Learning to Embed Time Series Patches Independently

Seunghan Lee, Taeyoung Park, Kibok Lee
Department of Statistics and Data Science, Yonsei University
{seunghan9613, tpark,kibok}@yonsei.ac.kr

Abstract

Conventional masked time series modeling patchify and partially mask out time se-
ries (TS), and then train Transformers to capture the dependencies between patches
by predicting masked patches from unmasked patches. However, we argue that
capturing such dependencies might not be an optimal strategy for TS representation
learning; rather, embedding patches independently results in better representations.
Specifically, we propose to use 1) the patch reconstruction task, autoencoding each
patch without looking at other patches, and 2) the MLP that embeds each patch
independently. In addition, we introduce complementary contrastive learning to
hierarchically capture adjacent TS information efficiently. Our proposed method
improves various tasks compared to state-of-the-art Transformer-based models,
while it is more efficient in terms of the number of parameters and training time.

1 Introduction

Masked time series modeling (MTM) has been studied as a pretext task that patchifies and partially
masks out TS and predicts the masked parts from the unmasked parts using encoders capturing
dependencies among the patches [34,21]. However, we argue that learning such dependencies among
patches might not be necessary for TS representation learning.

To this end, we introduce the concept of patch independence which does not [—
consider the interaction between TS patches when embedding them, which ..| =~ Gorire

is realized through two aspects: 1) the pretraining task and 2) the model V\W
architecture. Firstly, we propose a patch reconstruction task that reconstructs -

the unmasked patches in contrast to the conventional MTM task that predicts .. Train | Test
the masked patches. We refer to these tasks as the patch-independent (PD)™1* &
and patch-dependent (PD) tasks, respectively, as the former does not require Figure 1: PI vs. PD.
information of other patches while the latter does. Toy example in Figure

indicates that Transformer pretrained on the PI task is more robust to distribution shift than the model
trained on the PD task [21]]. Secondly, we propose to use the PI architecture (e.g., MLP) instead of
the PD architecture (e.g., Transformer), which is not only more efficient but also performs better.

In this paper, we propose Patch Independence for Time Series (PITS), which utilizes unmasked patch
reconstruction as the PI pretraining task and MLP as the PI architecture. On top of that, we introduce
complementary contrastive learning (CL) to efficiently capture adjacent TS information. The main
contributions are summarized as follows:

* We argue that learning to embed time series patches independently is superior to learning them
dependently for TS representation learning. To achieve PI, we propose PITS, incorporating two
major modifications on the MTM: 1) to make the task patch-independent, reconstructing the
unmasked patches instead of predicting the masked ones, and 2) to make the encoder patch-
independent, removing the attention mechanism to ignore correlation between the patches.

* We introduce complementary contrastive learning to hierarchically capture adjacent TS information
efficiently, where positive pairs are made by complementary random masking.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(a) Pretraining Task (b)

H I Reconstruction (P! task) IMasked Modeling (PD task) | Lrecon

4 ¢¢¢~ 9’355(?3' (ELEET A (T R)
— PO DL T =
{EEEEINE | | | (COooDm) (oo whoohte dobhdoob
b ' OO £, (00000
FLEETRE MLP-mixer cearog COEHEH0
c&q’w&ﬁgéﬁb EEEnOEg] - =~ - eSS =] I o
[0 OUDERDE DOOEDEE
COPDDNE | | CDEDEEE 0 0 + L3
[CeEER0] [EeEER0]
; ; ; ; EREVE R
FEETE EEETE | EEEE EEEE | |l ~ -
4 Patching 4 Patching 4 Patching 4 Patching . .
1. Linear 2.MLP 3. MLP-mixer 4. Transformer (] : Fe Layer (Encoder)
(] : FC Layer (Prediction head)
Pl architecture PD architecture [[] : Patch Representations

Figure 2: Patch-independent strategy of PITS. (a) illustrates the pretraining tasks and encoder
architectures in terms of PI and PD. (b) demonstrates the proposed PITS, which utilizes a PI task
with a PI architecture. TS is divided into patches and augmented with complementary masking.

» Extensive experiments demonstrate that our method improves SOTA performance on both forecast-
ing and classification. We also discover that PI tasks outperforms PD tasks in managing distribution
shifts, and that PI architecture is more interpretable and robust to patch size than PD architecture.

2 Methods

We address the task of learning an embedding function fp : ac;(,i’c’") — z(¢m) for a TS patch where

x, = {wﬁc*’”}, z={z*"} andi=1,...,B,c=1,...,C,n=1,...,N. Here, B,C, N

are the number of TS, number of channels in a TS, and number of patches in a channel. The input

and the output dimension, which are the patch length and patch embedding dimension, are denoted as

P and D, respectively, i.e., m,(,i’c’n) € RF and 204" € RP. For fo, we adopt channel-independent

[21] and patch-independent architecture, i.e, fy is independent to ¢ and n respectively.
2.1 Patch-Independent Task: Patch Reconstruction

Unlike the conventional PD task that predicts masked patches using unmasked ones, we propose
the patch reconstruction task (i.e., PI task) that autoencodes each patch without looking at the
other patches, as depicted in Figure 2fa). TS patch can be reconstructed in two different ways:
1) reconstruction at once by a FC layer processing the concatenation of representations, and 2) patch-
wise reconstruction by a FC layer processing each representation. Similar to PatchTST [21]], we
employ the patch-wise reconstruction. On top of that, we propose mean normalization, subtracting
the average value of unmasked parts for each TS before encoding and adding it back to the prediction.

2.2 Patch-Independent Architecture: MLP

While MTM has been usually studied with Transformers for capturing dependencies between patches,
we argue that learning to embed patches independently is better. Following this idea, we propose to
use the simple PI architecture (e.g., MLP) to solely focuses on extracting patch-wise representations.
Figure 2a) shows the examples of PI/PD tasks and architectures, where MLP-Mixer consists of a
single FC layer for time-mixing followed by a two-layer MLP for patch-mixing.

To show the efficiency introduced by PI architectures, we

compare PatchTST [21] and PITS in terms of the number of Table 1: Time/parameter efficiency.

parameters and training time on the ETTm1 dataset, where PatchTST PITS | Gain
PatchTST uses the PD task and PD architecture while PITS 4 params. 406,028 5772 | x703
uses the PI task and PI architecture. As shown in Table[I] Training time 46 15 | x3.06

PITS requires much less parameters and trains faster.
2.3 Complementary Contrastive Learning

To further boost performance of learned representations, we propose complementary CL to hier-
archically capture adjacent TS information. CL requires two views to generate positive pairs, and
we achieve this by a complementary masking: for a TS « and a mask m with the same length, we
consider m®« and (1 —m) ®x as two views for CL. Note that the purpose of masking is to generate
two views for CL; it does not affect the PI task, and it does not require an additional forward pass
when using the proposed PI architectures, such that the additional computational cost is negligible.

Figure [3]illustrates an example of complementary CL, atcn representaions: Coarse

where we perform CL hierarchically [32] by max- M M M M
pooling on the representations along the temporal axis, — Maxpeol, "™ N z
and compute and aggregate losses computed at each IIl [ﬁ ||I| jh] D{Eﬂ H
level. Then, the model learns to find missing patch "'“Pmi'_[l ﬁh lllh ’_ﬁh ﬁh rﬁ%_‘ ﬁh rﬁﬁ b
information in one view, by contrasting the similarity e iEEgelr el e e e
with another view and the others, so that the model View 1 ¢— View 2 Fine

can capture adjacent TS information hierarchically. Figure 3: Complementary CL.
2.4 Objective Function

Reconstruction loss. As illustrated in Figure[2[b), we perform CL at the first layer and reconstruction
by an additional projection head on top of the second layer, where we denote representations obtained
from the two layers as z; and z9, respectively. We feed z5 into the patch-wise linear projection head
to get a reconstructed result: fc\p = W z9. Then, the reconstruction loss can be written as:

B C N))) 2 .)) 2
Lrecon = Z Z Z Hm(i,c,n) ® (xl()z,c,n) _ Ec\z()z,c,n)) H2 + H(l _ m(z,c,n)) ® (mg,c,n) _ :’E\g,c,n)> H2
i=1 c=1n=1
B C N)) 2
33 e s 0
i1=1 1=1 n=1

where m (6" = (if the first view :vpi’c’”) is masked, and 1 otherwise. As derived in Eq. |1} the
reconstruction task is not affected by complementary masking.

Contrastive loss. Inspired by the cross-entropy loss-like formulation of the contrastive loss in i-Mix
[L7], we establish a softmax probability for the relative similarity among all the similarities considered
when computing contrastive loss. For conciseness, let zi”cm) = z(Len42N) gpd z(hent+N) pe the
two views of &(*™). Then, the softmax probability for a pair of patch indices (n, n’) is defined as:

exp(z(i,c,n) o z(i,c,n'))

i,c,(n,n)) = , 2
p(()) E§£1757£n eXp(z(i,(;,n) o z(i,C,S)) ()
where o is the dot product. Then, the total contrastive loss can be written as:
1 B C 2N
Z:CL:iZZZ_Ing(Zaca (nan+N))a (3)
2BON i=1 i=1 n=1

where we compute the hierarchical losses by max-pooling z(“¢™)’s along with the dimension n
repeatedly. The final loss is the sum of the reconstruction 10ss Lecon and contrastive loss Lcp .

3 Experiments

Time series forecasting (TSF). For forecasting tasks, we experiment seven datasets, including
four ETT datasets, Weather, Traffic, and Electricity [30], with a prediction horizon of H €
{96,192, 336, 720}. For the baseline methods, we consider Transformer-based models including
PatchTST [21./8}1361136,130] and MLP models including TSMixer [4}33]]. We follow the experimental
setups and baseline results from PatchTST [21]], SimMTM [8], and TSMixer [4]. Table [2]shows the
results of the average MSE across four horizons, demonstrating that PITS is competitive to SOTA
methods in both settings.

Table 2: Results of multivariate TSF.

Models Self-supervised Supervised

PITS PatchTST* SimMTM" PITS PatchTST SimMTM' DLinear TSMixer FEDformer Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.401 0421 0424 0439 0404 0428 || 0.409 0.426 0417 0431 0431 0443 0423 0437 0412 0428 0428 0454 0473 0477
ETTh2 0331 0.382 0373 0404 0.348 0.391 0337 0386 0.331 0.379 0395 0427 0431 0447 0355 0401 0388 0434 0422 0443
ETTml 0.341 0.380 0.349 0.380 0.341 0.380 || 0.350 0.381 0.352 0.382 0356 0362 0355 0379 0.347 0.375 0382 0422 0515 0493
ETTm2 0.244 0310 0264 0323 0260 0318 || 0.247 0.314 0258 0315 0279 0336 0267 0332 0267 0322 0292 0343 0310 0357
Weather | 0.225 0.262 0.226 0.262 0.235 0.280 || 0.225 0.263 0.230 0265 0239 0275 0246 0300 0.225 0264 0310 0357 0335 0379
Traffic 0399 0271 0400 0274 0392 0.264 || 0401 0276 0.396 0.266 0490 0316 0434 0295 0408 0281 0.604 0372 0617 0.384
Electricity | 0.157 0.253 0.159 0251 0.162 0.256 || 0.160 0.255 0.162 0.254 0.212 0.300 0.166 0.264 0.160 0257 0207 0321 0214 0.327
Average | 0.300 0.326 0314 0333 0306 0331 || 0.304 0329 0307 0327 0343 0355 0332 0351 0311 0333 0373 0386 0412 0409

* We used the official code to replicate the results. SimMTM is a concurrent work to ours.

Time series classification (TSC). For classification tasks, we use five datasets, SleepEEG [16],
Epilepsy [1]], FD-B [18l], Gesture [20], and EMG [12]. For the baseline methods, we employ TS2Vec

Table 3: TSC. Table 4: TSC with transfer learning. 0.348 FrE

ACC. Fy In-domain Cross-domain 0.346
TS2Vec 92.17 93.84 — Epilepsy — FD-B — Gesture — EMG § 0.344 Y —
CoST 88.07 69.11 ACC. B |ACC. B |ACC. i |ACC. B g —~&~ w/ Dropout
LaST 92.11 85.74 TS2Vec | 93.95 9045 | 4790 4389 | 69.17 65.70 | 78.54 67.66 <
TF-C 93.96 89.46 CoST | 8840 76.88 | 47.06 34.79 | 68.33 66.42 | 53.65 3527 0.340
TST 80.21 4451 LaST | 8646 70.67 | 46.67 45.17 | 64.17 5876 | 6634 72.55
TimeMAE | 8034 4520 TE-C | 9495 9149 | 6938 74.87 | 7642 7572 | 81.71 76.83 0.338
SImMTM. | 9495 o141 TST | 80.21 4451 | 4640 4134 | 69.17 66.01 | 4634 2111 Tt T © 5 3 & s
: : TimeMAE | 89.71 68.55 | 70.88 66.56 | 71.88 68.37 | 69.99 70.89 Hidden dimension (D)
PITS w/o CL | 9527 9530 SimMTM | 9549 9281 | 69.40 75.11 | 80.00 78.67 | 97.56 98.14
PITS 95.67 95.64 PITS | 9571 9570 | 87.70 87.68 | 92.50 92.48 | 100.0 100.0 Figure 4: MSE by dropout_
Table 5: Effectiveness of PL Table 6: Effect of complementary CL.
PI acrhitecture PD archi
Linear MLP MLP-Mixer Transformer PI task ETThl ETTh2 ETTm1 ETTm2 AVg'
Task PD PI PD PI PD PI PD PI Transformer 0.425 0.353 0.350 0.274 | 0.351
ETThl | 0408 0408 | 0418 0.407 | 0420 0.409 | 0425 0.415
ETTh2 | 0.343 0338 | 0361 0.334 | 0365 0341 | 0353 0.342 w/o CL 0.407 0.334 0.357 0.253 | 0.338
ETTml | 0.359 0358 | 0356 0.355 | 0354 0.352 | 0.350 0350 MLP | w/non-hier. CL | 0.405 0333 0.353 0252 | 0.336
ETTm2 | 0254 0243 | 0258 0.253 | 0259 0.253 | 0274 0.256 w/ hier. CL 0401 0331 0341 0244 | 0.329
Avg. | 0342 0340 | 0348 0337 | 0350 0.339 | 0351 0.341

[32], CoST [29], LaST [26], TE-C [33], TST [34]], TimeMAE [6] and SimMTM [8]]. Table [3]
demonstrates that PITS outperforms all SOTA methods on the Epilepsy dataset. We also conduct
experiments with transfer learning in both in- and cross-domain transfer settings, using SleepEEG as
the source dataset for both settings, where the settings are defined in SimMTM. Table] demonstrates
that our PITS outperforms SOTA methods in all scenarios.

Effect of PI/PD tasks/architectures. To assess the effect of our proposed PI pretraining task and
PI encoder architecture, we conduct an ablation study in Table E} As shown in Table E] which
shows average MSE across four horizons, PI pretraining results in better TSF performance than PD
pretraining regardless of the choice of the architecture.

Hierarchical design of complementary CL. The proposed complementary CL is structured hier-
archically to capture both coarse and fine-grained information in TS. To evaluate the effect of this
hierarchical design, we consider three different options: 1) without CL, 2) with non-hierarchical CL,
and 3) with hierarchical CL. Table[6]presents the average MSE across four horizons, highlighting the
performance gain by the hierarchical design.

MLP is more robust to patch size than Transformer. To assess

the robustness of encoder architectures to patch size, we compare . T s

MLP and Transformer using ETTh1 with different patch sizes. Fig-] 9, N T ro e
ure P]illustrates the results, indicating that MLP is more robust for 3o« T .

both the PI and PD tasks, resulting in consistently better forecasting ~ o

performance across various patch sizes. oo

Hidden dimension and dropout. The PI task may raise a concern on P Rase U

the trivial solution: when the hidden dimension D is larger than the Figure 5: MSE by patch size.
input dimension P, the identity mapping perfectly reconstructs the

input. This can be addressed by introducing dropout, where we add a dropout layer before the linear
projection head. Figure] displays the average MSE on four ETT datasets across four horizons under
various D in MLP, without dropout or with the dropout rate of 0.2. Note that for this experiment,
the patch length P is 12, and a trivial solution can occur if D > 12. The results confirm that using
dropout is necessary to learn high dimensional representations, leading to better performance.

4 Conclusion

This paper revisits masked modeling in time series analysis, focusing on two key aspects: 1) the
pretraining task and 2) the model architecture. In contrast to previous works that primarily emphasize
dependencies between TS patches, we advocate a patch-independent approach on two fronts: 1) by
introducing a patch reconstruction task and 2) employing patch-wise MLP. Our results demonstrate
that the proposed PI approach is more robust to distribution shifts and patch size compared to the PD
approach, resulting in superior performance while more efficient in both forecasting and classification
tasks. We hope that our work sheds light on the effectiveness of self-supervised learning through
simple pretraining tasks and model architectures in various domains.

References

[1] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and
Christian E Elger. Indications of nonlinear deterministic and finite-dimensional structures in

time series of brain electrical activity: Dependence on recording region and brain state. Physical
Review E, 64(6):061907, 2001.

[2] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.
Data2vec: A general framework for self-supervised learning in speech, vision and language. In
ICML, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurlIPS, 2020.

[4] Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An
all-mlp architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In ICML, 2020.

[6] Mingyue Cheng, Qi Liu, Zhiding Liu, Hao Zhang, Rujiao Zhang, and Enhong Chen. Timemae:
Self-supervised representations of time series with decoupled masked autoencoders. arXiv
preprint arXiv:2303.00320, 2023.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL, 2018.

[8] Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling. arXiv preprint
arXiv:2302.00861, 2023.

[9] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li,
and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting.
In IJCAI 2021.

[10] Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021.

[11] Spyros Gidaris and Nikos Komodakis. Unsupervised representation learning by predicting
image rotations. In /CLR, 2018.

[12] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215-e220, 2000.

[13] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In CVPR, 2006.

[14] Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting
the channel independent strategy for multivariate time series forecasting. arXiv preprint
arXiv:2304.05206, 2023.

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll4r, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

[16] Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL Oberye.
Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the
eeg. IEEE Transactions on Biomedical Engineering, 47(9):1185-1194, 2000.

[17] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak Lee. i-mix: A
domain-agnostic strategy for contrastive representation learning. In ICLR, 2021.

[18] Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition
monitoring of bearing damage in electromechanical drive systems by using motor current
signals of electric motors: A benchmark data set for data-driven classification. In PHM Society
European Conference, volume 3. PHM Society, 2016.

[19] Jianglin Liang and Ruifang Liu. Stacked denoising autoencoder and dropout together to prevent
overfitting in deep neural network. In CISP, 2015.

[20] Jun Liu, Lin Zhong, Jehan Wickramasuriya, and Vijay Vasudevan. Uwave: accelerometer-
based personalized gesture recognition and its applications. Pervasive and Mobile Computing,
5(6):657-675, 2009.

[21] Yushan Nie, Nam H Nguyen, Pattarawat Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In /CLR, 2023.

[22] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In ECCV, 2016.

[23] Pengxiang Shi, Wenwen Ye, and Zheng Qin. Self-supervised pre-training for time series
classification. In IJCNN, 2021.

[24] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(11), 2008.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

[26] Zhiyuan Wang, Xovee Xu, Weifeng Zhang, Goce Trajcevski, Ting Zhong, and Fan Zhou.
Learning latent seasonal-trend representations for time series forecasting. In NeurIPS, 2022.

[27] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

[28] Kristoffer Wickstrgm, Michael Kampffmeyer, Karl @yvind Mikalsen, and Robert Jenssen.
Mixing up contrastive learning: Self-supervised representation learning for time series. Pattern
Recognition Letters, 155:54-61, 2022.

[29] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. In ICLR,
2022.

[30] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In NeurIPS, 2021.

[31] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai, and Han
Hu. Simmim: A simple framework for masked image modeling. In CVPR, 2022.

[32] Zhanwei Yue, Yiqun Wang, Jinghua Duan, Tao Yang, Chen Huang, Yunhai Tong, and Bo Xu.
Ts2vec: Towards universal representation of time series. In AAAI 2022.

[33] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In AAAI, 2023.

[34] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A transformer-based framework for multivariate time series representation learning.
In SIGKDD, 2021.

[35] Xiaotian Zhang, Zeyu Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised
contrastive pre-training for time series via time-frequency consistency. In NeurIPS, 2022.

[36] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In ICML, 2022.

A Dataset Description

A.1 Time Series Forecasting

For time series forecasting, we assess the effectiveness of our proposed PITS using seven datasets,
including four ETT datasets (ETTh1, ETTh2, ETTml, ETTm?2), Weather, Traffic, and Electricity.
These datasets have been widely employed for benchmarking and are publicly accessible [30]. The

statistics of these datasets are summarized in Table[A 1]

Datasets | ETThl ETTh2 ETTml ETTm2 Weather Traffic Electricity
Features 7 7 7 7 21 862 321
Timesteps | 17420 17420 69680 69680 52696 17544 26304

Table A.1: Statistics of datasets for forecasting.

A.2 Time Series Classification

For time series classification, we use five datasets of different characteristics, as described in Table
[A.2] Note that both SleepEEG and Epilepsy datasets belong to the same domain, characterized by
being EEG datasets. For transfer learning tasks, we define them as being part of the same domain.

Dataset # Samples # Channels # Classes Length Freq (Hz)
SleepEEG 371,055 1 5 200 100
Epilepsy | 60/20/11,420 1 2 178 174
FD-B 60/21/13,559 1 3 5,120 64,000
Gesture 320/120/120 3 8 315 100
EMG 122741741 1 3 1,500 4,000

Table A.2: Statistics of datasets for classification.

B Related Works

Self-supervised learning. In recent years, self-supervised learning (SSL) has gained attention for
learning powerful representations from unlabeled data across various domains. The success of SSL
comes from active research on pretext tasks that predict a certain aspect of data without supervision.
Next token prediction [3]] and masked token prediction [[7] are commonly used in natural language
processing, and jigsaw puzzles [22] and rotation prediction [11]] are commonly used in computer
vision.

Recently, contrastive learning (CL) [13]] has emerged as an effective pretext task. The key principle of
CL is to maximize similarities between positive pairs while minimizing similarities between negative
pairs [10, 15} 32]. Another promising technique is masked modeling, which trains the models to
reconstruct masked patches based on the unmasked part. For instance, in natural language processing,
models predict masked words within a sentence [7]], while in computer vision, they predict masked
patches in images [2} 15, [31]] within their respective domains.

CL for TS* TST TS2Vec FEDFormer DLinear PatchTST TimeMAE SimMTM PITS
(KDD 2021) | (AAAI2022) | ICML 2022) | (AAAI2023) | (ICLR 2023) | (arXiv 2023) | (arXiv 2023)
CL v v v
Pretrain MTM 7 v v v v
No (SL) v 4 v v v v
Task Forecasting v v v v v v v
Classification v v v v v 4

* T-Loss (NeurIPS 2019), Self-Time (arXiv 2020), TS-SD (IJCNN 2021), TS-TCC (IJCAI 2021), TNC (arXiv 2021), Mixing-up (PR Letters
2022), TF-C (NeurIPS 2022), TimeCLR (KBS 2022), CA-TCC (TPAMI 2023).

Table B.1: Comparison table of SOTA methods in TS.

Masked time series modeling. Besides CL, masked modeling has gained attention as a pretext
task for SSL in time series. This task involves masking a portion of the TS and predicting the
missing values, known as masked time series modeling (MTM). While CL has shown impressive
performance in high-level classification tasks, masked modeling has excelled in low-level forecasting
tasks [32, 121].

TST [34] applies the masked modeling paradigm to TS, aiming to reconstruct masked timestamps.
PatchTST [21] focuses on predicting masked subseries-level patches to capture local semantic
information and reduce memory usage. SImMMTM [8] reconstructs the original TS from multiple
masked TS. TimeMAE [6] trains a transformer-based encoder using two pretext tasks, masked
codeword classification and masked representation regression. Table[B.T|compares various methods
in TS including ours in terms of two criterions: pretraining methods and downstream tasks.

Different from recent MTM works, we propose to reconstruct unmasked patches through autoencod-
ing. A primary concern on autoencoding is the trivial solution of identity mapping, such that the
dimension of hidden layers should be smaller than the input. To alleviate this, we introduce dropout
after intermediate fully-connected (FC) layers, which is similar to the case of stacked denoising
autoencoders [19]], where the ablation study can be found in Figure 4]

Linear models for time series forecasting. Transformer [25] is a popular sequence modeling
architecture that has prompted a surge in Transformer-based solutions for time series analysis [27].
Transformers derive their primary strength from the multi-head self-attention mechanism, excelling
at extracting semantic correlations within extensive sequences. Nevertheless, recent work [33] shows
that simple linear models can still extract such information captured by Transformer-based methods.
Motivated by this work, we propose to use a simple MLP architecture that does not encode interaction
between time series patches.

C More on Experiments Section

C.1 Experimental Settings

Tasks and evaluation metrics. We demonstrate the effectiveness of the proposed PITS on two
downstream tasks: time series forecasting (TSF) and classification (TSC) tasks. For evaluation, we
mainly follow the standard SSL framework that pretrains and fine-tunes the model on the same dataset,
but we also consider in-domain and cross-domain transfer learning settings in some experiments. As
evaluation metrics, we use the mean squared error (MSE) and mean absolute error (MAE) for TSF,
and accuracy, precision, recall, and the F; score for TSC.

C.2 Time Series Forecasting

Datasets and baseline methods. For forecasting tasks, we experiment seven datasets, including
four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Traffic, and Electricity [30], with a
prediction horizon of H € {96,192, 336, 720}. For the baseline methods, we consider Transformer-
based models, including PatchTST [21]], SimMTM [8]], FEDformer [36]], and Autoformer [30]], and
MLP models, including DLinear [33]] and TSMixer [4]. We also compare PITS and PatchTST without
self-supervised pretraininéﬂ, which essentially compares PI and PD architectures. We follow the
experimental setups and baseline results from PatchTST, SimMTM, and TSMixer.

Standard setting. Table[C.1|shows the comprehensive results on the multivariate TSF task, demon-
strating that our proposed PITS is competitive to PatchTST in both settings, which is the SOTA
Transformer-based method, while PITS is much more efficient than PatchTST. SimMTM is a con-
current work showing similar performance to ours in SSL while significantly worse in supervised
learning. Table[C.2]compares PITS and PatchTST under three different scenarios: fine-tuning (FT),
linear probing (LP), and supervised learning without self-supervised pretraining (Sup.), where we
present the average MSE across four horizons. As shown in Table[C.2} PITS outperforms PatchTST
for all scenarios on average, and the margin is significant for the linear probing scenario.

Models Self-supervised Supervised
PITS PatchTST* SimMTM! PITS PatchTST SimMTM! DLinear TSMixer FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
— 96 | 0364 0392 0379 0408 0367 0.402 || 0369 0.397 0.375 0399 0.380 0412 0375 0399 0.361 0.392 0376 0415 0435 0446
£ 1920398 0414 0414 0428 0403 0425 || 0.402 0416 0414 0421 0416 0434 0405 0416 0404 0418 0423 0446 0456 0457
£ 336 | 0415 0427 0435 0446 0415 0430 || 0.409 0425 0431 0436 0448 0458 0439 0443 0420 0431 0444 0462 0486 0487
720 | 0.425 0.451 0468 0474 0430 0453 || 0457 0.465 0.449 0466 0481 0469 0472 0490 0463 0472 0469 0492 0515 0517
o 96 | 0269 0.332 0306 0351 0.288 0.347 || 0.281 0.343 0.274 0.336 0.325 0.374 0289 0.353 0.274 0341 0332 0.374 0332 0.368
£ 1920326 0372 0361 0392 0346 0385 || 0.345 0384 0.339 0.379 0400 0424 0383 0418 0339 0385 0407 0446 0426 0434
£ 0336|0354 0396 0405 0427 0363 0401 || 0343 0380 0331 0.380 0405 0433 0443 0465 0361 0406 0400 0447 0477 0479
720 | 0.378 0.425 0419 0446 0396 0431 || 0.388 0430 0.379 0422 0451 0475 0.605 0551 0445 0470 0412 0469 0453 0490
— 96 | 029 0355 0.294 0.289 0.343 || 0295 0.346 0290 0.342 0295 0346 0299 0.343 0285 0339 0326 0390 0510 0492
E 1920321 0368 0.327 0.323 0369 || 0.331 0369 0332 0369 0.333 0374 0335 0365 0327 0365 0365 0415 0.514 0495
E 336 | 0.353 0.388 0.364 0.349 0385 || 0.360 0.388 0.366 0.392 0.370 0.398 0369 0.386 0.356 0.382 0.392 0425 0510 0492
720 | 0.395 0412 0409 0.399 0418 || 0.416 0420 0420 0424 0427 0431 0425 0421 0419 0414 0446 0458 0.527 0493
o 96 | 0163 0.255 0.167 0.166 0.257 || 0.163 0.255 0.165 0.255 0.175 0268 0.167 0.260 0.163 0.252 0.180 0.271 0.205 0.293
E 192 | 0213 0.289 0.232 0.223 0295 || 0.215 0.293 0220 0.292 0.240 0312 0224 0303 0216 0290 0.252 0318 0278 0.336
5 336 | 0.263 0.324 0.291 0.282 0.334 || 0.266 0.328 0278 0.329 0.298 0.351 0281 0.342 0268 0.324 0.324 0364 0343 0379
720 | 0.337 0.373 0.368 0.370 0.385 || 0.342 0.381 0367 0.385 0403 0413 0397 0421 0420 0422 0410 0420 0414 0419
5 96 [0.149 0201 0.146 0.151 0202 || 0.153 0202 0.152 0.199 0.166 0216 0.176 0.237 0.145 0.198 0.238 0.314 0249 0.329
S 19210195 0241 0.192 0.223 0.295 || 0.191 0.242 0.197 0.243 0208 0.254 0.220 0.282 0.191 0.242 0.275 0.329 0.325 0.370
§ 336 | 0.244 0.280 0.245 0.246 0.283 || 0.245 0.280 0249 0.283 0.257 0290 0.265 0.319 0.242 0.280 0.339 0.377 0351 0.391
720 | 0312 0.328 0.320 0.320 0.338 || 0.310 0.329 0320 0.335 0.326 0.338 0323 0362 0320 0336 0.389 0409 0415 0426
o, 96 0373 0257 0393 0.368 0.262 || 0.375 0.264 0.367 0.251 0471 0309 0410 0282 0376 0264 0.576 0.359 0.597 0.371
£ 192] 0388 0266 0.376 0.373 0.251 || 0.389 0270 0.385 0.259 0475 0308 0423 0.287 0397 0264 0.610 0.380 0.607 0.382
E 336 | 0.401 0271 0.384 0.254 || 0401 0277 0.398 0.265 0490 0315 0436 0296 0413 0290 0.608 0.375 0.623 0.387
720 | 0.436 0.290 0.446 0.290 || 0.437 0.294 0.434 0.287 0.524 0332 0466 0315 0444 0306 0.621 0375 0.639 0.395
2 96 | 0129 0225 0.126 0.133 0.223 || 0.131 0.228 0.130 0.222 0.190 0.279 0.140 0.237 0.131 0229 0.186 0.302 0.196 0.313
2192 | 0144 0240 0.145 0.147 0237 || 0.147 0242 0.148 0.240 0.195 0285 0.153 0.249 0.151 0246 0.197 0311 0211 0324
3 336 | 0.160 0.256 0.164 0.166 0.265 || 0.162 0.260 0.167 0.261 0.211 0301 0.169 0.267 0.161 0261 0.213 0.328 0214 0327
m 720 | 0.197 0.290 0.200 0203 0.297 || 0.199 0.290 0202 0.291 0.253 0.333 0203 0.301 0.197 0293 0.233 0344 0236 0.342
Average | 0.300 0.326 0314 0.306 0.331 || 0.304 0.329 0307 0.327 0.343 0355 0332 0351 0311 0333 0373 0386 0412 0409

* We used the official code to replicate the results. T SimMTM is a concurrent work to ours.
Table C.1: Results of multivariate TSF. We compare both the supervised and self-supervised
versions of PatchTST and our method. The best results are in bold and the second best are underlined.
Transfer learning. In in-domain transfer, we experiment datasets with the same frequency for the
source and target datasets, whereas in cross-domain transfer, datasets with different frequencies are
utilized for the source and target datasets. Table[C.3|shows the results of the average MSE across four
horizons, which demonstrates that our proposed PITS surpasses the SOTA methods in most cases.

"For PITS and PatchTST supervised learning, patches are overlapped following PatchTST [21]].

PITS PatchTST

N PITS PatchTST __PITS | PachTST | uMTM TimeMAE TST LaST TF-C CoST
Metric: MSE o s o s Source Target | FT LP | FT LP
up- up- | ETTh2 ETThI | 0404 0403 | 0423 0464 | 0415 0728 0.645 0443 0.635 0584
ETThl 0.401 0403 0409 | 0424 0434 0417 oy | ETIm2 ETTm1 | 0345 0354 | 0348 0411 | 0351 0682 0480 0414 0758 0354
ETThl 0.331 0334 0337 | 0373 0364 0.331 Average 0.375 0378 | 0.386 0406 | 0.383 0705 0563 0429 0.697 0.469
ETTml 0.341 0356 0.350 | 0.349 0.355 0.352 . - -
ETTm2 ETThl | 0407 0405 | 0433 0421 | 0428 0724 0632 0503 1.091 0582
ETTm2 | 0.244 0244 0247 | 0264 0264 0258 ETTh2 ETTml | 0.350 0357 | 0363 0378 | 0365 0688 0472 0475 0750 0377
Weather 0.225 0239 0.225 | 0226 0233 0230 Cross. | ETTm1 ETThL | 0.406 0407 | 0.447 0.422 0726 0.645 0426 0700 0.750
Traffic 0.399 0406 0.401 | 0.400 0424 0.396 domes | ETThI ETTml | 0353 0357 | 0348 0.346 0666 0482 0353 0746 0359
Electricity 0.157 0.161 0.160 | 0.159 0.168 0.162 Weather ETThl | 0.407 0.407 | 0437 0423 | 0456 - - - - -
Weather ETTml | 0351 0356 | 0.348 0.358
Average | 0300 0306 0304 | 0.314 0320 0307 o o379 03 096 s - —
Table C.2: PITS vs. PatchTST. Table C.3: Results of TSF with transfer learning.

C.3 Time Series Classification

Datasets and baseline methods. For classification tasks, we use five datasets, SleepEEG [16]],
Epilepsy [IL], FD-B [[18]], Gesture [20], and EMG [12]. For the baseline methods, we employ TS-SD
[23], TS2Vec [32]], CoST [29], LaST [26], Mixing-Up [28], TS-TCC [9], TF-C [35]], TST [34],
TimeMAE [6]] and SimMTM [8]].

ACC. PRE. REC. F, In-domain transfer learning Cross-domain transfer learning
Tsovee | 9217 9384 8119 8571 SleepEEG — Epilepsy SleepEEG — FD-B SleepEEG — Gesture SleepEEG — EMG

CoST 88.07 9158 6605 69.11 ACC. PRE. REC. F, | ACC. PRE. REC. F, |ACC. PRE. REC. F, |ACC. PRE. REC. F
LaST [9211 9312 8147 8574 TSSD | 89.52 8018 7647 7767 | 5566 5710 6054 5703 | 6922 6698 68.67 6656 | 46.06 1545 3333 2111
TE.C | 93.96 9487 8582 8946 TS2Vec | 9395 9059 9030 9045 | 4790 4339 4842 4389 | 6917 6545 6854 6570 | 78.54 $040 6785 67.66
TST 8021 4011 5000 4451 CoST | 8840 8820 7234 7688 | 4706 3879 3842 3479 | 6833 6530 6833 6642 | 5365 49.07 4210 3527
) - : - - LaST | 8646 9077 6635 7067 | 4667 4390 4771 4517 | 6417 7036 6417 5876 | 6634 7934 6333 72.55
TimeMAE | 8034 90.16 5033 45.20 Mixing-Up | 8021 4011 50.00 44.51 | 67.89 7146 76.13 7273 | 6933 67.19 69.33 64.97 | 3024 1099 2583 1541
SImMTM | 9475 95.60 89.93 91.41 TS-TCC | 9253 9451 8181 8633 | 5499 5279 6396 5418 | 7188 7135 7167 69.84 | 7889 5851 63.10 59.04
TEC | 9405 9456 8908 9149 | 6938 7559 7202 7487 | 7642 7731 7429 7572 | 8171 7265 8159 7683
PITS' [9527 9535 9527 9530 TST | 8021 4011 5000 4451 | 4640 4158 4550 4134 | 69.17 6660 6917 6601 | 4634 1545 3333 2111
PITS | 95.67 95.63 95.67 95.64 TimeMAE | 8971 7236 6747 68.55 | 7088 6698 68.94 66.56 | 7188 7035 7675 68.37 | 6999 7025 6344 70.89
SimMTM 9549 9336 9228 92.81 | 6940 74.18 7641 75.11 | 80.00 79.03 80.00 78.67 | 97.56 98.33 98.04 98.14

. s s S y 250 924
* PITS without CL. PITS | 9571 95.69 9571 9570 | 8770 87.94 8770 87.68 | 9250 9332 9250 9248 | 1000 1000 100.0 100.0
Table C.4: Results of TSC. Table C.5: Results of TSC with transfer learning.

Standard setting. Table[C.4]demonstrates that our proposed PITS outperforms all SOTA methods in
all metrics on the SleepEEG dataset. This contrasts with the results in prior works that CL is superior
to MTM for classification tasks [32]]: while prior MTM methods such as TST and TimeMAE shows
relatively low performance compared to CL methods such as TS2Vec and TF-Cﬂ the proposed PITS
outperforms CL methods, even without complementary CL.

Transfer learning. For transfer learning, we conduct experiments in both in-domain and cross-domain
transfer settings, using SleepEEG as the source dataset for both settings. For in-domain transfer, we
use target datasets from the same domain as the source dataset, which share the characteristic of
being EEG datasets, while we use target datasets from the different domain for cross-domain transfer.
Table [C.5demonstrates that our PITS outperforms SOTA methods in all scenarios. In particular, the
performance gain is significant in the challenging cross-domain transfer learning setting, implying
that PITS would be more practical in real-world applications under domain shifts.

?An exception is SImnMTM [8], which is not officially published at the time of submission.

10

C.4 Ablation Study

z1 29 z5
Pretrain Task | Trans- MLP Layer 1 - - - PI CL —

T — former o CL oL Layer2 | CL PI CL+PI CL PI 96 | 0.371 0.364 0.369
nput Output wio hud ETThI | 0720 0409 0417 0442 o401 192 | 0.396 0.398 0.403
X, X 0.341 | 0.338 | 0.329 ETTh2 | 0394 0336 0366 0371 0.331 336 | 0.411 0415 0428
Xu X 0.351 0.348 | 0.364 ETTml | 0.711 0355 0.356 0358 0.341 720 | 0.448 0.425 0.460

0 X, 0342 | 0348 | 0348 ETTm2 | 0381 0247 0254 0265 0.244
0 0 0343 | 0345 | 0.345 Avg. | 0552 0337 0348 0359 0.329 Avg. | 0407 0401 0415

Table C.6: Pretraining tasks. Table C.7: Effect of CL. Table C.8: Representation
for downstream tasks.

Performance of various pretrain tasks. In addition to the 1) PD task of reconstructing the masked
patches (X,,,) and 2) PI task of autoencoding the unmasked patches (X,), we also employ two other
basic tasks for comparison: 3) predicting X,, from zero-filled patches (0) and 4) autoencoding 0.
Table|C.6|displays the average MSE on four ETT datasets across four horizons, highlighting that the
model pretrained with the PD task performs even worse than the two basic tasks with 0 as inputs.
This emphasizes the ineffectiveness of the PD task and the effectiveness of the proposed PI task.

Which representation to use for downstream tasks? In SSL, the boundary of the encoder and
the task-specific projection head is often unclear. To determine location to extract representation for
downstream tasks, we conduct experiments using representations from intermediate layers in MLP:
1) z; from the first layer, 2) 2z from the second layer, and 3) z5 from the additional projection layer
attached on top of the second layer. Table[C.8]displays the MSE of ETTh1 across four horizons,
indicating that the second layer z5 yields the best results.

Location of complementary CL. To assess the effect of complementary CL together with PI
reconstruction, we conduct an ablation study on the choice of pretext tasks and their location in the
MLP encoder: the contrastive and/or reconstruction loss is computed on the first or second layer, or
neither. Table[C.7|displays the average MSE on four ETT datasets across four horizons. We observe
that the PI reconstruction task is essential, and CL is effective when it is considered in the first layer.

Comparison with PatchTST. PITS can be derived from

PatchTST, by changing the pretraining task and encoder archi- 1) Encoder Architecture
tecture. Table shows how each modification contributes Transformer Linear MLP
to the performance improvement on the ETTh1 dataset. Note 0.425* 0408 0418
that we apply minor modifications including mask ratio of
50% and mean normalization to PatchTST, which does not 2) PD task — PI task
affect the performance (marked with *). 0.415 0.408 0.407

3) + Complementary CL

- - 0.401

Table C.9: PatchTST—PITS

11

C.5 Analysis

PI task is more robust to distribution shift than PD task. To assess the robustness of pretraining
tasks to distribution shifts, which are commonly observed in real-world datasets [14], we generate
toy examples with varying trends and seasonality, depicted in the left panel of Figure[C.1] The right
panel of Figure[C.I] visualizes the performance gap between the models trained with PD task and PI
task, where the x- and y-axis correspond to the slope and amplitude differences between the training
and test phases, respectively. The result indicates that the model trained with PI task exhibits better
robustness to distribution shifts, where the gap increases as the shift becomes more severe.

Scenarios of Distribution Shift MSE difference (PD-PI)
(Shift in Trend & Seasonality)

05 025 0.125

wj/o Distribution Drift 3

O

1.0

Amplitude ratio
2.0

- =
4.0

8.0

Train i Test

1.0

2.0-
4.0-
8.0-

140 160 180 200 220 240 260 280 300
Time Index Slope ratio

Figure C.1: PI vs. PD tasks under distribution shifts.

MLP is more interpretable than Transformer. While PI architectures process each patch inde-
pendently, PD architectures share information from all patches, leading to information leaks among
patches. This makes MLP more interpretable than Transformer, as visualizing the weight matrix
of the linear layer additionally introduced and learned for the downstream task shows each patch’s
contribution to predictions. Figure[C.2]illustrates the seasonality of ETTm] and the downstream
weight matrix trained on ETTm1 for both architectures. While the weight matrix of the linear layer
on top of Transformer is mostly uniform, that of MLP reveals seasonal patterns and emphasizes
recent information, highlighting that MLP captures the seasonality better than Transformer.

t-SNE visualization. To evaluate the quality of TS representations obtained from PI and PD tasks,
we utilize t-SNE for visualization. For this analysis, we create toy examples with 10 classes,
each exhibiting its own trend and seasonality patterns, as shown in the top panel of Figure[C.3] The
results, visualized in Figure[C.3] demonstrate that representations learned from the PI task exhibit a
better ability to distinguish between classes.

TS with different trend & seasonality

o 5=96
[ETTm1] - » 7 —
‘ 0s 15 2:5 35 45 55 6S 75 85 95 10-S : - LV» -
e - N
8 patches x 12 length = 96 - ‘m
Patch 1 MLP (Pl arch) Patch 42 .
T TR PR 1 i i s h) @ © [10
R s L ’ , ’ Pl task
sl Mﬂ"‘u el I [
(64 dim) NE *§
fuo
| m ’iil g
r, e £l e 3 e 20 (] 2 w0
ime Step > * Pretrained weights with ETTh1
Figure C.2: Downstream task weight W € R¥*N-D, Figure C.3: t-SNE visualization.

12

D Transfer Learning

For time series forecasting under transfer learning, we consider both in-domain and cross-domain
transfer learning settings, where we consider datasets with same frequency as in-domain. We perform
transfer learning in both in-domain and cross-domain using five datasets: four ETT datasests and
Weather. The full results are described in Table [D.1} where missing values are not reported in

Models PITS PaichTST SimMTM TimeMAE TST LaST TR-C CoST TS2Vee
P SL T p
source | target | horizon MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 0394 0367 0392 0378 0400 | 0.380 0411 0405 0426 0372 0402 0703 0562 0.653 0468 0362 0420 059 0569 0378 0421 0849 0.694
ETTh | 192 y 4 36 0433 0443 414 0715 0567 0658 0502 0426 0478 0614 24 0451 0909 0738
336 0.447 0456 0.733 0579 0631 0561 0522 0509 0.69% 0582 1.082 0.775
£ | et | 720 0572 0540 0762 0622 0638 0608 0460 0478 0635 0701 0934 0769
£ e 0464 0466 0728 0583 0645 0535 0443 0471 0635 0539 0944 074
i % 0294 0350 0647 0497 0471 0422 0304 0388 0610 0331 058 0515
ETTm2 | 192 0330 0372 0597 0508 0495 0442 0429 049 0725 0371 0624 0562
336 0359 0386 0700 0525 0455 0424 0499 0523 0768 0421 1035 0806
ETTml | 720 6 0415 0786 0596 0498 0532 0422 0450 0927 0481 0780 0669
ave 0354 33 03470381 06520531 0480 0455 0414 0464 0758 04010756 0.638
96 0.381 0405 0379 0.408 0428 0454 0968 0419 0783 0.669
ETTm2 | 192 0417 0429 0414 0430 0427 0497 1080 0450 0828 0691
1 0439 0414 0431 0446 0528 0540 1091 0580 0990 0762
ETThi 0430 0488 04600476 0527 0537 1226 069 0985 0783
0429 0441 0421 0440 0503 0507 1091 0537 089 0726
0294 0347 032 0372 0314 03% 0677 0342 0466 0480
ETTh2 0332 0367 354 0386 0587 0545 0718 0392 0557 0532
0363 0387 0392 0409 0631 0584 0755 0431 0646 0576
ETTm1 403 0440 0434 0468 0429 0848 0438 0752 0638
0350 03780400 047504890750 041306060556
. % | 0375 039 0573 0401 0360 0374 0666 0450 0991 0765
é ETTm1 192 0.408 0.423 0.381 0371 0.672 0.578 0.829 0.699
K 336 0448 0452 0472 0531 0626 069 0971 0787
3 720 0499 0492 0600 0490 0488 0835 0805 1037 0820
g ave 0482 03595 0645 0533 042 044 0700 0632 0957 0768
9% 0359 0521 0425 0381 0295 0387 0672 0361
ETThl | 192 0378 0479 0495 0478 0335 0379 0721 0391 0615 0561
336 3 0399 0533 0456 0441 0379 0363 0755 0420 0763 0677
ETTml | 720 0.409 0430 0583 0554 0477 0403 0431 0837 0482 0805 0664
ave 0348 0392 0346 0529 0452 044 0353 0390 0746 0407 0697 0616
% 0386 0401 0477 - - - - - -
Weather | 192 0.405 0422 0.454 oL
1 336 0.448 0438 0424 - - - - - - - - - - -
ETTh | 720 0.508 0.489 0.468 e
avg 0.407 0.437 0.438 0.456 - - - - - - - - - - -
% 0308 0350 0351 0304 - - - - - -
Weather | 192 0336 0367 336 0372 0338 ST
336 0365 0384 036 370 0392 0371
ETTml | 720 0414 0411 0.406 3 0425 0417 Lo
ave 0356 0378 0348 0383 0355 0385 0358

Table D.1: Results of multivariate TS forecasting with transfer learning. We conduct experiments
under two settings: (1) in-domain and (2) cross-domain transfer. The best results are in bold and the
second best are underlined.

13

E Comparison with PatchTST

We compare our proposed method with PatchTST in three versions: 1) fine-tuning (FT), linear probing
(LP), and supervised learning (SL). The results are described in Table [E:T} which demonstrates that
our proposed method outperforms PatchTST in every version in most of the datasets.

PITS PatchTST
FT LP SL FT LP SL
Metric | MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE

96 | 0.364 0.392 0.366 0.392 0.369 0.397 | 0.379 0.408 0.382 0410 0.375 0.399
192 | 0.398 0.414 0398 0.414 0402 0.416 | 0414 0.428 0.433 0441 0414 0421
336 | 0.415 0.427 0419 0427 0.409 0.425 | 0435 0.446 0.439 0446 0431 0.436
720 | 0.425 0.451 0.430 0.454 0457 0465 | 0.468 0.474 0.482 0.482 0.449 0.466

avg | 0.401 0.421 0.403 0422 0409 0426 | 0424 0439 0434 0445 0417 0431

96 | 0.269 0.332 0.269 0.333 0.281 0.343 | 0.306 0.351 0.299 0.350 0.274 0.336
192 | 0.326 0.372 0.331 0.373 0.345 0.384 | 0361 0.392 0363 0394 0339 0.379
336 | 0.354 0396 0352 0395 0.343 0.389 | 0405 0.427 0386 0417 0.331 0.380
720 | 0.378 0.425 0383 0425 0388 0430 | 0419 0.446 0.409 0.440 0.379 0.422

avg | 0.331 0.382 0.334 0.382 0.337 0.386 | 0.373 0.404 0.364 0.400 0.331 0.379

96 | 0296 0.355 0.307 0.349 0295 0346 | 0.294 0.345 0.296 0.349 0.290 0.342
192 | 0.321 0.368 0.337 0.368 0.331 0.369 | 0.327 0369 0.333 0370 0.332 0.369
336 | 0.353 0.388 0.365 0.389 0.360 0.388 | 0.364 0.390 0.368 0.390 0.366 0.392
720 | 0.395 0.412 0415 0412 0416 0420 | 0409 0.415 0422 0418 0.420 0.424

avg | 0.341 0.381 0.356 0.378 0.350 0.381 | 0.349 0.380 0.355 0.382 0.352 0.382

96 | 0.163 0.255 0.160 0.252 0.163 0.255 | 0.167 0.256 0.168 0.257 0.165 0.255
192 | 0.213 0.289 0.214 0.289 0.216 0.293 | 0.232 0.302 0.231 0.302 0.220 0.292
0.263 0.324 0.263 0.324 0.267 0.328 | 0.291 0.342 0.290 0.341 0.278 0.329
720 | 0.337 0373 0.342 0.376 0.342 0.381 | 0.368 0.390 0.366 0.387 0.367 0.385

avg | 0.244 0.310 0.244 0.310 0.247 0.314 | 0.264 0.323 0.264 0.322 0.258 0.315

96 | 0.149 0201 0.167 0222 0.153 0202 | 0.146 0.194 0.160 0.211 0.152 0.199
192 | 0.195 0.241 0.211 0.259 0.191 0.242 | 0.192 0.238 0.203 0.248 0.197 0.243
336 | 0.244 0.280 0.256 0.293 0.245 0.280 | 0.245 0.280 0.251 0.285 0.249 0.283
720 | 0312 0.328 0319 0338 0.310 0.329 | 0.320 0.336 0319 0334 0320 0.335

avg | 0.225 0.262 0.239 0.278 0.225 0.263 | 0.226 0.262 0.233 0.269 0.230 0.265

9 | 0.373 0.257 0.384 0.266 0.375 0.264 | 0.393 0.275 0.399 0.294 0.367 0.251
192 | 0.388 0.266 0395 0.270 0.389 0.270 | 0.376 0.254 0.412 0.298 0.385 0.259
0.401 0.271 0.409 0.276 0.401 0.277 | 0.384 0.259 0425 0306 0.398 0.265
720 | 0.436 0.290 0.438 0.295 0437 0.294 | 0.446 0306 0.460 0323 0.434 0.287

avg | 0.399 0.271 0406 0.277 0401 0.276 | 0.400 0.274 0.424 0.305 0.396 0.266

96 | 0.129 0.225 0.132 0227 0.132 0228 | 0.126 0.221 0.138 0.237 0.130 0.222
192 | 0.144 0.240 0.147 0.241 0.147 0.242 | 0.145 0.238 0.156 0.252 0.148 0.240
336 | 0.160 0.256 0.163 0.258 0.162 0.260 | 0.164 0.256 0.170 0.265 0.167 0.261
720 | 0.197 0.290 0201 0.290 0.199 0.290 | 0.200 0.290 0.208 0.297 0202 0.291

avg | 0.157 0.253 0.161 0.252 0.160 0.255 | 0.159 0.251 0.168 0.263 0.162 0.254
Average | 0.300 0.326 0.306 0.328 0.304 0.329 | 0.314 0.333 0.320 0.341 0.307 0.327

Models

ETTh1

ETTh2

ETTml1

ETTm2
w
@
=N

Weather

Traffic
(98]
(%]
>N

Electricity

Table E.1: PITS vs. PatchTST in multivariate time series forecasting.

14

F Effectiveness of PI Task and Contrastive Learning

To assess the effectiveness of the proposed patch reconstruction task and complementary contrastive
learning, we conduct ablation studies in both time series forecasting and time series classification.

F.1 Time Series Forecasting

To examine the effect of PI task and CL on forecasting, we conduct an experiment using four ETT
datasets. The results in Table [F.I|demonstrate that performing CL with the representation obtained
from the first layer and PI with the one from the second layer gives the best performance.

Layer 1 - - - PI CL
Layer 2 CL PI CL+PI CL PI
9 | 0.715 0.367 0372 0381 0.364
= 192 | 0720 0.400 0.409 0416 0.398
E 336 | 0.719 0426 0422 0462 0415
Mo 720 | 0.727 0.443 0465 0.509 0.425
avg | 0.720 0.409 0417 0442 0.401
9 | 0373 0.270 0307 0303 0.269
Q192 | 0384 0331 0362 0373 0.326
E 336 | 0.386 0.361 0.387 0.391 0.354
Mo 720 | 0432 0384 0408 0416 0.378
avg | 0.394 0336 0366 0371 0.331
9 | 0.693 0.305 0302 0.300 0.296
e 192 10702 0335 0337 0336 0321
g 336 | 0.716 0366 0.365 0.369 0.353
m 720 | 0.731 0413 0413 0426 0.395
avg | 0.711 0.355 0356 0.358 0.341
9 | 0346 0.160 0.167 0.171 0.163
%‘ 192 | 0368 0.215 0.225 0.235 0.213
E 336 | 0.397 0.266 0274 0.278 0.263
m 720 | 0424 0346 0351 0376 0.337
avg | 0.381 0.247 0.254 0.265 0.244
Total avg | 0.552 0.337 0348 0359 0.330

Table F.1: Effect of PI task and CL on time series forecasting.

F.2 Time Series Classification

To evaluate the impact of employing CL and PI on classification, we conducted an experiment using
the SleepEEG dataset. The results presented in Table demonstrate that as long as PI task is
employed, the performance is robust to the design choices.

Layer 1 - - - PI CL
Layer 2 CL PI CL+PI CL PI

ACC. | 91.61 95.27 95.67 95.67 95.67
PRE. | 92.11 9535 95.63 95.70 95.63
REC.. | 91.61 9527 95.66 95.66 95.67

Fl.. | 91.79 9530 95.68 95.68 95.64

Table F.2: Effect of PI task and CL on time series classification.

SleepEEG

15

G Effectiveness of PI Strategies

In this experiment, we investigate the impact of our proposed PI strategies from two perspectives:
1) the pretraining task and 2) the encoder architecture. The results, shown in Table [G.I] encompass
four ETT datasets with four different forecasting horizons. These results demonstrate that the PI task
consistently outperforms the conventional PD task across all considered architectures.

. PI PD
Architecture
Linear MLP MLPMixer Transformer
Task PD PI PD PI PD PI PD PI

96 0.366 0.365 | 0.375 0.366 | 0.378 0.368 | 0.371 0.372

= 192 0.398 0.398 | 0.407 0.397 | 0.414 0.399 | 0.410 0.404

E 336 0.423 0.424 | 0427 0427 | 0422 0427 | 0443 0.434

m 720 0.444 0444 | 0463 0.440 | 0.465 0.440 | 0.475 0.452

avg 0.408 0.408 | 0.418 0.407 | 0.420 0.409 | 0.425 0.415

96 0.272 0.270 | 0.290 0.270 | 0.301 0.276 | 0.283 0.271

a 192 0.332 0.333 | 0.361 0.329 | 0.353 0.334 | 0.351 0.332

ﬁ 336 0.370 0.364 | 0.373 0.353 | 0.394 0.363 | 0.378 0.369

m 720 0396 0.385 | 0.418 0.384 | 0.411 0.389 | 0.400 0.395

avg 0.343 0.338 | 0.361 0.334 | 0.365 0.341 | 0.353 0.342

96 0.304 0.304 | 0.298 0.302 | 0.294 0.296 | 0.294 0.297

—E' 192 0.337 0.338 | 0.341 0.337 | 0.332 0.334 | 0.335 0.336

E 336 0.370 0.368 | 0.368 0.363 | 0.364 0.363 | 0.365 0.359

m 720 0423 0423 | 0416 0420 | 0418 0.416 | 0.405 0.403

avg 0.359 0.358 | 0.356 0.355 | 0.354 0.352 | 0.350 0.350

96 0.163 0.163 | 0.169 0.164 | 0.170 0.164 | 0.172 0.172

%‘ 192 0.219 0.218 | 0.224 0.218 | 0.226 0.218 | 0.240 0.221

E 336 0.272 0.271 | 0.275 0.271 | 0.276 0.272 | 0.300 0.274

m 720 0.362 0.361 | 0.363 0.359 | 0.361 0.359 | 0.383 0.356

avg 0.254 0.253 | 0.258 0.253 | 0.259 0.253 | 0.274 0.256

Total avg 0.341 0.339 | 0.348 0.337 | 0.350 0.339 | 0.351 0.341

Table G.1: Effectiveness of PI tasks and PI architectures.

H Robustness to Patch Size

To evaluate the robustness of encoder architectures to patch size, we compare MLP and Transformer
with different patch sizes with ETTh2 and ETTm2. The left and the right panel of Figure[H.T]illustrate
the average MSE of four horizons of ETTh2 and ETTm2, respectively.

Dataset: ETTh2 Dataset: ETTm2
0381 __ 0.280
Lo —4— MLP + Pl task * —— MLP + Pl task
'2‘ N -4~ MLP + PD task B 0275 | - MLP + PD task
S 0.37 \ —— Trans + Pl task . s '.l ,'\ —— Trans + Pl task
S %~ -® Tans + PD task e kS 0.270 \ N -~ Trans + PD task
2 036 - IR AN 2 \ \
J g e
s 0 \:'_,,t\ v < 0.265
w ~~o / w
n 0.35 R)
Z‘ W 2 0260
<) o
g]
z 0.34 k‘/\‘\r/"—*\‘ Z 0255
12 4 8 12 16 24 32 12 4 8 12 16 24 32
Patch Size Patch Size

Figure H.1: Robustness of PI task to patch size.

I Performance by Dropout Rate

Figure[.T] displays the average MSE across four horizons, and Table [[.T]lists all the MSE values for
four ETT datasets trained with MLP of D = 32 at various dropout rates. These results emphasize

16

the importance of incorporating dropout during the pretraining phase of the reconstruction task, as it
helps prevent trivial solutions when the hidden dimension is greater than the input dimension.

Dropout Rate

0.348

Dropoutrate | ETThl ETTh2 ETTml ETTm2 | Avg.
0345 0.0 0416 0358 0360 0253 | 0.347
0.1 0410 0334 0358 0.253 | 0.339
0.340 0.339 0.2 0.407 0.334 0.357 0.253 0.338
9838 0338 0338 0338 03 0407 0333 0357 0253 | 0.338
0335 0.4 0.407 0334 0356 0253 | 0.338
0.5 0.406 0335 0356 0253 | 0.337

Table I.1: MSE by dropout.

0.330

0.0 0.1 0.2 0.3 0.4 0.5

Figure I.1: Avg. MSE by dropout.

J Performance of Various Pretrain Tasks

To see if the conventional PD task of reconstructing the masked patches (X,,,) with the unmasked
patches (X,,) is appropriate for TS representation learning, we employ two other simple pretraining
tasks of 1) predicting X, with zero-value patches (0) and 2) reconstructing 0 with themselves.
Tableﬂzlpresents the results for four ETT datasets across three different architectures: Transformer,
MLP without CL, and MLP with CL. These results underscore that models pretarined with PD task
performs even worse than the two basic pretraining tasks with zero-value patch inputs, highlighting
the ineffectiveness of the PI task and emphasizing the importance of the proposed PI task.
MLP
w/o CL w/ CL

Input Output | ETThl ETTh2 ETTml ETTm2 | avg | ETThl ETTh2 ETTml ETTm2 | avg | ETThl ETTh2 ETTml ETTm2 | avg

Xy Xy 0415 0.342 0.350 0256 | 0.341 | 0407 0334 0.357 0253 | 0.338 | 0.401 0.331 0.341 0.244 | 0.329
Xm 0425 0.353 0.350 0274 | 0.351 | 0418 0.361 0.356 0258 | 0.348 | 0457 0376 0.362 0.261 | 0.364
Xy 0410 0350 0.349 0260 | 0.342 | 0418 0.361 0.354 0.256 | 0.348 | 0418 0.361 0.353 0.256 | 0.348

0 0413 0.360 0.342 0257 | 0343 | 0418 0356 0.352 0253 | 0.345 | 0418 0356 0.353 0.254 | 0.345

Pretrain Task Transformer

oo

Table J.1: Performance of various pretrain tasks.

17

	Introduction
	Methods
	Patch-Independent Task: Patch Reconstruction
	Patch-Independent Architecture: MLP
	Complementary Contrastive Learning
	Objective Function

	Experiments
	Conclusion
	Dataset Description
	Time Series Forecasting
	Time Series Classification

	Related Works
	More on Experiments Section
	Experimental Settings
	Time Series Forecasting
	Time Series Classification
	Ablation Study
	Analysis

	Transfer Learning
	Comparison with PatchTST
	Effectiveness of PI Task and Contrastive Learning
	Time Series Forecasting
	Time Series Classification

	Effectiveness of PI Strategies
	Robustness to Patch Size
	Performance by Dropout Rate
	Performance of Various Pretrain Tasks

