ↓ F1 ↑ CER ↓
MaskHuBERT-960h 0.4 9.75 5.58 86.94 26.79
MaskHuBERT-960h 0.8 9.77 5.38 87.31 27.10

MaskHuBERT-100h 0.4 11.56 5.87 84.31 32.28
MaskHuBERT-100h 0.6 11.99 6.18 83.42 33.31
MaskHuBERT-100h 0.8 12.74 6.56 83.68 33.82
MaskHuBERT-100h sch 12.07 6.29 83.84 33.50
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