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Abstract

Conventional masked time series modeling patchify and partially mask out time se-
ries (TS), and then train Transformers to capture the dependencies between patches
by predicting masked patches from unmasked patches. However, we argue that
capturing such dependencies might not be an optimal strategy for TS representation
learning; rather, embedding patches independently results in better representations.
Specifically, we propose to use 1) the patch reconstruction task, autoencoding each
patch without looking at other patches, and 2) the MLP that embeds each patch
independently. In addition, we introduce complementary contrastive learning to
hierarchically capture adjacent TS information efficiently. Our proposed method
improves various tasks compared to state-of-the-art Transformer-based models,
while it is more efficient in terms of the number of parameters and training time.

1 Introduction
Masked time series modeling (MTM) has been studied as a pretext task that patchifies and partially
masks out TS and predicts the masked parts from the unmasked parts using encoders capturing
dependencies among the patches [34, 21]. However, we argue that learning such dependencies among
patches might not be necessary for TS representation learning.
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Figure 1: PI vs. PD.

To this end, we introduce the concept of patch independence which does not
consider the interaction between TS patches when embedding them, which
is realized through two aspects: 1) the pretraining task and 2) the model
architecture. Firstly, we propose a patch reconstruction task that reconstructs
the unmasked patches in contrast to the conventional MTM task that predicts
the masked patches. We refer to these tasks as the patch-independent (PI)
and patch-dependent (PD) tasks, respectively, as the former does not require
information of other patches while the latter does. Toy example in Figure 1
indicates that Transformer pretrained on the PI task is more robust to distribution shift than the model
trained on the PD task [21]. Secondly, we propose to use the PI architecture (e.g., MLP) instead of
the PD architecture (e.g., Transformer), which is not only more efficient but also performs better.
In this paper, we propose Patch Independence for Time Series (PITS), which utilizes unmasked patch
reconstruction as the PI pretraining task and MLP as the PI architecture. On top of that, we introduce
complementary contrastive learning (CL) to efficiently capture adjacent TS information. The main
contributions are summarized as follows:

• We argue that learning to embed time series patches independently is superior to learning them
dependently for TS representation learning. To achieve PI, we propose PITS, incorporating two
major modifications on the MTM: 1) to make the task patch-independent, reconstructing the
unmasked patches instead of predicting the masked ones, and 2) to make the encoder patch-
independent, removing the attention mechanism to ignore correlation between the patches.

• We introduce complementary contrastive learning to hierarchically capture adjacent TS information
efficiently, where positive pairs are made by complementary random masking.
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Figure 2: Patch-independent strategy of PITS. (a) illustrates the pretraining tasks and encoder
architectures in terms of PI and PD. (b) demonstrates the proposed PITS, which utilizes a PI task
with a PI architecture. TS is divided into patches and augmented with complementary masking.
• Extensive experiments demonstrate that our method improves SOTA performance on both forecast-

ing and classification. We also discover that PI tasks outperforms PD tasks in managing distribution
shifts, and that PI architecture is more interpretable and robust to patch size than PD architecture.

2 Methods

We address the task of learning an embedding function fθ : x
(i,c,n)
p → z(i,c,n) for a TS patch where

xp =
{
x
(i,c,n)
p

}
, z =

{
z(i,c,n)

}
, and i = 1, . . . , B, c = 1, . . . , C, n = 1, . . . , N . Here, B, C, N

are the number of TS, number of channels in a TS, and number of patches in a channel. The input
and the output dimension, which are the patch length and patch embedding dimension, are denoted as
P and D, respectively, i.e., x(i,c,n)

p ∈ RP and z(i,c,n) ∈ RD. For fθ, we adopt channel-independent
[21] and patch-independent architecture, i.e, fθ is independent to c and n respectively.

2.1 Patch-Independent Task: Patch Reconstruction

Unlike the conventional PD task that predicts masked patches using unmasked ones, we propose
the patch reconstruction task (i.e., PI task) that autoencodes each patch without looking at the
other patches, as depicted in Figure 2(a). TS patch can be reconstructed in two different ways:
1) reconstruction at once by a FC layer processing the concatenation of representations, and 2) patch-
wise reconstruction by a FC layer processing each representation. Similar to PatchTST [21], we
employ the patch-wise reconstruction. On top of that, we propose mean normalization, subtracting
the average value of unmasked parts for each TS before encoding and adding it back to the prediction.

2.2 Patch-Independent Architecture: MLP

While MTM has been usually studied with Transformers for capturing dependencies between patches,
we argue that learning to embed patches independently is better. Following this idea, we propose to
use the simple PI architecture (e.g., MLP) to solely focuses on extracting patch-wise representations.
Figure 2(a) shows the examples of PI/PD tasks and architectures, where MLP-Mixer consists of a
single FC layer for time-mixing followed by a two-layer MLP for patch-mixing.

Table 1: Time/parameter efficiency.

PatchTST PITS Gain

# params. 406,028 5,772 x 70.3
Training time 46 15 x 3.06

To show the efficiency introduced by PI architectures, we
compare PatchTST [21] and PITS in terms of the number of
parameters and training time on the ETTm1 dataset, where
PatchTST uses the PD task and PD architecture while PITS
uses the PI task and PI architecture. As shown in Table 1,
PITS requires much less parameters and trains faster.

2.3 Complementary Contrastive Learning

To further boost performance of learned representations, we propose complementary CL to hier-
archically capture adjacent TS information. CL requires two views to generate positive pairs, and
we achieve this by a complementary masking: for a TS x and a mask m with the same length, we
consider m⊙x and (1−m)⊙x as two views for CL. Note that the purpose of masking is to generate
two views for CL; it does not affect the PI task, and it does not require an additional forward pass
when using the proposed PI architectures, such that the additional computational cost is negligible.
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Figure 3: Complementary CL.

Figure 3 illustrates an example of complementary CL,
where we perform CL hierarchically [32] by max-
pooling on the representations along the temporal axis,
and compute and aggregate losses computed at each
level. Then, the model learns to find missing patch
information in one view, by contrasting the similarity
with another view and the others, so that the model
can capture adjacent TS information hierarchically.

2.4 Objective Function

Reconstruction loss. As illustrated in Figure 2(b), we perform CL at the first layer and reconstruction
by an additional projection head on top of the second layer, where we denote representations obtained
from the two layers as z1 and z2, respectively. We feed z2 into the patch-wise linear projection head
to get a reconstructed result: x̂p = Wz2. Then, the reconstruction loss can be written as:

Lrecon =

B∑
i=1

C∑
c=1

N∑
n=1

∥∥∥m(i,c,n) ⊙
(
x(i,c,n)
p − x̂(i,c,n)

p

)∥∥∥2
2
+
∥∥∥(1−m(i,c,n))⊙

(
x(i,c,n)
p − x̂(i,c,n)

p

)∥∥∥2
2

=

B∑
i=1

C∑
i=1

N∑
n=1

∥∥∥x(i,c,n)
p − x̂(i,c,n)

p

∥∥∥2
2
, (1)

where m(i,c,n) = 0 if the first view x
(i,c,n)
p is masked, and 1 otherwise. As derived in Eq. 1, the

reconstruction task is not affected by complementary masking.
Contrastive loss. Inspired by the cross-entropy loss-like formulation of the contrastive loss in i-Mix
[17], we establish a softmax probability for the relative similarity among all the similarities considered
when computing contrastive loss. For conciseness, let z(i,c,n)

1 = z(i,c,n+2N) and z(i,c,n+N) be the
two views of x(i,c,n). Then, the softmax probability for a pair of patch indices (n, n′) is defined as:

p(i, c, (n, n′)) =
exp(z(i,c,n) ◦ z(i,c,n′))∑2N

s=1,s̸=n exp(z
(i,c,n) ◦ z(i,c,s))

, (2)

where ◦ is the dot product. Then, the total contrastive loss can be written as:

LCL =
1

2BCN

B∑
i=1

C∑
i=1

2N∑
n=1

− log p(i, c, (n, n+N)), (3)

where we compute the hierarchical losses by max-pooling z(i,c,n)’s along with the dimension n
repeatedly. The final loss is the sum of the reconstruction loss Lrecon and contrastive loss LCL.

3 Experiments
Time series forecasting (TSF). For forecasting tasks, we experiment seven datasets, including
four ETT datasets, Weather, Traffic, and Electricity [30], with a prediction horizon of H ∈
{96, 192, 336, 720}. For the baseline methods, we consider Transformer-based models including
PatchTST [21, 8, 36, 36, 30] and MLP models including TSMixer [4, 33]. We follow the experimental
setups and baseline results from PatchTST [21], SimMTM [8], and TSMixer [4]. Table 2 shows the
results of the average MSE across four horizons, demonstrating that PITS is competitive to SOTA
methods in both settings.

Table 2: Results of multivariate TSF.
Models Self-supervised Supervised

PITS PatchTST∗ SimMTM† PITS PatchTST SimMTM† DLinear TSMixer FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.401 0.421 0.424 0.439 0.404 0.428 0.409 0.426 0.417 0.431 0.431 0.443 0.423 0.437 0.412 0.428 0.428 0.454 0.473 0.477
ETTh2 0.331 0.382 0.373 0.404 0.348 0.391 0.337 0.386 0.331 0.379 0.395 0.427 0.431 0.447 0.355 0.401 0.388 0.434 0.422 0.443
ETTm1 0.341 0.380 0.349 0.380 0.341 0.380 0.350 0.381 0.352 0.382 0.356 0.362 0.355 0.379 0.347 0.375 0.382 0.422 0.515 0.493
ETTm2 0.244 0.310 0.264 0.323 0.260 0.318 0.247 0.314 0.258 0.315 0.279 0.336 0.267 0.332 0.267 0.322 0.292 0.343 0.310 0.357
Weather 0.225 0.262 0.226 0.262 0.235 0.280 0.225 0.263 0.230 0.265 0.239 0.275 0.246 0.300 0.225 0.264 0.310 0.357 0.335 0.379
Traffic 0.399 0.271 0.400 0.274 0.392 0.264 0.401 0.276 0.396 0.266 0.490 0.316 0.434 0.295 0.408 0.281 0.604 0.372 0.617 0.384

Electricity 0.157 0.253 0.159 0.251 0.162 0.256 0.160 0.255 0.162 0.254 0.212 0.300 0.166 0.264 0.160 0.257 0.207 0.321 0.214 0.327

Average 0.300 0.326 0.314 0.333 0.306 0.331 0.304 0.329 0.307 0.327 0.343 0.355 0.332 0.351 0.311 0.333 0.373 0.386 0.412 0.409

∗ We used the official code to replicate the results. † SimMTM is a concurrent work to ours.

Time series classification (TSC). For classification tasks, we use five datasets, SleepEEG [16],
Epilepsy [1], FD-B [18], Gesture [20], and EMG [12]. For the baseline methods, we employ TS2Vec
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Table 3: TSC.
ACC. F1

TS2Vec 92.17 93.84
CoST 88.07 69.11
LaST 92.11 85.74
TF-C 93.96 89.46
TST 80.21 44.51

TimeMAE 80.34 45.20
SimMTM 94.75 91.41

PITS w/o CL 95.27 95.30
PITS 95.67 95.64

Table 4: TSC with transfer learning.
In-domain Cross-domain

→ Epilepsy → FD-B → Gesture → EMG

ACC. F1 ACC. F1 ACC. F1 ACC. F1

TS2Vec 93.95 90.45 47.90 43.89 69.17 65.70 78.54 67.66
CoST 88.40 76.88 47.06 34.79 68.33 66.42 53.65 35.27
LaST 86.46 70.67 46.67 45.17 64.17 58.76 66.34 72.55
TF-C 94.95 91.49 69.38 74.87 76.42 75.72 81.71 76.83
TST 80.21 44.51 46.40 41.34 69.17 66.01 46.34 21.11

TimeMAE 89.71 68.55 70.88 66.56 71.88 68.37 69.99 70.89
SimMTM 95.49 92.81 69.40 75.11 80.00 78.67 97.56 98.14

PITS 95.71 95.70 87.70 87.68 92.50 92.48 100.0 100.0
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Figure 4: MSE by dropout.

Table 5: Effectiveness of PI.
PI acrhitecture PD architecture

Linear MLP MLP-Mixer Transformer

Task PD PI PD PI PD PI PD PI

ETTh1 0.408 0.408 0.418 0.407 0.420 0.409 0.425 0.415
ETTh2 0.343 0.338 0.361 0.334 0.365 0.341 0.353 0.342
ETTm1 0.359 0.358 0.356 0.355 0.354 0.352 0.350 0.350
ETTm2 0.254 0.243 0.258 0.253 0.259 0.253 0.274 0.256

Avg. 0.342 0.340 0.348 0.337 0.350 0.339 0.351 0.341

Table 6: Effect of complementary CL.
ETTh1 ETTh2 ETTm1 ETTm2 Avg.

Transformer 0.425 0.353 0.350 0.274 0.351

MLP
w/o CL 0.407 0.334 0.357 0.253 0.338

w/ non-hier. CL 0.405 0.333 0.353 0.252 0.336
w/ hier. CL 0.401 0.331 0.341 0.244 0.329

PI task

[32], CoST [29], LaST [26], TF-C [35], TST [34], TimeMAE [6] and SimMTM [8]. Table 3
demonstrates that PITS outperforms all SOTA methods on the Epilepsy dataset. We also conduct
experiments with transfer learning in both in- and cross-domain transfer settings, using SleepEEG as
the source dataset for both settings, where the settings are defined in SimMTM. Table 4 demonstrates
that our PITS outperforms SOTA methods in all scenarios.
Effect of PI/PD tasks/architectures. To assess the effect of our proposed PI pretraining task and
PI encoder architecture, we conduct an ablation study in Table 5. As shown in Table 5 which
shows average MSE across four horizons, PI pretraining results in better TSF performance than PD
pretraining regardless of the choice of the architecture.
Hierarchical design of complementary CL. The proposed complementary CL is structured hier-
archically to capture both coarse and fine-grained information in TS. To evaluate the effect of this
hierarchical design, we consider three different options: 1) without CL, 2) with non-hierarchical CL,
and 3) with hierarchical CL. Table 6 presents the average MSE across four horizons, highlighting the
performance gain by the hierarchical design.
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Figure 5: MSE by patch size.

MLP is more robust to patch size than Transformer. To assess
the robustness of encoder architectures to patch size, we compare
MLP and Transformer using ETTh1 with different patch sizes. Fig-
ure 5 illustrates the results, indicating that MLP is more robust for
both the PI and PD tasks, resulting in consistently better forecasting
performance across various patch sizes.
Hidden dimension and dropout. The PI task may raise a concern on
the trivial solution: when the hidden dimension D is larger than the
input dimension P , the identity mapping perfectly reconstructs the
input. This can be addressed by introducing dropout, where we add a dropout layer before the linear
projection head. Figure 4 displays the average MSE on four ETT datasets across four horizons under
various D in MLP, without dropout or with the dropout rate of 0.2. Note that for this experiment,
the patch length P is 12, and a trivial solution can occur if D ≥ 12. The results confirm that using
dropout is necessary to learn high dimensional representations, leading to better performance.

4 Conclusion
This paper revisits masked modeling in time series analysis, focusing on two key aspects: 1) the
pretraining task and 2) the model architecture. In contrast to previous works that primarily emphasize
dependencies between TS patches, we advocate a patch-independent approach on two fronts: 1) by
introducing a patch reconstruction task and 2) employing patch-wise MLP. Our results demonstrate
that the proposed PI approach is more robust to distribution shifts and patch size compared to the PD
approach, resulting in superior performance while more efficient in both forecasting and classification
tasks. We hope that our work sheds light on the effectiveness of self-supervised learning through
simple pretraining tasks and model architectures in various domains.
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A Dataset Description
A.1 Time Series Forecasting

For time series forecasting, we assess the effectiveness of our proposed PITS using seven datasets,
including four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Traffic, and Electricity.
These datasets have been widely employed for benchmarking and are publicly accessible [30]. The
statistics of these datasets are summarized in Table A.1.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Traffic Electricity

Features 7 7 7 7 21 862 321
Timesteps 17420 17420 69680 69680 52696 17544 26304

Table A.1: Statistics of datasets for forecasting.

A.2 Time Series Classification

For time series classification, we use five datasets of different characteristics, as described in Table
A.2. Note that both SleepEEG and Epilepsy datasets belong to the same domain, characterized by
being EEG datasets. For transfer learning tasks, we define them as being part of the same domain.

Dataset # Samples # Channels # Classes Length Freq (Hz)

SleepEEG 371,055 1 5 200 100
Epilepsy 60 / 20 / 11,420 1 2 178 174

FD-B 60 / 21 / 13,559 1 3 5,120 64,000
Gesture 320 / 120 / 120 3 8 315 100
EMG 122 / 41 / 41 1 3 1,500 4,000

Table A.2: Statistics of datasets for classification.
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B Related Works
Self-supervised learning. In recent years, self-supervised learning (SSL) has gained attention for
learning powerful representations from unlabeled data across various domains. The success of SSL
comes from active research on pretext tasks that predict a certain aspect of data without supervision.
Next token prediction [3] and masked token prediction [7] are commonly used in natural language
processing, and jigsaw puzzles [22] and rotation prediction [11] are commonly used in computer
vision.
Recently, contrastive learning (CL) [13] has emerged as an effective pretext task. The key principle of
CL is to maximize similarities between positive pairs while minimizing similarities between negative
pairs [10, 5, 32]. Another promising technique is masked modeling, which trains the models to
reconstruct masked patches based on the unmasked part. For instance, in natural language processing,
models predict masked words within a sentence [7], while in computer vision, they predict masked
patches in images [2, 15, 31] within their respective domains.

CL for TS∗ TST TS2Vec FEDFormer DLinear PatchTST TimeMAE SimMTM PITS(KDD 2021) (AAAI 2022) (ICML 2022) (AAAI 2023) (ICLR 2023) (arXiv 2023) (arXiv 2023)

Pretrain
CL ✓ ✓ ✓

MTM ✓ ✓ ✓ ✓ ✓

No (SL) ✓ ✓ ✓ ✓ ✓ ✓

Task Forecasting ✓ ✓ ✓ ✓ ✓ ✓ ✓

Classification ✓ ✓ ✓ ✓ ✓ ✓

∗ T-Loss (NeurIPS 2019), Self-Time (arXiv 2020), TS-SD (IJCNN 2021), TS-TCC (IJCAI 2021), TNC (arXiv 2021), Mixing-up (PR Letters

2022), TF-C (NeurIPS 2022), TimeCLR (KBS 2022), CA-TCC (TPAMI 2023).

Table B.1: Comparison table of SOTA methods in TS.

Masked time series modeling. Besides CL, masked modeling has gained attention as a pretext
task for SSL in time series. This task involves masking a portion of the TS and predicting the
missing values, known as masked time series modeling (MTM). While CL has shown impressive
performance in high-level classification tasks, masked modeling has excelled in low-level forecasting
tasks [32, 21].
TST [34] applies the masked modeling paradigm to TS, aiming to reconstruct masked timestamps.
PatchTST [21] focuses on predicting masked subseries-level patches to capture local semantic
information and reduce memory usage. SimMTM [8] reconstructs the original TS from multiple
masked TS. TimeMAE [6] trains a transformer-based encoder using two pretext tasks, masked
codeword classification and masked representation regression. Table B.1 compares various methods
in TS including ours in terms of two criterions: pretraining methods and downstream tasks.
Different from recent MTM works, we propose to reconstruct unmasked patches through autoencod-
ing. A primary concern on autoencoding is the trivial solution of identity mapping, such that the
dimension of hidden layers should be smaller than the input. To alleviate this, we introduce dropout
after intermediate fully-connected (FC) layers, which is similar to the case of stacked denoising
autoencoders [19], where the ablation study can be found in Figure 4.
Linear models for time series forecasting. Transformer [25] is a popular sequence modeling
architecture that has prompted a surge in Transformer-based solutions for time series analysis [27].
Transformers derive their primary strength from the multi-head self-attention mechanism, excelling
at extracting semantic correlations within extensive sequences. Nevertheless, recent work [33] shows
that simple linear models can still extract such information captured by Transformer-based methods.
Motivated by this work, we propose to use a simple MLP architecture that does not encode interaction
between time series patches.
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C More on Experiments Section
C.1 Experimental Settings

Tasks and evaluation metrics. We demonstrate the effectiveness of the proposed PITS on two
downstream tasks: time series forecasting (TSF) and classification (TSC) tasks. For evaluation, we
mainly follow the standard SSL framework that pretrains and fine-tunes the model on the same dataset,
but we also consider in-domain and cross-domain transfer learning settings in some experiments. As
evaluation metrics, we use the mean squared error (MSE) and mean absolute error (MAE) for TSF,
and accuracy, precision, recall, and the F1 score for TSC.

C.2 Time Series Forecasting

Datasets and baseline methods. For forecasting tasks, we experiment seven datasets, including
four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Traffic, and Electricity [30], with a
prediction horizon of H ∈ {96, 192, 336, 720}. For the baseline methods, we consider Transformer-
based models, including PatchTST [21], SimMTM [8], FEDformer [36], and Autoformer [30], and
MLP models, including DLinear [33] and TSMixer [4]. We also compare PITS and PatchTST without
self-supervised pretraining1, which essentially compares PI and PD architectures. We follow the
experimental setups and baseline results from PatchTST, SimMTM, and TSMixer.
Standard setting. Table C.1 shows the comprehensive results on the multivariate TSF task, demon-
strating that our proposed PITS is competitive to PatchTST in both settings, which is the SOTA
Transformer-based method, while PITS is much more efficient than PatchTST. SimMTM is a con-
current work showing similar performance to ours in SSL while significantly worse in supervised
learning. Table C.2 compares PITS and PatchTST under three different scenarios: fine-tuning (FT),
linear probing (LP), and supervised learning without self-supervised pretraining (Sup.), where we
present the average MSE across four horizons. As shown in Table C.2, PITS outperforms PatchTST
for all scenarios on average, and the margin is significant for the linear probing scenario.

Models Self-supervised Supervised

PITS PatchTST∗ SimMTM† PITS PatchTST SimMTM† DLinear TSMixer FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.364 0.392 0.379 0.408 0.367 0.402 0.369 0.397 0.375 0.399 0.380 0.412 0.375 0.399 0.361 0.392 0.376 0.415 0.435 0.446
192 0.398 0.414 0.414 0.428 0.403 0.425 0.402 0.416 0.414 0.421 0.416 0.434 0.405 0.416 0.404 0.418 0.423 0.446 0.456 0.457
336 0.415 0.427 0.435 0.446 0.415 0.430 0.409 0.425 0.431 0.436 0.448 0.458 0.439 0.443 0.420 0.431 0.444 0.462 0.486 0.487
720 0.425 0.451 0.468 0.474 0.430 0.453 0.457 0.465 0.449 0.466 0.481 0.469 0.472 0.490 0.463 0.472 0.469 0.492 0.515 0.517

E
T

T
h2

96 0.269 0.332 0.306 0.351 0.288 0.347 0.281 0.343 0.274 0.336 0.325 0.374 0.289 0.353 0.274 0.341 0.332 0.374 0.332 0.368
192 0.326 0.372 0.361 0.392 0.346 0.385 0.345 0.384 0.339 0.379 0.400 0.424 0.383 0.418 0.339 0.385 0.407 0.446 0.426 0.434
336 0.354 0.396 0.405 0.427 0.363 0.401 0.343 0.389 0.331 0.380 0.405 0.433 0.448 0.465 0.361 0.406 0.400 0.447 0.477 0.479
720 0.378 0.425 0.419 0.446 0.396 0.431 0.388 0.430 0.379 0.422 0.451 0.475 0.605 0.551 0.445 0.470 0.412 0.469 0.453 0.490

E
T

T
m

1 96 0.296 0.355 0.294 0.345 0.289 0.343 0.295 0.346 0.290 0.342 0.295 0.346 0.299 0.343 0.285 0.339 0.326 0.390 0.510 0.492
192 0.321 0.368 0.327 0.369 0.323 0.369 0.331 0.369 0.332 0.369 0.333 0.374 0.335 0.365 0.327 0.365 0.365 0.415 0.514 0.495
336 0.353 0.388 0.364 0.390 0.349 0.385 0.360 0.388 0.366 0.392 0.370 0.398 0.369 0.386 0.356 0.382 0.392 0.425 0.510 0.492
720 0.395 0.412 0.409 0.415 0.399 0.418 0.416 0.420 0.420 0.424 0.427 0.431 0.425 0.421 0.419 0.414 0.446 0.458 0.527 0.493

E
T

T
m

2 96 0.163 0.255 0.167 0.256 0.166 0.257 0.163 0.255 0.165 0.255 0.175 0.268 0.167 0.260 0.163 0.252 0.180 0.271 0.205 0.293
192 0.213 0.289 0.232 0.302 0.223 0.295 0.215 0.293 0.220 0.292 0.240 0.312 0.224 0.303 0.216 0.290 0.252 0.318 0.278 0.336
336 0.263 0.324 0.291 0.342 0.282 0.334 0.266 0.328 0.278 0.329 0.298 0.351 0.281 0.342 0.268 0.324 0.324 0.364 0.343 0.379
720 0.337 0.373 0.368 0.390 0.370 0.385 0.342 0.381 0.367 0.385 0.403 0.413 0.397 0.421 0.420 0.422 0.410 0.420 0.414 0.419

W
ea

th
er 96 0.149 0.201 0.146 0.194 0.151 0.202 0.153 0.202 0.152 0.199 0.166 0.216 0.176 0.237 0.145 0.198 0.238 0.314 0.249 0.329

192 0.195 0.241 0.192 0.238 0.223 0.295 0.191 0.242 0.197 0.243 0.208 0.254 0.220 0.282 0.191 0.242 0.275 0.329 0.325 0.370
336 0.244 0.280 0.245 0.280 0.246 0.283 0.245 0.280 0.249 0.283 0.257 0.290 0.265 0.319 0.242 0.280 0.339 0.377 0.351 0.391
720 0.312 0.328 0.320 0.336 0.320 0.338 0.310 0.329 0.320 0.335 0.326 0.338 0.323 0.362 0.320 0.336 0.389 0.409 0.415 0.426

Tr
af

fic

96 0.373 0.257 0.393 0.275 0.368 0.262 0.375 0.264 0.367 0.251 0.471 0.309 0.410 0.282 0.376 0.264 0.576 0.359 0.597 0.371
192 0.388 0.266 0.376 0.254 0.373 0.251 0.389 0.270 0.385 0.259 0.475 0.308 0.423 0.287 0.397 0.264 0.610 0.380 0.607 0.382
336 0.401 0.271 0.384 0.259 0.395 0.254 0.401 0.277 0.398 0.265 0.490 0.315 0.436 0.296 0.413 0.290 0.608 0.375 0.623 0.387
720 0.436 0.290 0.446 0.306 0.432 0.290 0.437 0.294 0.434 0.287 0.524 0.332 0.466 0.315 0.444 0.306 0.621 0.375 0.639 0.395

E
le

ct
ri

ci
ty 96 0.129 0.225 0.126 0.221 0.133 0.223 0.131 0.228 0.130 0.222 0.190 0.279 0.140 0.237 0.131 0.229 0.186 0.302 0.196 0.313

192 0.144 0.240 0.145 0.238 0.147 0.237 0.147 0.242 0.148 0.240 0.195 0.285 0.153 0.249 0.151 0.246 0.197 0.311 0.211 0.324
336 0.160 0.256 0.164 0.256 0.166 0.265 0.162 0.260 0.167 0.261 0.211 0.301 0.169 0.267 0.161 0.261 0.213 0.328 0.214 0.327
720 0.197 0.290 0.200 0.290 0.203 0.297 0.199 0.290 0.202 0.291 0.253 0.333 0.203 0.301 0.197 0.293 0.233 0.344 0.236 0.342

Average 0.300 0.326 0.314 0.333 0.306 0.331 0.304 0.329 0.307 0.327 0.343 0.355 0.332 0.351 0.311 0.333 0.373 0.386 0.412 0.409

∗ We used the official code to replicate the results. † SimMTM is a concurrent work to ours.

Table C.1: Results of multivariate TSF. We compare both the supervised and self-supervised
versions of PatchTST and our method. The best results are in bold and the second best are underlined.
Transfer learning. In in-domain transfer, we experiment datasets with the same frequency for the
source and target datasets, whereas in cross-domain transfer, datasets with different frequencies are
utilized for the source and target datasets. Table C.3 shows the results of the average MSE across four
horizons, which demonstrates that our proposed PITS surpasses the SOTA methods in most cases.

1For PITS and PatchTST supervised learning, patches are overlapped following PatchTST [21].
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Metric: MSE PITS PatchTST

FT LP Sup. FT LP Sup.

ETTh1 0.401 0.403 0.409 0.424 0.434 0.417
ETTh1 0.331 0.334 0.337 0.373 0.364 0.331
ETTm1 0.341 0.356 0.350 0.349 0.355 0.352
ETTm2 0.244 0.244 0.247 0.264 0.264 0.258
Weather 0.225 0.239 0.225 0.226 0.233 0.230
Traffic 0.399 0.406 0.401 0.400 0.424 0.396

Electricity 0.157 0.161 0.160 0.159 0.168 0.162

Average 0.300 0.306 0.304 0.314 0.320 0.307

Table C.2: PITS vs. PatchTST.

PITS PatchTST SimMTM TimeMAE TST LaST TF-C CoST
Source Target FT LP FT LP

In-
domain

ETTh2 ETTh1 0.404 0.403 0.423 0.464 0.415 0.728 0.645 0.443 0.635 0.584
ETTm2 ETTm1 0.345 0.354 0.348 0.411 0.351 0.682 0.480 0.414 0.758 0.354

Average 0.375 0.378 0.386 0.406 0.383 0.705 0.563 0.429 0.697 0.469

Cross-
domain

ETTm2 ETTh1 0.407 0.405 0.433 0.421 0.428 0.724 0.632 0.503 1.091 0.582
ETTh2 ETTm1 0.350 0.357 0.363 0.378 0.365 0.688 0.472 0.475 0.750 0.377
ETTm1 ETTh1 0.406 0.407 0.447 0.432 0.422 0.726 0.645 0.426 0.700 0.750
ETTh1 ETTm1 0.353 0.357 0.348 0.374 0.346 0.666 0.482 0.353 0.746 0.359
Weather ETTh1 0.407 0.407 0.437 0.423 0.456 - - - - -
Weather ETTm1 0.351 0.356 0.348 0.355 0.358 - - - - -

Average 0.379 0.382 0.396 0.397 0.396 - - - - -

Table C.3: Results of TSF with transfer learning.

C.3 Time Series Classification

Datasets and baseline methods. For classification tasks, we use five datasets, SleepEEG [16],
Epilepsy [1], FD-B [18], Gesture [20], and EMG [12]. For the baseline methods, we employ TS-SD
[23], TS2Vec [32], CoST [29], LaST [26], Mixing-Up [28], TS-TCC [9], TF-C [35], TST [34],
TimeMAE [6] and SimMTM [8].

ACC. PRE. REC. F1

TS2Vec 92.17 93.84 81.19 85.71
CoST 88.07 91.58 66.05 69.11
LaST 92.11 93.12 81.47 85.74
TF-C 93.96 94.87 85.82 89.46
TST 80.21 40.11 50.00 44.51

TimeMAE 80.34 90.16 50.33 45.20
SimMTM 94.75 95.60 89.93 91.41

PITS∗ 95.27 95.35 95.27 95.30
PITS 95.67 95.63 95.67 95.64

∗ PITS without CL.

Table C.4: Results of TSC.

In-domain transfer learning Cross-domain transfer learning

SleepEEG → Epilepsy SleepEEG → FD-B SleepEEG → Gesture SleepEEG → EMG

ACC. PRE. REC. F1 ACC. PRE. REC. F1 ACC. PRE. REC. F1 ACC. PRE. REC. F1

TS-SD 89.52 80.18 76.47 77.67 55.66 57.10 60.54 57.03 69.22 66.98 68.67 66.56 46.06 15.45 33.33 21.11
TS2Vec 93.95 90.59 90.39 90.45 47.90 43.39 48.42 43.89 69.17 65.45 68.54 65.70 78.54 80.40 67.85 67.66
CoST 88.40 88.20 72.34 76.88 47.06 38.79 38.42 34.79 68.33 65.30 68.33 66.42 53.65 49.07 42.10 35.27
LaST 86.46 90.77 66.35 70.67 46.67 43.90 47.71 45.17 64.17 70.36 64.17 58.76 66.34 79.34 63.33 72.55

Mixing-Up 80.21 40.11 50.00 44.51 67.89 71.46 76.13 72.73 69.33 67.19 69.33 64.97 30.24 10.99 25.83 15.41
TS-TCC 92.53 94.51 81.81 86.33 54.99 52.79 63.96 54.18 71.88 71.35 71.67 69.84 78.89 58.51 63.10 59.04

TF-C 94.95 94.56 89.08 91.49 69.38 75.59 72.02 74.87 76.42 77.31 74.29 75.72 81.71 72.65 81.59 76.83
TST 80.21 40.11 50.00 44.51 46.40 41.58 45.50 41.34 69.17 66.60 69.17 66.01 46.34 15.45 33.33 21.11

TimeMAE 89.71 72.36 67.47 68.55 70.88 66.98 68.94 66.56 71.88 70.35 76.75 68.37 69.99 70.25 63.44 70.89
SimMTM 95.49 93.36 92.28 92.81 69.40 74.18 76.41 75.11 80.00 79.03 80.00 78.67 97.56 98.33 98.04 98.14

PITS 95.71 95.69 95.71 95.70 87.70 87.94 87.70 87.68 92.50 93.32 92.50 92.48 100.0 100.0 100.0 100.0

Table C.5: Results of TSC with transfer learning.

Standard setting. Table C.4 demonstrates that our proposed PITS outperforms all SOTA methods in
all metrics on the SleepEEG dataset. This contrasts with the results in prior works that CL is superior
to MTM for classification tasks [32]: while prior MTM methods such as TST and TimeMAE shows
relatively low performance compared to CL methods such as TS2Vec and TF-C2, the proposed PITS
outperforms CL methods, even without complementary CL.
Transfer learning. For transfer learning, we conduct experiments in both in-domain and cross-domain
transfer settings, using SleepEEG as the source dataset for both settings. For in-domain transfer, we
use target datasets from the same domain as the source dataset, which share the characteristic of
being EEG datasets, while we use target datasets from the different domain for cross-domain transfer.
Table C.5 demonstrates that our PITS outperforms SOTA methods in all scenarios. In particular, the
performance gain is significant in the challenging cross-domain transfer learning setting, implying
that PITS would be more practical in real-world applications under domain shifts.

2An exception is SimMTM [8], which is not officially published at the time of submission.
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C.4 Ablation Study

Pretrain Task Trans-
former

MLP

Input Output w/o CL w CL

Xu Xu 0.341 0.338 0.329
Xu Xm 0.351 0.348 0.364
0 Xu 0.342 0.348 0.348
0 0 0.343 0.345 0.345

Table C.6: Pretraining tasks.

Layer 1 - - - PI CL
Layer 2 CL PI CL+PI CL PI

ETTh1 0.720 0.409 0.417 0.442 0.401
ETTh2 0.394 0.336 0.366 0.371 0.331
ETTm1 0.711 0.355 0.356 0.358 0.341
ETTm2 0.381 0.247 0.254 0.265 0.244

Avg. 0.552 0.337 0.348 0.359 0.329

Table C.7: Effect of CL.

z1 z2 z∗
2

96 0.371 0.364 0.369
192 0.396 0.398 0.403
336 0.411 0.415 0.428
720 0.448 0.425 0.460

Avg. 0.407 0.401 0.415

Table C.8: Representation
for downstream tasks.

Performance of various pretrain tasks. In addition to the 1) PD task of reconstructing the masked
patches (Xm) and 2) PI task of autoencoding the unmasked patches (Xu), we also employ two other
basic tasks for comparison: 3) predicting Xu from zero-filled patches (0) and 4) autoencoding 0.
Table C.6 displays the average MSE on four ETT datasets across four horizons, highlighting that the
model pretrained with the PD task performs even worse than the two basic tasks with 0 as inputs.
This emphasizes the ineffectiveness of the PD task and the effectiveness of the proposed PI task.
Which representation to use for downstream tasks? In SSL, the boundary of the encoder and
the task-specific projection head is often unclear. To determine location to extract representation for
downstream tasks, we conduct experiments using representations from intermediate layers in MLP:
1) z1 from the first layer, 2) z2 from the second layer, and 3) z∗

2 from the additional projection layer
attached on top of the second layer. Table C.8 displays the MSE of ETTh1 across four horizons,
indicating that the second layer z2 yields the best results.
Location of complementary CL. To assess the effect of complementary CL together with PI
reconstruction, we conduct an ablation study on the choice of pretext tasks and their location in the
MLP encoder: the contrastive and/or reconstruction loss is computed on the first or second layer, or
neither. Table C.7 displays the average MSE on four ETT datasets across four horizons. We observe
that the PI reconstruction task is essential, and CL is effective when it is considered in the first layer.

1) Encoder Architecture
Transformer Linear MLP

0.425∗ 0.408 0.418

2) PD task → PI task
0.415 0.408 0.407

3) + Complementary CL
- - 0.401

Table C.9: PatchTST→PITS

Comparison with PatchTST. PITS can be derived from
PatchTST, by changing the pretraining task and encoder archi-
tecture. Table C.9 shows how each modification contributes
to the performance improvement on the ETTh1 dataset. Note
that we apply minor modifications including mask ratio of
50% and mean normalization to PatchTST, which does not
affect the performance (marked with ∗).
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C.5 Analysis

PI task is more robust to distribution shift than PD task. To assess the robustness of pretraining
tasks to distribution shifts, which are commonly observed in real-world datasets [14], we generate
toy examples with varying trends and seasonality, depicted in the left panel of Figure C.1. The right
panel of Figure C.1 visualizes the performance gap between the models trained with PD task and PI
task, where the x- and y-axis correspond to the slope and amplitude differences between the training
and test phases, respectively. The result indicates that the model trained with PI task exhibits better
robustness to distribution shifts, where the gap increases as the shift becomes more severe.

Figure C.1: PI vs. PD tasks under distribution shifts.

MLP is more interpretable than Transformer. While PI architectures process each patch inde-
pendently, PD architectures share information from all patches, leading to information leaks among
patches. This makes MLP more interpretable than Transformer, as visualizing the weight matrix
of the linear layer additionally introduced and learned for the downstream task shows each patch’s
contribution to predictions. Figure C.2 illustrates the seasonality of ETTm1 and the downstream
weight matrix trained on ETTm1 for both architectures. While the weight matrix of the linear layer
on top of Transformer is mostly uniform, that of MLP reveals seasonal patterns and emphasizes
recent information, highlighting that MLP captures the seasonality better than Transformer.
t-SNE visualization. To evaluate the quality of TS representations obtained from PI and PD tasks,
we utilize t-SNE [24] for visualization. For this analysis, we create toy examples with 10 classes,
each exhibiting its own trend and seasonality patterns, as shown in the top panel of Figure C.3. The
results, visualized in Figure C.3, demonstrate that representations learned from the PI task exhibit a
better ability to distinguish between classes.

MLP (PI arch)

Time Step

8 patches x 12 length = 96 

[ ETTm1 ]

Transformer (PD arch)

Patch 1

(64 dim)

Patch 42

Figure C.2: Downstream task weight W ∈ RH×N ·D.

PD task

TS with different trend & seasonality

PI task

* Pretrained weights with ETTh1

Figure C.3: t-SNE visualization.
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D Transfer Learning
For time series forecasting under transfer learning, we consider both in-domain and cross-domain
transfer learning settings, where we consider datasets with same frequency as in-domain. We perform
transfer learning in both in-domain and cross-domain using five datasets: four ETT datasests and
Weather. The full results are described in Table D.1, where missing values are not reported in
literature.

PITS PatchTST SimMTM TimeMAE TST LaST TF-C CoST TS2Vec
FT LP SL FT LP SL

source target horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

In
-d

om
ai

n

96 0.367 0.394 0.367 0.392 0.378 0.400 0.380 0.411 0.405 0.426 0.458 0.443 0.372 0.402 0.703 0.562 0.653 0.468 0.362 0.420 0.596 0.569 0.378 0.421 0.849 0.694
ETTh2 192 0.398 0.413 0.398 0.413 0.419 0.420 0.419 0.436 0.433 0.443 0.514 0.472 0.414 0.425 0.715 0.567 0.658 0.502 0.426 0.478 0.614 0.621 0.424 0.451 0.909 0.738

↓ 336 0.416 0.427 0.418 0.429 0.433 0.431 0.436 0.449 0.447 0.456 0.559 0.498 0.429 0.436 0.733 0.579 0.631 0.561 0.522 0.509 0.694 0.664 0.651 0.582 1.082 0.775
ETTh1 720 0.435 0.455 0.428 0.453 0.459 0.464 0.457 0.474 0.572 0.540 0.507 0.490 0.446 0.458 0.762 0.622 0.638 0.608 0.460 0.478 0.635 0.683 0.883 0.701 0.934 0.769

avg 0.404 0.423 0.403 0.422 0.422 0.429 0.423 0.443 0.464 0.466 0.510 0.476 0.415 0.430 0.728 0.583 0.645 0.535 0.443 0.471 0.635 0.634 0.584 0.539 0.944 0.744

96 0.292 0.348 0.308 0.350 0.302 0.352 0.294 0.350 0.294 0.350 0.327 0.360 0.297 0.348 0.647 0.497 0.471 0.422 0.304 0.388 0.610 0.577 0.239 0.331 0.586 0.515
ETTm2 192 0.330 0.370 0.339 0.370 0.342 0.377 0.333 0.371 0.330 0.372 0.393 0.398 0.332 0.370 0.597 0.508 0.495 0.442 0.429 0.494 0.725 0.657 0.339 0.371 0.624 0.562

↓ 336 0.355 0.384 0.365 0.385 0.373 0.391 0.359 0.392 0.359 0.386 0.425 0.425 0.364 0.393 0.700 0.525 0.455 0.424 0.499 0.523 0.768 0.684 0.371 0.421 1.035 0.806
ETTm1 720 0.404 0.411 0.406 0.409 0.422 0.420 0.407 0.414 0.406 0.415 0.500 0.473 0.410 0.431 0.786 0.596 0.498 0.532 0.422 0.450 0.927 0.759 0.467 0.481 0.780 0.669

avg 0.345 0.378 0.354 0.379 0.359 0.386 0.348 0.382 0.347 0.381 0.411 0.414 0.351 0.383 0.682 0.531 0.480 0.455 0.414 0.464 0.758 0.669 0.354 0.401 0.756 0.638

C
ro

ss
-d

om
ai

n

96 0.372 0.398 0.370 0.398 0.381 0.405 0.385 0.411 0.379 0.408 0.450 0.436 0.388 0.421 0.699 0.566 0.559 0.489 0.428 0.454 0.968 0.738 0.377 0.419 0.783 0.669
ETTm2 192 0.407 0.425 0.402 0.420 0.417 0.429 0.425 0.439 0.414 0.430 0.504 0.466 0.419 0.423 0.722 0.573 0.600 0.579 0.427 0.497 1.080 0.801 0.422 0.450 0.828 0.691

↓ 336 0.417 0.442 0.417 0.442 0.439 0.444 0.440 0.451 0.431 0.446 0.543 0.483 0.435 0.444 0.714 0.569 0.677 0.572 0.528 0.540 1.091 0.824 0.648 0.580 0.990 0.762
ETTh1 720 0.433 0.461 0.433 0.461 0.480 0.488 0.482 0.488 0.460 0.476 0.523 0.502 0.468 0.474 0.760 0.611 0.694 0.664 0.527 0.537 1.226 0.893 0.880 0.699 0.985 0.783

avg 0.407 0.431 0.405 0.430 0.429 0.441 0.433 0.447 0.421 0.440 0.505 0.472 0.428 0.441 0.724 0.580 0.632 0.576 0.503 0.507 1.091 0.814 0.582 0.537 0.896 0.726

96 0.300 0.354 0.304 0.346 0.294 0.347 0.302 0.353 0.326 0.372 0.326 0.361 0.322 0.347 0.658 0.505 0.449 0.343 0.314 0.396 0.677 0.603 0.253 0.342 0.466 0.480
ETTh2 192 0.335 0.372 0.335 0.365 0.332 0.367 0.342 0.375 0.354 0.386 0.371 0.392 0.332 0.375 0.594 0.511 0.477 0.407 0.587 0.545 0.718 0.638 0.367 0.392 0.557 0.532

↓ 336 0.361 0.393 0.367 0.383 0.363 0.387 0.370 0.392 0.392 0.409 0.413 0.418 0.394 0.391 0.732 0.532 0.407 0.519 0.631 0.584 0.755 0.663 0.388 0.431 0.646 0.576
ETTm1 720 0.403 0.417 0.423 0.414 0.420 0.419 0.439 0.426 0.440 0.434 0.486 0.460 0.411 0.424 0.768 0.592 0.557 0.523 0.468 0.429 0.848 0.712 0.498 0.488 0.752 0.638

avg 0.350 0.384 0.357 0.377 0.352 0.380 0.363 0.387 0.378 0.400 0.399 0.408 0.365 0.384 0.688 0.535 0.472 0.448 0.475 0.489 0.750 0.654 0.377 0.413 0.606 0.556

96 0.375 0.399 0.375 0.399 0.382 0.402 0.388 0.411 0.373 0.401 0.456 0.442 0.367 0.398 0.715 0.581 0.627 0.477 0.360 0.374 0.666 0.647 0.423 0.450 0.991 0.765
ETTm1 192 0.411 0.421 0.409 0.421 0.417 0.421 0.422 0.431 0.408 0.423 0.520 0.482 0.396 0.421 0.729 0.587 0.628 0.500 0.381 0.371 0.672 0.653 0.641 0.578 0.829 0.699

↓ 336 0.415 0.432 0.416 0.436 0.441 0.436 0.449 0.449 0.448 0.452 0.544 0.494 0.471 0.437 0.712 0.583 0.683 0.554 0.472 0.531 0.626 0.711 0.863 0.694 0.971 0.787
ETTh1 720 0.425 0.456 0.428 0.459 0.451 0.461 0.530 0.513 0.499 0.492 0.532 0.507 0.454 0.463 0.747 0.627 0.642 0.600 0.490 0.488 0.835 0.797 1.071 0.805 1.037 0.820

avg 0.406 0.427 0.407 0.428 0.422 0.430 0.447 0.451 0.432 0.442 0.513 0.481 0.422 0.430 0.726 0.595 0.645 0.533 0.426 0.441 0.700 0.702 0.750 0.632 0.957 0.768

96 0.301 0.353 0.302 0.346 0.299 0.352 0.293 0.344 0.316 0.359 0.322 0.360 0.290 0.348 0.667 0.521 0.425 0.381 0.295 0.387 0.672 0.600 0.248 0.332 0.605 0.561
ETTh1 192 0.341 0.377 0.334 0.365 0.334 0.371 0.327 0.366 0.351 0.378 0.388 0.399 0.327 0.372 0.561 0.479 0.495 0.478 0.335 0.379 0.721 0.639 0.336 0.391 0.615 0.561

↓ 336 0.364 0.390 0.367 0.384 0.365 0.392 0.364 0.397 0.386 0.399 0.408 0.415 0.357 0.392 0.690 0.533 0.456 0.441 0.379 0.363 0.755 0.664 0.381 0.421 0.763 0.677
ETTm1 720 0.404 0.417 0.424 0.415 0.424 0.419 0.409 0.417 0.441 0.430 0.491 0.464 0.409 0.423 0.744 0.583 0.554 0.477 0.403 0.431 0.837 0.705 0.469 0.482 0.805 0.664

avg 0.353 0.384 0.357 0.377 0.356 0.384 0.348 0.381 0.374 0.392 0.402 0.410 0.346 0.384 0.666 0.529 0.482 0.444 0.353 0.390 0.746 0.652 0.359 0.407 0.697 0.616

96 0.374 0.398 0.374 0.398 0.379 0.401 0.386 0.409 0.384 0.401 0.469 0.444 0.477 0.444 - - - - - - - - - - - -
Weather 192 0.409 0.420 0.409 0.420 0.408 0.419 0.405 0.420 0.408 0.422 0.518 0.476 0.454 0.522 - - - - - - - - - - - -

↓ 336 0.416 0.432 0.416 0.432 0.421 0.436 0.448 0.454 0.421 0.438 0.551 0.497 0.424 0.434 - - - - - - - - - - - -
ETTh1 720 0.427 0.456 0.427 0.456 0.477 0.480 0.508 0.508 0.479 0.489 0.542 0.507 0.468 0.469 - - - - - - - - - - - -

avg 0.407 0.427 0.407 0.427 0.421 0.434 0.437 0.448 0.423 0.438 0.520 0.481 0.456 0.467 - - - - - - - - - - - -

96 0.299 0.354 0.308 0.350 0.299 0.354 0.292 0.347 0.300 0.351 0.339 0.365 0.304 0.354 - - - - - - - - - - - -
Weather 192 0.336 0.376 0.336 0.367 0.342 0.384 0.332 0.373 0.336 0.372 0.381 0.395 0.338 0.375 - - - - - - - - - - - -

↓ 336 0.358 0.390 0.365 0.384 0.365 0.390 0.360 0.391 0.370 0.392 0.423 0.423 0.371 0.397 - - - - - - - - - - - -
ETTm1 720 0.412 0.420 0.414 0.411 0.418 0.421 0.406 0.421 0.413 0.425 0.506 0.466 0.417 0.426 - - - - - - - - - - - -

avg 0.351 0.386 0.356 0.378 0.356 0.388 0.348 0.383 0.355 0.385 0.412 0.412 0.358 0.388 - - - - - - - - - - - -

Models

Table D.1: Results of multivariate TS forecasting with transfer learning. We conduct experiments
under two settings: (1) in-domain and (2) cross-domain transfer. The best results are in bold and the
second best are underlined.
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E Comparison with PatchTST
We compare our proposed method with PatchTST in three versions: 1) fine-tuning (FT), linear probing
(LP), and supervised learning (SL). The results are described in Table E.1, which demonstrates that
our proposed method outperforms PatchTST in every version in most of the datasets.

Models PITS PatchTST

FT LP SL FT LP SL

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.364 0.392 0.366 0.392 0.369 0.397 0.379 0.408 0.382 0.410 0.375 0.399
192 0.398 0.414 0.398 0.414 0.402 0.416 0.414 0.428 0.433 0.441 0.414 0.421
336 0.415 0.427 0.419 0.427 0.409 0.425 0.435 0.446 0.439 0.446 0.431 0.436
720 0.425 0.451 0.430 0.454 0.457 0.465 0.468 0.474 0.482 0.482 0.449 0.466

avg 0.401 0.421 0.403 0.422 0.409 0.426 0.424 0.439 0.434 0.445 0.417 0.431

E
T

T
h2

96 0.269 0.332 0.269 0.333 0.281 0.343 0.306 0.351 0.299 0.350 0.274 0.336
192 0.326 0.372 0.331 0.373 0.345 0.384 0.361 0.392 0.363 0.394 0.339 0.379
336 0.354 0.396 0.352 0.395 0.343 0.389 0.405 0.427 0.386 0.417 0.331 0.380
720 0.378 0.425 0.383 0.425 0.388 0.430 0.419 0.446 0.409 0.440 0.379 0.422
avg 0.331 0.382 0.334 0.382 0.337 0.386 0.373 0.404 0.364 0.400 0.331 0.379

E
T

T
m

1

96 0.296 0.355 0.307 0.349 0.295 0.346 0.294 0.345 0.296 0.349 0.290 0.342
192 0.321 0.368 0.337 0.368 0.331 0.369 0.327 0.369 0.333 0.370 0.332 0.369
336 0.353 0.388 0.365 0.389 0.360 0.388 0.364 0.390 0.368 0.390 0.366 0.392
720 0.395 0.412 0.415 0.412 0.416 0.420 0.409 0.415 0.422 0.418 0.420 0.424

avg 0.341 0.381 0.356 0.378 0.350 0.381 0.349 0.380 0.355 0.382 0.352 0.382

E
T

T
m

2

96 0.163 0.255 0.160 0.252 0.163 0.255 0.167 0.256 0.168 0.257 0.165 0.255
192 0.213 0.289 0.214 0.289 0.216 0.293 0.232 0.302 0.231 0.302 0.220 0.292
336 0.263 0.324 0.263 0.324 0.267 0.328 0.291 0.342 0.290 0.341 0.278 0.329
720 0.337 0.373 0.342 0.376 0.342 0.381 0.368 0.390 0.366 0.387 0.367 0.385

avg 0.244 0.310 0.244 0.310 0.247 0.314 0.264 0.323 0.264 0.322 0.258 0.315

W
ea

th
er

96 0.149 0.201 0.167 0.222 0.153 0.202 0.146 0.194 0.160 0.211 0.152 0.199
192 0.195 0.241 0.211 0.259 0.191 0.242 0.192 0.238 0.203 0.248 0.197 0.243
336 0.244 0.280 0.256 0.293 0.245 0.280 0.245 0.280 0.251 0.285 0.249 0.283
720 0.312 0.328 0.319 0.338 0.310 0.329 0.320 0.336 0.319 0.334 0.320 0.335

avg 0.225 0.262 0.239 0.278 0.225 0.263 0.226 0.262 0.233 0.269 0.230 0.265

Tr
af

fic

96 0.373 0.257 0.384 0.266 0.375 0.264 0.393 0.275 0.399 0.294 0.367 0.251
192 0.388 0.266 0.395 0.270 0.389 0.270 0.376 0.254 0.412 0.298 0.385 0.259
336 0.401 0.271 0.409 0.276 0.401 0.277 0.384 0.259 0.425 0.306 0.398 0.265
720 0.436 0.290 0.438 0.295 0.437 0.294 0.446 0.306 0.460 0.323 0.434 0.287
avg 0.399 0.271 0.406 0.277 0.401 0.276 0.400 0.274 0.424 0.305 0.396 0.266

E
le

ct
ri

ci
ty 96 0.129 0.225 0.132 0.227 0.132 0.228 0.126 0.221 0.138 0.237 0.130 0.222

192 0.144 0.240 0.147 0.241 0.147 0.242 0.145 0.238 0.156 0.252 0.148 0.240
336 0.160 0.256 0.163 0.258 0.162 0.260 0.164 0.256 0.170 0.265 0.167 0.261
720 0.197 0.290 0.201 0.290 0.199 0.290 0.200 0.290 0.208 0.297 0.202 0.291

avg 0.157 0.253 0.161 0.252 0.160 0.255 0.159 0.251 0.168 0.263 0.162 0.254

Average 0.300 0.326 0.306 0.328 0.304 0.329 0.314 0.333 0.320 0.341 0.307 0.327

Table E.1: PITS vs. PatchTST in multivariate time series forecasting.
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F Effectiveness of PI Task and Contrastive Learning
To assess the effectiveness of the proposed patch reconstruction task and complementary contrastive
learning, we conduct ablation studies in both time series forecasting and time series classification.

F.1 Time Series Forecasting

To examine the effect of PI task and CL on forecasting, we conduct an experiment using four ETT
datasets. The results in Table F.1 demonstrate that performing CL with the representation obtained
from the first layer and PI with the one from the second layer gives the best performance.

Layer 1 - - - PI CL
Layer 2 CL PI CL+PI CL PI

E
T

T
h1

96 0.715 0.367 0.372 0.381 0.364
192 0.720 0.400 0.409 0.416 0.398
336 0.719 0.426 0.422 0.462 0.415
720 0.727 0.443 0.465 0.509 0.425
avg 0.720 0.409 0.417 0.442 0.401

E
T

T
h2

96 0.373 0.270 0.307 0.303 0.269
192 0.384 0.331 0.362 0.373 0.326
336 0.386 0.361 0.387 0.391 0.354
720 0.432 0.384 0.408 0.416 0.378
avg 0.394 0.336 0.366 0.371 0.331

E
T

T
m

1

96 0.693 0.305 0.302 0.300 0.296
192 0.702 0.335 0.337 0.336 0.321
336 0.716 0.366 0.365 0.369 0.353
720 0.731 0.413 0.413 0.426 0.395
avg 0.711 0.355 0.356 0.358 0.341

E
T

T
m

2

96 0.346 0.160 0.167 0.171 0.163
192 0.368 0.215 0.225 0.235 0.213
336 0.397 0.266 0.274 0.278 0.263
720 0.424 0.346 0.351 0.376 0.337
avg 0.381 0.247 0.254 0.265 0.244

Total avg 0.552 0.337 0.348 0.359 0.330

Table F.1: Effect of PI task and CL on time series forecasting.

F.2 Time Series Classification

To evaluate the impact of employing CL and PI on classification, we conducted an experiment using
the SleepEEG dataset. The results presented in Table F.2 demonstrate that as long as PI task is
employed, the performance is robust to the design choices.

Layer 1 - - - PI CL
Layer 2 CL PI CL+PI CL PI

Sl
ee

pE
E

G ACC. 91.61 95.27 95.67 95.67 95.67
PRE. 92.11 95.35 95.63 95.70 95.63
REC.. 91.61 95.27 95.66 95.66 95.67
F1.. 91.79 95.30 95.68 95.68 95.64

Table F.2: Effect of PI task and CL on time series classification.
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G Effectiveness of PI Strategies
In this experiment, we investigate the impact of our proposed PI strategies from two perspectives:
1) the pretraining task and 2) the encoder architecture. The results, shown in Table G.1, encompass
four ETT datasets with four different forecasting horizons. These results demonstrate that the PI task
consistently outperforms the conventional PD task across all considered architectures.

Architecture PI PD

Linear MLP MLPMixer Transformer

Task PD PI PD PI PD PI PD PI

E
T

T
h1

96 0.366 0.365 0.375 0.366 0.378 0.368 0.371 0.372
192 0.398 0.398 0.407 0.397 0.414 0.399 0.410 0.404
336 0.423 0.424 0.427 0.427 0.422 0.427 0.443 0.434
720 0.444 0.444 0.463 0.440 0.465 0.440 0.475 0.452

avg 0.408 0.408 0.418 0.407 0.420 0.409 0.425 0.415

E
T

T
h2

96 0.272 0.270 0.290 0.270 0.301 0.276 0.283 0.271
192 0.332 0.333 0.361 0.329 0.353 0.334 0.351 0.332
336 0.370 0.364 0.373 0.353 0.394 0.363 0.378 0.369
720 0.396 0.385 0.418 0.384 0.411 0.389 0.400 0.395

avg 0.343 0.338 0.361 0.334 0.365 0.341 0.353 0.342

E
T

T
m

1

96 0.304 0.304 0.298 0.302 0.294 0.296 0.294 0.297
192 0.337 0.338 0.341 0.337 0.332 0.334 0.335 0.336
336 0.370 0.368 0.368 0.363 0.364 0.363 0.365 0.359
720 0.423 0.423 0.416 0.420 0.418 0.416 0.405 0.403

avg 0.359 0.358 0.356 0.355 0.354 0.352 0.350 0.350

E
T

T
m

2

96 0.163 0.163 0.169 0.164 0.170 0.164 0.172 0.172
192 0.219 0.218 0.224 0.218 0.226 0.218 0.240 0.221
336 0.272 0.271 0.275 0.271 0.276 0.272 0.300 0.274
720 0.362 0.361 0.363 0.359 0.361 0.359 0.383 0.356

avg 0.254 0.253 0.258 0.253 0.259 0.253 0.274 0.256
Total avg 0.341 0.339 0.348 0.337 0.350 0.339 0.351 0.341

Table G.1: Effectiveness of PI tasks and PI architectures.

H Robustness to Patch Size
To evaluate the robustness of encoder architectures to patch size, we compare MLP and Transformer
with different patch sizes with ETTh2 and ETTm2. The left and the right panel of Figure H.1 illustrate
the average MSE of four horizons of ETTh2 and ETTm2, respectively.
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Figure H.1: Robustness of PI task to patch size.

I Performance by Dropout Rate
Figure I.1 displays the average MSE across four horizons, and Table I.1 lists all the MSE values for
four ETT datasets trained with MLP of D = 32 at various dropout rates. These results emphasize
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the importance of incorporating dropout during the pretraining phase of the reconstruction task, as it
helps prevent trivial solutions when the hidden dimension is greater than the input dimension.

0.0 0.1 0.2 0.3 0.4 0.5
0.330

0.335

0.340

0.345

0.348

0.339
0.338 0.338 0.338 0.338

Dropout Rate

Figure I.1: Avg. MSE by dropout.

Dropout rate ETTh1 ETTh2 ETTm1 ETTm2 Avg.

0.0 0.416 0.358 0.360 0.253 0.347
0.1 0.410 0.334 0.358 0.253 0.339
0.2 0.407 0.334 0.357 0.253 0.338
0.3 0.407 0.333 0.357 0.253 0.338
0.4 0.407 0.334 0.356 0.253 0.338
0.5 0.406 0.335 0.356 0.253 0.337

Table I.1: MSE by dropout.

J Performance of Various Pretrain Tasks
To see if the conventional PD task of reconstructing the masked patches (Xm) with the unmasked
patches (Xu) is appropriate for TS representation learning, we employ two other simple pretraining
tasks of 1) predicting Xu with zero-value patches (0) and 2) reconstructing 0 with themselves.
Table J.1 presents the results for four ETT datasets across three different architectures: Transformer,
MLP without CL, and MLP with CL. These results underscore that models pretarined with PD task
performs even worse than the two basic pretraining tasks with zero-value patch inputs, highlighting
the ineffectiveness of the PI task and emphasizing the importance of the proposed PI task.

Pretrain Task MLP

w/o CL w/ CL

Input Output ETTh1 ETTh2 ETTm1 ETTm2 avg ETTh1 ETTh2 ETTm1 ETTm2 avg ETTh1 ETTh2 ETTm1 ETTm2 avg

Xu Xu 0.415 0.342 0.350 0.256 0.341 0.407 0.334 0.357 0.253 0.338 0.401 0.331 0.341 0.244 0.329
Xu Xm 0.425 0.353 0.350 0.274 0.351 0.418 0.361 0.356 0.258 0.348 0.457 0.376 0.362 0.261 0.364
0 Xu 0.410 0.350 0.349 0.260 0.342 0.418 0.361 0.354 0.256 0.348 0.418 0.361 0.353 0.256 0.348
0 0 0.413 0.360 0.342 0.257 0.343 0.418 0.356 0.352 0.253 0.345 0.418 0.356 0.353 0.254 0.345

Transformer

Table J.1: Performance of various pretrain tasks.
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