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Abstract

Transformers have emerged as the architecture of choice for many state-of-the-art AI models,1

showcasing exceptional performance across a wide range of AI applications. However, the2

memory demands imposed by Transformers limit their ability to handle long sequences, thereby3

creating challenges for tasks involving extended sequences or long-term dependencies. We4

present a distinct approach, Ring Attention, which leverages blockwise computation of self-5

attention to distribute long sequences across multiple devices while concurrently overlapping the6

communication of key-value blocks with the computation of blockwise attention. By processing7

longer input sequences while maintaining memory efficiency, Ring Attention enables training8

and inference of sequences that are device count times longer than those of prior memory-9

efficient Transformers, effectively eliminating the memory constraints imposed by individual10

devices. Extensive experiments on language modeling tasks demonstrate the effectiveness of11

Ring Attention in allowing large sequence input size and improving performance.12

1 Introduction13

Transformers [35] have become the backbone of many state-of-the-art AI systems that have demon-14

strated impressive performance across a wide range of AI problems. Transformers achieve this success15

through their architecture design that uses self-attention and position-wise feedforward mechanisms.16

Figure 1: Maximum context length on TPUv4-
512 (32GB memory on each TPUv4). Baselines
are vanilla transformers [35], transformers with
memory efficient attention [27], and memory ef-
ficient attention and feedforward (blockwise par-
allel transformers) [22]. Our proposed approach
Ring Attention allows training 512 times longer
sequence than prior SOTAs and enables the train-
ing of sequences that exceed 100 million in length
without making approximations to attention.

These components facilitate the efficient cap-17

ture of long-range dependencies between input18

tokens, and enable scalability through highly19

parallel computations.20

However, scaling up the context length of Trans-21

formers is a challenge [26], since the inherited22

architecture design of Transformers, i.e. the self-23

attention has memory cost quadratic in the input24

sequence length, which makes it challenging to25

scale to longer input sequences. Large context26

Transformers are essential for tackling a diverse27

array of AI challenges, ranging from processing28

books and high-resolution images to analyzing29

long videos and complex codebases. They ex-30

cel at extracting information from the intercon-31

nected web and hyperlinked content, and are32

crucial for handling complex scientific experi-33

ment data. There have been emerging use cases34

of language models with significantly expanded35

context than before: GPT-3.5 [29] with context36
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length 16K, GPT-4 [26] with context length 32k, MosaicML’s MPT [24] with context length 65k,37

and Anthropic’s Claude [1] with context length 100k.38

Driven by the significance, there has been surging research interests in reducing memory cost. One39

line of research leverages the observation that the softmax matrix in self-attention can be computed40

without materializing the full matrix [23] which has led to the development of blockwise computation41

of self-attention and feedforward [27, 9, 22] without making approximations. Despite the reduced42

memory, a significant challenge still arises from storing the output of each layer. This necessity arises43

from self-attention’s inherent nature, involving interactions among all elements (n to n interactions).44

The subsequent layer’s self-attention relies on accessing all of the prior layer’s outputs. Failing to45

do so would increase computational costs cubically, as every output must be recomputed for each46

sequence element, rendering it impractical for longer sequences. To put the memory demand in47

perspective, even when dealing with a batch size of 1, processing 100 million tokens requires over48

10,000GB of memory for a modest model with a hidden size of 1024. This is much greater than the49

capacity contemporary GPUs, which typically have less than 100GB of high-bandwidth memory50

(HBM).51

To tackle this challenge, we make a key observation: by performing self-attention and feedforward52

network computations in a blockwise fashion [22], we can distribute sequence dimensions across53

multiple devices, allowing concurrent computation and communication. This insight stems from54

the fact that when we compute the attention on a block-by-block basis, the results are invariant to55

the ordering of these blockwise computations. Our method distributes the outer loop of computing56

blockwise attention among hosts, with each device managing its respective input block. For the inner57

loop, every device computes blockwise attention and feedforward operations specific to its designated58

input block. Host devices form a conceptual ring, where during the inner loop, each device sends59

a copy of its key-value blocks being used for blockwise computation to the next device in the ring,60

while simultaneously receiving key-value blocks from the previous one. Because block computations61

take longer than block transfers, overlapping these processes results in no added overhead compared62

to standard transformers. By doing so, each device requires memory only proportional to the block63

size, which is independent of the original input sequence length. This effectively eliminates the64

memory constraints imposed by individual devices. Since our approach overlaps the communication65

of key-value blocks between hosts in a ring with blockwise computation, we name it Ring Attention.66

We evaluate the effectiveness of our approach on language modeling benchmarks. Our experiments67

show that Ring Attention can reduce the memory requirements of Transformers, enabling us to68

train more than 500 times longer sequence than prior memory efficient state-of-the-arts and enables69

the training of sequences that exceed 100 million in length without making approximations to70

attention. Importantly, Ring Attention eliminates the memory constraints imposed by individual71

devices, empowering the training and inference of sequences with lengths that scale in proportion to72

the number of devices, essentially achieving near-infinite context size.73

Our contributions are twofold: (a) proposing a memory efficient transformers architecture that allows74

the context length to scale linearly with the number of devices while maintaining performance, elimi-75

nating the memory bottleneck imposed by individual devices, and (b) demonstrating the effectiveness76

of our approach through extensive experiments.77

2 Ring Attention78

Our primary objective is to eliminates the memory constraints imposed by individual devices by79

efficiently distribute long sequences across multiple hosts without adding overhead. To achieve this80

goal, we propose an enhancement to the blockwise parallel transformers (BPT) framework [22].81

When distributing an input sequence across different hosts, each host is responsible for running one82

element of the outer loop of blockwise attention corresponding to its designated block, as well as the83

feedforward network specific to that block. These operations do not necessitate communication with84

other hosts. However, a challenge arises in the inner loop, which involves key-value block interactions85

that require fetching blocks from other hosts. Since each host possesses only one key-value block,86

the naive approach of fetching blocks from other hosts results in two significant issues. Firstly,87

it introduces a computation delay as the system waits to receive the necessary key-value blocks.88

Secondly, the accumulation of key-value blocks leads to increased memory usage, which defeats the89

purpose of reducing memory cost.90
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Figure 2: Top (a): In the framework of Ring Attention, key-value blocks traverse through hosts
to facilitate attention and feedforward computations in a block-by-block fashion. As we compute
attention, each host concurrently sends key-value blocks to the next host while receive key-value
blocks from the preceding host, effectively overlapping communication with computation. Bottom
(b): Ring Attention is the same as the original Transformer but with a different way of organizing the
compute. In the diagram, we explain this by showing that the current device holds the left column
first query block; then we iterate over the same key-value blocks sequence positioned horizontally.
The query block, and the bottle middle key-value blocks, are used to compute self-attention (yellow
box), whose output is pass to feedforward network (cyan box).

Ring-Based Blockwise Attention. To tackle the aforementioned challenges, we leverage the per-91

mutation invariance property of the inner loop’s key-value block operations. This property stems92

from the fact that the self-attention between a query block and a group of key-value blocks can be93

computed in any order, as long as the statistics of each block are combined correctly for rescaling.94

We leverage this property by conceptualizing all hosts as forming a ring structure: host-1, host-2, ...,95

host-N . As we compute blockwise attention and feedforward, each host efficiently coordinates by96

concurrently sending key-value blocks being used for attention computation to the next host while97

receiving key-value blocks from the preceding host, effectively overlapping transferring of blocks98

with blockwise computation. Concretely, for any host-i, during the computation of attention between99

its query block and a key-value block, it concurrently sends key-value blocks to the next host-(i+ 1)100

while receiving key-value blocks from the preceding host-(i− 1). If the computation time exceeds101

the time required for transferring key-value blocks, this results in no additional communication cost.102

3



Table 1: Comparison of maximum activation sizes among different Transformer architectures. Here,
b is batch size, h is hidden dimension, n is number of head, s is sequence length, c is block size, the
block size (c) is independent of the input sequence length (s). The comparison is between vanilla
Transformer [35], memory efficient attention [27], memory efficient attention and feedforward [22],
and our proposed approach Ring Attention. Numbers are shown in Bytes per layer, assuming bfloat16
precision.

Layer Type Self-Attention FeedForward Total

Vanilla 2bns2 8bsh 2bhs2

Memory efficient attention 2bsh+ 4bch 8bsh 8bsh
Memory efficient attention
and feedforward 2bsh 2bsh 2bsh

Ring Attention 6bch 2bch 6bch

This overlapping mechanism applies to both forward and backward passes of our approach since the103

same operations and techniques can be used.104

Arithmetic Intensity Between Hosts. In order to determine the minimal required block size to105

overlap transferring with computation, assume that each host has F FLOPS and that the bandwidth106

between hosts is denoted as B. It’s worth noting that our approach involves interactions only with107

the immediately previous and next hosts in a circular configuration, thus our analysis applies to both108

GPU all-to-all topology and TPU torus topology. Let’s consider the variables: block size denoted109

as c and hidden size as d. When computing blockwise self-attention, we require 2dc2 FLOPs for110

calculating attention scores using queries and keys, and an additional 2dc2 FLOPs for multiplying111

these attention scores by values. In total, the computation demands amount to 4dc2 FLOPs. We112

exclude the projection of queries, keys, and values, as well as blockwise feedforward operations,113

since they only add compute complexity without any communication costs between hosts. This114

simplification leads to more stringent condition and does not compromise the validity of our approach.115

On the communication front, both key and value blocks require a total of 2cd bytes. Thus, the116

combined communication demand is 4cd bytes. To achieve an overlap between communication and117

computation, the following condition must hold: 4dc2/F ≥ 4cd/B. This implies that the block size,118

denoted as c, should be greater than or equal to F/B. Effectively, this means that the block size needs119

to be larger than the ratio of FLOPs over bandwidth.120

Memory Requirement. A host needs to store multiple blocks, including one block size to store121

the current query block, two block sizes for the current key and value blocks, and two block sizes122

for receiving key and value blocks. Furthermore, storing the output of blockwise attention and123

feedforward necessitates one block size, as the output retains the shape of the query block. Therefore,124

a total of six blocks are required, which translates to 6bch bytes of memory. It’s worth noting that125

the blockwise feedforward network has a maximum activation size of 2bch [22]. Consequently, the126

total maximum activation size remains at 6bch bytes. Table 1 provides a detailed comparison of the127

memory costs between our method and other approaches. Notably, our method exhibits the advantage128

of linear memory scaling with respect to the block size c, and is independent of the input sequence129

length s. Our analysis shows that the model needs to fit in s = 6c sequence length, i.e., six times of130

minimal block size. Requirements on popular computing servers as shown in Table C.3, the required131

minimal sequence length to be fit in each host is between 6K to 20K. This requirement is easy to meet132

using blockwise computation of attention and feedforward [22], which we will show in experiment133

section C.134

3 Conclusion135

In conclusion, we propose a memory efficient approach to reduce the memory requirements of136

Transformers, the backbone of state-of-the-art AI models. Our approach enables the context length to137

scale linearly with the number of devices while maintaining performance, eliminating the memory138

bottleneck imposed by individual devices. Through extensive experiments, we demonstrate its139

effectiveness, achieving up to 512x memory reduction than prior memory efficient Transformers. Our140

contributions include a practical method for large context sizes in large Transformer models.141

In terms of future prospects, the possibility of near-infinite context introduces a vast array of exciting142

opportunities, such as large video-language models, decision making and tool use transformers on ex-143
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tended trial-and-error experience, understanding and generating large code projects, and transforming144

language models into a versatile AI scientist for helping understand science experimental data.145
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A Large Context Memory Constraint248

Given input sequences Q,K, V ∈ Rs×d where s is the sequence length and d is the head dimension.249

We compute the matrix of outputs as:250

Attention(Q,K, V ) = softmax(
QKT

√
d

)V,

where softmax is applied row-wise. Each self-attention sub-layer is accompanied with a feedforward251

network, which is applied to each position separately and identically. This consists of two linear252

transformations with a ReLU activation in between.253

FFN(x) = max(0, xW1 + b1)W2 + b2.

Blockwise Parallel Transformers. Prior state-of-the-arts have led to substantial reductions in mem-254

ory utilization, achieved through innovative techniques that enable attention computation without full255

materialization by computing attention in a block by block manner [27, 9, 22]. These advancements256

lowered the memory overhead of attention to 2bsh Bytes per layer, where b represents the batch257

size, s denotes the sequence length, and h stands for the hidden size of the model. To further reduce258

memory usage, blockwise parallel transformer (BPT) [22] introduced a strategy where the feedfor-259

ward network associated with each self-attention sub-layer is computed in a block-wise fashion. This260

approach effectively limits the maximum activation size of feedforward network from 8bsh to 2bsh.261

For a more detailed analysis of memory efficiency, please refer to the discussion provided therein. In262

summary, the state-of-the-art transformer layer’s memory cost of activation is 2bsh.263

Large Output of Each Layer. While BPT significantly reduces memory demand in Transformers, it264

still presents a major challenge for scaling up context length because it requires storing the output265

of each layer. This storage is crucial due to the inherent nature of self-attention, which involves266

interactions among all elements (n to n interactions). Without these stored outputs, the subsequent267

layer’s self-attention becomes computationally impractical, necessitating recomputation for each268

sequence element. To put it simply, processing 100 million tokens with a batch size of 1 requires269

over 10,000GB of memory even for a modest model with a hidden size of 1024. In contrast, modern270

GPUs typically provide less than 100GB of high-bandwidth memory (HBM), and the prospects for271

significant GPU HBM expansion are hindered by physical limitations and high manufacturing costs.272

B Setting273

We evaluate the impact of using Ring Attention in improving Transformer models by benchmarking274

maximum sequence length and model flops utilization.275

Model Configuration. Our study is built upon the LLaMA architecture, we consider 3B, 7B, 13B,276

and 30B model sizes in our experiments.277

Baselines. We evaluate our method by comparing it with vanilla transformers [35] which computes278

self-attention by materializing the attention matrix and computes the feedforward network normally,279

transformers with memory efficient attention [27] and its efficient CUDA implementation [9], and280

transformers with both memory efficient attention and feedforward [22].281

Training Configuration. For all methods, we apply full gradient checkpointing [5] to both attention282

and feedforward, following prior works [27, 22]. The experiments are on both GPUs and TPUs.283

For GPUs, we consider both single DGX A100 server with 8 GPUs and distributed 32 A100 GPUs.284

We also experiment with TPUs, from older generations TPUv3 to newer generations of TPUv4 and285

TPUv5e. We note that all of our results are obtained using full precision instead of mixed precision.286

C Results287

In our experiments, our primary objective is to comprehensively evaluate the performance of Ring288

Attention across multiple key metrics, including maximum supported sequence length within acceler-289

ator memory, model flops utilization, and throughput. We compare Ring Attention’s performance290

with several baseline models , including the vanilla transformers [35], transformers with memory291

efficient attention [27], and transformers with both memory efficient attention and feedforward [22],292

across different model sizes and accelerator configurations.293
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Table 2: Maximum context length supported in device memory on different model sizes and clusters of
accelerators. Baselines are vanilla transformer [35], transformer with memory efficient attention [27],
and transformer with memory efficient attention and feedforward [22]. The context size is reported in
tokens (1e3). Our Ring Attention substantially outperforms baselines and scales linearly with number
of devices, achieving over 100M context size.

Max context size supported (×1e3)

Vanilla Memory
Efficient Attn

Memory Efficient
Attn and FFN

Ring Attention
(Ours)

Ours
vs SOTA

8x A100 NVLink
3B 16 256 512 4096 (4M) 8x
7B 16 256 512 4096 (4M) 8x
13B 8 128 256 2048 (2M) 8x
30B 8 64 256 2048 (2M) 8x

32x A100 InfiniBand
7B 32 512 1024 32768 (32M) 32x
30B 16 128 512 16384 (16M) 32x

TPUv3-512 1

7B 4 16 64 16384 (16M) 256x
13B 2 8 32 8192 (8M) 256x
30B 1 4 16 4096 (4M) 256x

TPUv4-512
3B 8 64 256 131072 (131M) 512x
7B 8 32 128 65536 (65M) 512x
13B 4 16 64 32768 (32M) 512x
30B 2 8 32 16384 (16M) 512x

TPUv5e-256
7B 4 16 64 16384 (16M) 256x
30B 1 4 16 4096 (4M) 256x

C.1 Evaluating Max Context Size294

We evaluate maximum supported context length using tensor parallelism and batch size 1 in sequences.295

Following prior works [22, 31], we note that no data parallelism is considered in our evaluations296

since our approach is independent of data parallelism. As a result, the batch sizes used in our analysis297

are much lower than the ones used for the end-to-end training. Practitioners can combine our method298

with data parallelism to scale up batch size, which we will show in Section C.2. Table 2 summarizes299

the results of our experiments.300

Our Ring Attention model consistently surpasses baselines, delivering superior scalability across301

diverse hardware setups. For example, with 32 A100 GPUs, we achieve over 32 million tokens in302

context size, a significant improvement over baselines. Furthermore, when utilizing larger accelerators303

like TPUv4-512, Ring Attention enables a 512x increase in context size, allows training sequences of304

over 100 million tokens. Furthermore, our Ring Attention model scales linearly with the number of305

devices, as demonstrated by the 8x improvement over BPT on 8 A100 and the 512x improvement on306

TPUv4-512. If a model can be trained with context size s on n GPUs using the blockwise attention307

and feedforward, with our Ring Attention approach, it becomes possible to train a model with a308

context size of ns.309

C.2 Evaluating Model Flops Utilization310

We evaluate the model flops utilization (MFU) of Ring Attention in standard training settings311

using fully sharded data parallelism(FSDP) [10] and tensor parallelism following LLaMA and312

OpenLLaMA [34, 11]. The batch size in tokens are 2M on 8/32x A100 and 4M on TPUv4-256. Our313

1Unlike TPUv4-256 and TPUv5-256 where the number 256 represents the count of TPUv4 (v5) hosts, TPUv3 uses a doubled host count
notation. So, TPUv3-512 means there are 256 hosts. See https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#
tpu_v3 for more details.
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Table 3: Model flops utilization (MFU) with different training configurations: model sizes,
compute, and context lengths. Ring Attention enables training large models (30B-65B) for
over 1M context size with negligible overheads.

Model size 7B 13B 30B 30B 65B

Compute 8x A100 8x A100 32x A100 TPUv4-256 TPUv4-256

Memory efficient
attention & FFN

Context size
(×1e3) 64 32 64 32 16

Ring Attention Context size
(×1e3) 512 256 512 8192 (8M) 4096 (4M)

goal is investigating the impact of model size and context length on MFU, a critical performance314

metrics while highlighting the benefits of our approach. Table C.1 presents the results of our315

experiments on MFU for different model sizes and context lengths. We present the achieved MFU316

using state-of-the-art memory efficient transformers BPT [22], compare it to our anticipated MFU317

based on these results, and demonstrate the actual MFU obtained with our approach (Ring Attention).318

For fair comparison, both BPT and our approach are based on the same BPT implementation2 on319

both GPUs and TPUs. It’s worth noting that on GPUs our approach Ring Attention can be also320

integrated with the more compute efficient Triton code [16] or CUDA code [9] of memory efficient321

attention [27], similarly on TPUs it is also compatible with Pallas [33]. Combing these low level322

kernels implementations with our approach can maximize MFU, we leave that to future work.323

Ring Attention trains much longer context sizes for self-attention, resulting in higher self-attention324

FLOPs compared to baseline models. Since self-attention has a lower MFU than feedforward, Ring325

Attention is expected to have a lower MFU than the baseline models. Our method offers a clear326

advantage in terms of maintaining MFU while enabling training with significantly longer context327

lengths. As shown in Table C.1, when comparing our approach to prior state-of-the-arts, it is evident328

that we can train very large context models without compromising MFU or throughput.329

C.3 Impact on LLM Performance330

We evaluate Ring Attention by applying our method to finetune LLaMA model to longer context. In331

this experiment, while our approach enables training with millions of context tokens, we conducted332

finetuning on the LLaMA-13B model, limiting the context length to 512K tokens due to constraints333

on our cloud compute budget. This finetuning was carried out on 8 A100 GPUs, using the ShareGPT334

dataset, following methodologies as outlined in prior works [6, 12]. We then evaluated our finetuned335

model on the line retrieval test [19]. In this test, the model needs to precisely retrieve a number336

from a long document, the task can effectively capture the abilities of text generation, retrieval, and337

information association at long context, reflected by the retrieving accuracy. Figure 3 presents the338

accuracy results for different models across varying context lengths (measured in tokens). Notably,339

our model, Ring Attention-13B-512K, stands out as it maintains high accuracy levels even with340

2https://github.com/lhao499/llm_large_context

10

https://github.com/lhao499/llm_large_context


Figure 3: Comparison of different models on the long-range line retrieval task.
Table 4: Minimal sequence length needed on each device. Interconnect Bandwidth is the uni-
directional bandwidth between hosts, i.e., NVLink / InfiniBand bandwidth between GPUs and
ICI bandwidth between TPUs. Minimal sequence length s = 6c and minimal block size
c = FLOPS/Bandwidth.

Spec Per Host FLOPS HBM Interconnect
Bandwidth

Minimal
Blocksize

Minimal
Sequence Len

(TF) (GB) (GB/s) (×1e3) (×1e3)

A100 NVLink 312 80 300 1.0 6.2
A100 InfiniBand 312 80 100 3.1 18.7
TPU v3 123 16 112 1.1 6.6
TPU v4 275 32 268 1.0 6.2
TPU v5e 196 16 186 1.1 6.3

Algorithm 1 Reducing Transformers Memory Cost with Ring Attention.
Required: Input sequence x. Number of hosts Nh.
Initialize
Split input sequence into Nh blocks that each host has one input block.
Compute query, key, and value for its input block on each host.
for Each transformer layer do

for count = 1 to Nh − 1 do
for For each host concurrently. do

Compute memory efficient attention incrementally using local query, key, value blocks.
Send key and value blocks to next host and receive key and value blocks from previous
host.

end for
end for
for For each host concurrently. do

Compute memory efficient feedforward using local attention output.
end for

end for

long contexts. GPT3.5-turbo-16K, Vicuna-16B-16K, and Claude-2-100K demonstrate competitive341

accuracy within short context lengths. However, they cannot handle extended context lengths.342

Algorithm and Implementation. Algorithm 1 provides the pseudocode of the algorithm. Ring343

Attention is compatible with existing code for memory efficient transformers: Ring Attention just344

needs to call whatever available memory efficient computation locally on each host, and overlap the345

communication of key-value blocks between hosts with blockwise computation. We use collective346

operation jax.lax.ppermute to send and receive key value blocks between nearby hosts. A Jax347

implementation is provided in Appendix E.348
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D Related Work349

Transformers have garnered significant attention in the field of AI and have become the backbone350

for numerous state-of-the-art models. Several works have explored memory-efficient techniques351

to address the memory limitations of Transformers and enable their application to a wider range352

of problems. Computing exact self-attention in a blockwise manner using the tiling technique [23]353

has led to the development of memory efficient attention mechanisms [27] and its efficient CUDA354

implementation [9], and blockwise parallel transformer [22] that proposes computing both feedfor-355

ward and self-attention block-by-block, resulting in a significant reduction in memory requirements.356

In line with these advancements, our work falls into the category of memory efficient computation357

for Transformers. Other works have investigated the approximation of attention mechanisms, yet358

these efforts have often yielded sub-optimal results or encountered challenges during scaling up.359

For an in-depth review of these techniques, we recommend referring to the surveys by Narang et al.360

[25], Tay et al. [32]. Another avenue of research explores various parallelism methods, including361

tensor parallelism [31], pipeline parallelism [14], sequence parallelism [20, 17], and FSDP [10, 28].362

The activations of self-attention take a substantial amount of memory for large context models and363

tensor parallelism can only reduce parts of activations memory. Sequence parallelism of self-attention364

introduces a significant communication overhead that cannot be overlapped with computation, our365

work leverages on blockwise parallel transformers to distribute blockwise computation across devices366

and concurrently overlaps the communication of key-value blocks between hosts with blockwise367

computation. Overlapping communication with computation has been studied in high performance368

computing literature [7, 36, 8, inter alia]. While ring communication has found applications in other369

parallel computing scenarios [2, 15, 13, 30], our work stands out as the first work to show that it can370

be applied to self-attention as used in Transformers and to make it fit efficiently into Transformer371

training and inference without adding significant overhead by overlapping blockwise computation372

and communication.373

E Code374

The implementation of Ring Attention in Jax is provided in Figure 4. We use defvjp function375

to define both the forward and backward passes, and use collective operation jax.lax.ppermute376

to facilitate the exchange of key-value blocks among a ring of hosts. The provided code snip-377

pet highlights essential components of Ring Attention. The complete implementation with378

maximum memory efficient just needs to replace the local blockwise computation, specifi-379

cally jnp.einsum("bshd,btd->bhst", q, k) and jnp.einsum("bhst,btd->bshd", s, v)380

as well as the local blockwise feedforward computation with BPT’s Jax based blockwise attention381

and FFN computation. For maximum compute efficiency our Ring Attention can be integrated382

with exiting kernel-level fused-attention implementations, such as on GPUs Ring Attention can be383

integrated with Triton code [16] or CUDA code [9], similarly on TPUs it is also compatible with384

Pallas code [33] of the memory efficient attention [27].385

F Experiment Details386

F.1 Evaluation of context length387

In the experimental results presented in Section C.1, we used tensor parallelism to partition the model388

across GPUs or TPU units. Our evaluation focused on determining the maximum achievable sequence389

length, using a sequence number of one. For TPUs, we utilized its default training configuration,390

which involved performing matmul operations in bfloat16 format with weight accumulation in391

float32. On the other hand, for GPUs, we adopted the default setup, where all operations were392

performed in float32.393

F.2 Evaluation of MFU394

In the evaluation presented in Section C.2, the training was conducted using FSDP [10] with no395

gradient accumulation. The batch size in tokens is 2 million per batch on GPU and 4 million per batch396

on TPU. For gradient checkpointing [5], we used nothing_saveable as checkpointing policies for397

attention and feedforward network (FFN). For more details, please refer to Jax documentation.398
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1 @partial(jax.custom_vjp, nondiff_argnums=[3, 4, 5])
2 def _ring_attention_fwd(q, k, v, mask, axis_name, float32_logits):
3 if float32_logits:
4 q, k = q.astype(jnp.float32), k.astype(jnp.float32)
5 batch, q_len, num_heads, _ = q.shape
6 batch, kv_len, dim_per_head = k.shape
7 numerator = jnp.zeros((batch, q_len, num_heads, dim_per_head)).astype(q.dtype)
8 denominator = jnp.zeros((batch, num_heads, q_len)).astype(q.dtype)
9 axis_size = lax.psum(1, axis_name)

10 scale = jnp.sqrt(q.shape[-1])
11 def scan_kv_block(carry, idx):
12 prev_max_score, numerator, denominator, k, v = carry
13 mask = lax.dynamic_slice_in_dim(mask,
14 (lax.axis_index(axis_name) - idx) % axis_size * kv_len, kv_len, axis=-1)
15 attn_weights = jnp.einsum("bqhd,bkd->bhqk", q, k) / scale
16 attn_weights = jnp.where(mask, -jnp.inf, attn_weights)
17 max_score = jnp.maximum(prev_max_score, jnp.max(attn_weights, axis=-1))
18 exp_weights = jnp.exp(attn_weights - max_score[..., None])
19 correction = rearrange(jnp.exp(prev_max_score - max_score), 'b h q -> b q h')[..., None]
20 numerator = numerator * correction + jnp.einsum("bhqk,bkd->bqhd", exp_weights, v)
21 denominator = denominator * jnp.exp(prev_max_score - max_score) + jnp.sum(exp_weights, axis=-1)
22 k, v = map(lambda x: lax.ppermute(x, axis_name, perm=[(i,
23 (i + 1) % axis_size) for i in range(axis_size)]), (k, v))
24 return (max_score, numerator, denominator, k, v), None
25 prev_max_score = jnp.full((batch, num_heads, q_len), -jnp.inf).astype(q.dtype)
26 (numerator, max_score, denominator, _, _), _ = lax.scan(scan_kv_block,
27 init=(prev_max_score, numerator, denominator, k, v), xs=jnp.arange(0, axis_size))
28 output = numerator / rearrange(denominator, 'b h q -> b q h')[..., None]
29 return output.astype(v.dtype), (output, q, k, v, numerator, denominator, max_score)
30

31 def _ring_attention_bwd(mask, axis_name, float32_logits, res, g):
32 del float32_logits
33 axis_size = lax.psum(1, axis_name)
34 output, q, k, v, numerator, denominator, max_score = res
35 dq = jnp.zeros_like(q, dtype=jnp.float32)
36 dk = jnp.zeros_like(k, dtype=jnp.float32)
37 dv = jnp.zeros_like(v, dtype=jnp.float32)
38 batch, kv_len, dim_per_head = k.shape
39 scale = jnp.sqrt(q.shape[-1])
40 def scan_kv_block(carry, idx):
41 dq, dk, dv, k, v = carry
42 mask = lax.dynamic_slice_in_dim(mask,
43 (lax.axis_index(axis_name) - idx) % axis_size * kv_len, kv_len, axis=-1)
44 attn_weights = jnp.einsum("bqhd,bkd->bhqk", q, k) / scale
45 attn_weights = jnp.where(mask, -jnp.inf, attn_weights)
46 exp_weights = jnp.exp(attn_weights - max_score[..., None]) / denominator[..., None]
47 ds = jnp.einsum("bqhd,bkd->bhqk", g, v)
48 dl = (ds - jnp.einsum("bqhd,bqhd->bhs", g, output)[..., None]) * exp_weights
49 dq = dq + jnp.einsum("bhqk,bkd->bqhd", dl, k) / scale
50 dk = dk + jnp.einsum("bqhd,bhqk->bkd", q, dl) / scale
51 dv = dv + jnp.einsum("bhqk,bqhd->bkd", exp_weights, g)
52 k, v, dk, dv = map(lambda x: lax.ppermute(x, axis_name, perm=[(i,
53 (i + 1) % axis_size) for i in range(axis_size)]), (k, v, dk, dv))
54 return (dq, dk, dv, k, v), None
55 (dq, dk, dv, k, v), _ = lax.scan(scan_kv_block, init=(dq, dk, dv, k, v), xs=jnp.arange(0, axis_size))
56 dq, dk, dv = dq.astype(q.dtype), dk.astype(k.dtype), dv.astype(v.dtype)
57 return dq, dk, dv
58

59 @partial(jax.custom_vjp, nondiff_argnums=[3, 4, 5])
60 def ring_attention(q, k, v, mask, axis_name, float32_logits=True):
61 y, _ = _ring_attention_fwd(q, k, v, mask, axis_name, float32_logits)
62 return y
63

64 ring_attention.defvjp(_ring_attention_fwd, _ring_attention_bwd)

Figure 4: Key parts of the implementation of Ring Attention in Jax. We use collective operation
lax.ppermute to send and receive key value blocks between previous and next hosts.
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Table 5: Application of Ring Attention on improving Transformer in RL. BC and DT use vanilla
attention. AT + ME denotes using memory efficient attention, AT + BPT denotes using blockwise
parallel transformer. AT + RA denotes using Ring Attention.

ExoRL BC-10% DT AT + ME AT + BPT AT + BPT AT + RA
Task N Trajs = 32 N Trajs = 32 N Trajs = 128 N Trajs = 128

Walker Stand 52.91 34.54 oom 95.45 oom 98.23
Walker Run 34.81 49.82 oom 105.88 oom 110.45
Walker Walk 13.53 34.94 oom 78.56 oom 78.95
Cheetah Run 34.66 67.53 oom 178.75 oom 181.34
Jaco Reach 23.95 18.64 oom 87.56 oom 89.51
Cartpole Swingup 56.82 67.56 oom 120.56 oom 123.45

Total Average 36.11 45.51 oom 111.13 oom 113.66

F.3 Evaluation on line retrieval399

In the evaluation presented in Section C.3, the training was conducted using FSDP on 8x A100 80GB400

Cloud GPUs. We finetuned the LLaMA-13B model [34], limiting context length to 512K tokens due401

to constraints on our cloud compute budget, though our approach enables training with millions of402

context tokens. We use user-shared conversations gathered from ShareGPT.com with its public APIs403

for finetuning, following methodologies as outlined in prior works [6, 12]. ShareGPT is a website404

where users can share their ChatGPT conversations. To ensure data quality, we convert the HTML405

back to markdown and filter out some inappropriate or low-quality samples, which results in 125K406

conversations after data cleaning.407

G Impact on In Context RL Performance408

In addition to show the application of Ring Attention to finetune LLM in Section C.3, we present409

additional results of applying Ring Attention for learning trial-and-error RL experience using Trans-410

formers. We report our results in Table 5, where we evaluate our proposed model on the ExoRL411

benchmark across six different tasks. On ExoRL, we report the cumulative return, as per ExoRL [37].412

We compare BC, DT [4], AT [21], and AT with memory efficient attention [27] (AT+ME), AT with413

blockwise parallel transformers [22] (AT+BPT), and AT with our Ring Attention (AT+Ring Attention).414

The numbers of BC, DT, AT are from the ExoRL and AT paper. AT + Ring Attention numbers are415

run by ourselves. Since the ExoRL data is highly diverse, having been collected using unsupervised416

RL [18], it has been found that TD learning performs best, while behavior cloning struggles [37].417

AT [21] shows that conditioning Transformer on multiple trajectories with relabeled target return can418

achieve competitive results with TD learning. For more details, please refer to their papers. We are419

interested in applying Ring Attention to improve the performance of AT by conditioning on a larger420

number of trajectories rather than 32 trajectories in prior works. It is worth noting that each trajectory421

has 1000 × 4 length where 1000 is sequence length while 4 is return-state-action-reward, making422

training 128 trajectories with modest 350M size model infeasible for prior state-of-the-art blockwise423

parallel transformers. Results in Table 5 show that, by scaling up the sequence length (number of424

trajectories), AT + Ring Attention consistently outperforms oringal AT with BPT across all six tasks,425

achieving a total average return of 113.66 compared to the AT with BPT model’s total average return426

of 111.13. The results show that the advantage of Ring Attention for training and inference with long427

sequences.428

H Training FLOPs Scaling of Context Size429

Given that our proposed approach unlocks the possibility of training with a context size exceeding 100430

million tokens and allows for linear scaling of the context size based on the number of devices, it is431

essential to understand how the training FLOPs per dataset scale with the context size. While a larger432

context size results in a higher number of FLOPs, the increased ratio does not scale quadratically433

because the number of tokens remains fixed. We present these results in Figure 5, which showcases434

various model sizes and context lengths, representing different computational budgets. The figure435

illustrates the ratio of FLOPs for larger context lengths compared to the same model with a shorter436

4K context size. We calculated the per sequence FLOPs using (24bsh2 + 4bs2h)n where h is437
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Figure 5: The per dataset trainig FLOPs cost ratio relative to a 4k context size, considering different
model dimensions. On the x-axis, you’ll find the context length, where, for example, 32x(128k)
denotes a context length of 128k, 32x the size of the same model’s 4k context length.

model hidden dimension, b is batch size, s is total sequence length, and n is number of layers. The438

per dataset FLOPs ratio is then given by ((24bs2h
2 + 4bs2

2h)/(24bs1h
2 + 4bs1

2h))/(s2/s1) =439

(6h + s2)/(6h + s1), where s2 and s1 are new and old context lengths. Model sizes and their440

hidden dimensions are as follows: LLaMA-7B (4096), LLaMA-13B (5140), LLaMA-33B (7168),441

LLaMA-65B (8192), GPT3-175B (12288), and 1TB (36864). These model configurations are from442

LLaMA [34] and GPT-3 [3] papers, except the 1TB model size and dimension were defined by us.443

As depicted in Figure 5, scaling up small models to a 1M context size results in approximately 20-40444

times more FLOPs, and even more for 10M and 100M token context sizes. However, as the model445

sizes increase, the cost ratio decreases. For instance, scaling up the 170B model from 4K to 10M446

incurs 162.6x higher per dataset FLOPs, despite the context size being 3072 times longer.447
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