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Abstract

This paper applies statistical dependence measures to interpret self-supervised
learning (SSL). Conventional applications of measures like mutual information
commonly use separate procedures for feature extraction and dependence estima-
tion, where the relationship between optimal features and the strength of depen-
dence is unclear. This causes limitations in tasks requiring multivariate feature
representations, particularly in SSL. The recently introduced multivariate measure,
functional maximal correlation, is a unified framework based on orthonormal de-
composition of density ratios, wherein the spectrum and the bases become the
measure and the features, respectively. This paper proposes that features in SSL
can also be interpreted as basis functions of the density ratio. We introduce the
Hierarchical Functional Maximal Correlation Algorithm (HFMCA), a theoretically
justified approach that ensures faster convergence, enhanced stability, and prevents
feature collapse by learning orthonormal bases as multivariate features.

1 Introduction
Measures of statistical dependence have been instrumental in learning features that maximize infor-
mation transfer ([1, 2, 3, 4]), which has sparked a multitude of learning principles and algorithms in
machine learning ([5, 6, 7, 8, 9]). Improving the diversity and interpretability of multivariate features
is important in numerous machine learning tasks, such as one-shot learning, transfer learning, and
especially self-supervised learning (SSL) [10, 11, 12]. In this paper, we explore the advances of using
multivariate statistical dependence measures for these tasks.

Conventional dependence measures such as mutual information (MI) may encounter limitations in
tasks that require multivariate properties. Methods based on these measures ([6, 13, 14, 15, 16, 17, 18])
typically involve a three-step iterative process of projection, estimation, and maximization: first, a
network maps data to a feature space; second, a mutual information estimator is optimized to ensure
tight variational bounds; and third, the feature extractor is optimized to maximize the estimated
MI. The limitation lies in the gap between feature extraction and dependence estimation being two
separate procedures, conducted by two separate models, which leaves the link between the optimal
multivariate features and the strength of dependence obscure.

The Functional Maximal Correlation (FMC) is a recently introduced multivariate dependence measure
based on the concept of orthonormal decomposition of density ratios [19, 20, 21]. The spectrum in
this decomposition is the defined dependence measure, and the basis functions are the multivariate
features. Together, they create the projection space associated with the density ratio. The measure
is accompanied with the Functional Maximal Correlation Algorithm (FMCA), which uses neural
networks and log-determinant costs to learn this decomposition directly from empirical data. This
framework unifies dependence measurement and feature learning through density ratio decomposition,
allowing the learning of multivariate features that are theoretically orthonormal.

This concept may provide a new theoretical approach for explaining SSL: the optimal multivariate
features learned through SSL can be interpreted as the basis functions of the density ratio induced by
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a corresponding probabilistic system. Upon formulating the probabilistic system, we propose the
Hierarchical Functional Maximal Correlation Algorithm (HFMCA), an algorithm for multiview self-
supervised learning that explores the hierarchical relationship between data and their augmentations.
HFMCA offers faster convergence, stability that prevents feature collapse, and a theoretical foundation
for interpretability.

2 Preliminary: Density Ratio Decomposition
Spectrum, basis functions, and density ratios. FMC is defined by directly applying spectral
decomposition to the density ratio [21]. Given any two random processes X and Y, with a joint
distribution p(X,Y ) and the marginal product p(X)p(Y ), the decomposition follows

ρ :=
p(X,Y )

p(X)p(Y )
=

∞∑
k=1

√
σkϕk(X)ψk(Y ), EX[ϕk(X)ϕk′(X)] = EY[ψk(Y)ψk′(Y)] =

{
1, k = k′

0, k ̸= k′
. (1)

Each component in this decomposition has a unique role: the spectrum measures dependence (termed
FMC), the bases are feature projectors, and the kernel-associated density ratio is a metric distance
between two samples. Solving this spectral decomposition problem is an optimization problem.

Neural networks implementation. When dealing with empirical data and lacking the knowledge of
pdf , spectral decomposition can be achieved through optimization. The empirical studies suggest a
log-determinant-based cost function, optimized via paired neural networks, offers superior stability.
Two neural networks fθ : X → RK and gω : Y → RK are used to map realizations of X and Y
respectively, each to a K-dimensional output space. We compute the autocorrelation (ACFs) and
crosscorrelation functions (CCFs) between them, defined as

RF = EX[fθ(X)f⊺θ (X)], RG = EY[gω(Y)g⊺
ω(Y)], PFG = EX,Y[fθ(X)g⊺

ω(Y)], RFG =

[
RF PFG

P⊺
FG RG

]
.

(2)
FMCA solves the following minimization problem:

min
θ,ω

r(fθ,gω) := log detRFG − log detRF − log detRG. (3)

Theoretically, the objective function captures the leading eigenvalues in the spectrum, while the
neural networks after applying post-training normalizations approximate leading basis functions.
The task of measuring dependence and learning multivariate features are unified by modeling the
projection space created by the density ratio.

The defined eigenvalues all range from 0 to 1. The optimal cost approximates their aggregation
r∗ =

∑K
k=1 log(1 − σk). The dependence can be evaluated using both the spectrum and the cost,

where a lower cost and higher eigenvalues indicate a stronger dependence.

3 Density Ratio Decomposition for SSL
We explore the potential of framing SSL as a dependence measurement problem. Regardless of the
specified protocols, augmentations of an image describe the common source object. This relationship
implies statistical dependence.

Consider an unaugmented image X ∼ P(X), with P(X) being the given data distribution prior to
any augmentation, which is the source data distribution that we are presented with. The augmentation
protocols can be modeled as a transformation function T (X; v), which takes an image X ∈ X and
a positive integer index v ∈ V symbolizing a specific protocol, and produce an augmented version
of the image. The set V is a subset of positive integers V ⊂ Z+, and its cardinality |V| is the total
number of specified protocols. The augmented images will have a distribution P(Y), assuming they
are modeled as a random process Y ∈ Y .

For simplicity, consider pdfs exist for all defined distributions. We propose that the augmentation
procedure can be modeled as a conditional pdf p(Y |X = X) = 1

|V|
∑

v∈V 1{Y = T (X; v)},
by applying a counting measure to all possible augmented versions of a given image X . Given
X ∼ P(X), augmentations of this image can be sampled from this conditional as Y ∼ P(Y|X = X).
The marginal p(Y) is obtained by marginalizing over all images in the dataset

p(X = X,Y = Y ) = p(X) · 1

|V|
∑
v∈V

1{Y = T (X; v)}, p(Y = Y ) =

∫
X
p(X = X,Y = Y )dX. (4)
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Simplify notations to be p(X,Y ), p(X) and p(Y ). Naturally, we choose to decompose ρ(X,Y ) :=
p(X,Y )

p(X)p(Y ) =
∑∞

k=1

√
σkϕk(X)ψk(Y ), i.e., the density ratio induced by the joint distribution between

the original image and its augmentations.

The remaining question becomes constructing the ACFs and CCFs in the log-determinant cost (3)
and apply optimization. Assume that two neural networks fθ : X → RK and gω : Y → RK are
given. The two ACFs RF = EX[fθ(X)f⊺θ (X)] and RG = EY[gω(Y)g⊺

ω(Y)] can be written and
estimated empirically by their definitions.

Multiview system. Observe that sampling from this joint is to first sample an image in the dataset,
then sample an augmentation from the conditional, indicating that the CCF should also be estimated
in a similar way, in terms of the conditional:

PFG = EX,Y[fθ(X)g⊺
ω(Y)] =

∫∫
p(X)p(Y |X = X)fθ(X)g⊺

ω(Y )dXdY

=

∫
p(X)fθ(X)EY[g⊺

ω(Y)|X = X]dX.

(5)

Therefore, a proper approach is to first estimate the conditional expectation, by averaging over
multiple augmentations of each individual image, then estimate the CCF by averaging over all images.
This estimation of the conditional mean, which uses multiple views of an image similar to [22, 23],
differs from the conventional contrastive learning approach that uses only two views.

To frame this formally, we introduce a series of L i.i.d. categorical r.v., V = {v1, · · · ,vL}, denoting
the execution of L augmentations. For each image, a set of indices {v1, · · · , vL} ⊂ V is sampled,
generating L views T (X;V ) = {T (X; v), v ∈ v1, · · · , vL}. Then the conditional mean can be
estimated by averaging over these L views: EY[gω(Y)|X = X] = 1

L

∑L
l=1 gω(T (X; vl)). Then

the CCF is estimated by averaging over all images.

Hierarchical structure. The second observation is that since augmentations, such as patches,
are often part of the original image, this implies a hierarchical relationship that allows the two
parameterized networks fθ and gω to have shared structures. Instead of using two separate networks,
the model topology can be simplified to be a cascade of the backbone f

(1)
θ and the projection head

f
(2)
θ as approximators for basis functions. The backbone f

(1)
θ is first applied to the L augmentations

of an image, extracting L low-level features Z(1)
l , each with K dimensions. These L features are

then concatenated in the feature channel, acting as inputs to the projection head, and producing the
high-level feature Z(2). The mapping to Z(1) and Z(2) will be considered function approximators fθ
and gω .

Combining the two modifications, we introduce HFMCA for SSL as follows.
Proposition 1. Denote the feature maps produced by the backbone and the projection head as
Z(1) and Z(2), respectively. Also assign L auxiliary indices to Z(1) as {Z(1)

l , l = 1, · · · , L},
corresponding to L augmentations of an image. HFMCA solves the optimization problem:

R1 = E[Z(1)Z(1)⊺], R2 = E[Z(2)Z(2)⊺], P1,2 =
1

L
E[

L∑
l=1

Z
(1)
l Z(2)⊺], R1,2 =

[
R1 P1,2

P⊺
1,2 R2

]
,

min
θ
rH := log detR1,2 − log detR1 − log detR2.

(6)

By the theory of FMCA, the objective function reaches the leading eigenvalues of the density ratio,
with neural networks reaching the leading orthonormal basis functions upon normalizations.

4 Experiments
Fast convergence of HFMCA. We compared the performance with multiple benchmark models on
CIFAR10 and CIFAR100, with the max accuracy achieved over 20, 200, and 800 epochs reported.
All experiments use a consistent setup: a ResNet-18 backbone, batch size of 64, SGD optimizer, a
learning rate of 0.06, and momentum of 0.9, following benchmark settings. We use standard SimCLR
protocols [11] for augmentation and apply a KNN to embedded training images.

In HFMCA, for a batch of 64 images, we generate 128-dimensional feature maps for L = 9 distinct
augmentations per image using a ResNet-18 backbone. These feature maps are then reshaped into
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a 3 × 3 grid, forming a tensor of size (64, 128, 3, 3) which is fed into a 3-layer CNN, creating a
128-dimensional feature per source image. HFMCA exhibits faster convergence and better accuracy
as shown in Table 1.

Method Heads CIFAR10 CIFAR100

Epoch 20 Epoch 200 Epoch 800 Epoch 20 Epoch 200 Epoch 800

Methods with two views
MoCo [24] 128 57.2 83.8 90.0 22.3 45.7 69.8
SimCLR [11] 128 46.7 82.2 87.5 19.6 43.9 65.7
Barlow Twins [25] 2048 45.7 83.5 85.7 28.1 47.1 70.9
SimSiam [26] 2048 50.5 83.7 90.0 22.5 39.9 66.0
VICReg [27] 2048 44.8 81.2 90.2 20.3 37.8 68.5
VICRegL [12] 2048 43.2 78.7 89.7 21.5 41.2 67.3

Methods with multiple views
FastSiam [22] 2048 76.8 87.9 90.1 45.8 62.2 69.9
HFMCA 128 79.3 85.7 90.1 43.3 65.1 67.9

Table 1: Classification accuracy on CIFAR10 and CIFAR100 highlights HFMCA’s effectiveness. HFMCA
converges fastest among all methods, retaining near-optimal accuracy.

Stabiliy of HFMCA. We demonstrate HFMCA’s stability by varying augmentation protocols. We
test five distortion strengths across three protocols: random crops, color jitters, and gray scales, used
in [11]. Each protocol is tested individually, keeping the other two at default values. Random crop
varies from no cropping to the sampling and resizing of any patch from 1× 1 to 32× 32 as inputs.
Color jitter strength refers to the intensity of distortions. Gray scale strength is the likelihood of
images converting to gray scales, with the maximum strength making all images colorless. We show
the cost as estimated dependence measure in Figure 1 and Table 2 as the estimated dependence level.

Fig. 1 shows learning dynamics of costs as estimated dependence, indicating that random crops
impact the most, followed by color jitters, and gray scale. Increased distortion strength reduces
dependence level (increases costs), but never reaches strict independence. Intriguingly, the learning
settles at a certain level of dependence intrinsic to the dataset even in extreme cases. Modeling this
intrinsic level of dependence, which is unaffected by the augmentation’s richness, can be fundamental.

Table 2 further supports our argument by showing the classification accuracy (A) and costs (C) for
these experiments. The results further support HFMCA’s robustness, showing no major accuracy
drop or feature collapse with increased distortion in any scenario.

Figure 1: The learning dynamics of costs (dependence level) are displayed for five distortion strengths across
three protocols. The arrow’s direction indicates an increase in distortion strength. A lower cost value implies a
higher dependence level. The figure implies that as distortion strength increases, the dependence level decreases.
Even in extreme cases, a consistent level of dependence remains, intrinsic to the dataset.

Strength A (%) C

0 24.8 −30.4
0.25 54.5 −26.1
0.5 67.7 −25.4
0.75 71.2 −21.9
1 69.9 −15.1

(a) Crop Distortion

Strength A (%) C

0 49.0 −20.4
0.25 69.6 −18.8
0.5 71.0 −17.5
0.75 70.6 −15.7
1 70.8 −15.0

(b) Color Jitters

Strength A (%) C

0 61.2 −18.1
0.25 71.2 −17.4
0.5 70.4 −17.3
0.75 71.4 −17.2
1 70.7 −17.1

(c) Grey Scale

Table 2: A comparison of classification accuracy (A) and costs (C) across three protocols. An increase in
distortion strength leads to decreased dependence but improves classification accuracy. The external costs never
retain zero in all scenarios, suggesting an intrinsic level of dependence within the dataset.

5 Discussion
This paper provides a theoretical interpretation of SSL features as orthonormal basis functions of the
density ratio. We propose HFMCA for learning SSL features with fast convergence and enhanced
stability. In the appendix, we further discuss how this analysis extends to internal features to provide
model interpretabilities. Our study has not yet incorporated local-level supervision, such as patch
augmentation [23], which can be explored in future work.
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Supplemental Materials

A.1 Extending Analysis to Internal Features

Empirical evidence from our experiments indicates that the use of HFMCA for self-supervision
significantly accelerates training and enhances stability. To further interpret our approach, we must
investigate the internal structures of images. Fig. 1 presents the full diagram of our proposed approach.

A.1.1 Extensions of SSL Propositions

As the main paper proposes modeling the conditional associated with the augmentation protocols
with a counting measure considering all possible augmentation protocols. This is possible due
to the hierarchical relationship between images and their augmented versions. For any pair of
random processes that exhibit a hierarchical structure, not limited to SSL, we propose a generalized
proposition of HFMCA.

Proposition 1. Consider a random process X(2) = {X(2)(l), l = 1, · · · , L}, composed of L smaller
processes that all share the same support. We denote these smaller processes as X(1). In essence,
X(2) and X(1) symbolize two hierarchical levels, with X(2) and X(1) corresponding to the higher
and lower levels, respectively. The lower-level marginal distribution p(X(1)) can be determined
by collecting all possible realizations from the lower-level components, independent of X(2), as
p(X(1) = X(1)) = 1

L

∑L
l=1 p(X

(2)(l) = X(1)). Next, for a given higher-level realization X(2) of
X(2), the conditional distribution of its components is characterized by an empirical distribution:

p(X(1)|X(2) = X(2)) =
1

L

L∑
l=1

1{X(1)=X(2)(l)}. (1)

This induces a cross-scale joint distribution pH(X(1), X(2)) = p(X(1)|X(2))p(X(2)). Combine the

joint and the marginal product, we define the induced density ratio ρH(X(1), X(2)) = p(X(1),X(2))
p(X(1))p(X(2))

.

Proposition 2. Assign two neural networks f (1)θ and f
(2)
θ to two processes X(1) and X(2) respectively.

Denote the produced feature maps as Z(1) (for low-level hierarchy) and Z(2) (for high-level hierarchy),
respectively, and represent features of L augmentations as {Z(1)

l , l = 1, · · · , L}. The optimization
problem of HFMCA

R1 = E[Z(1)Z(1)⊺], R2 = E[Z(2)Z(2)⊺], P1,2 =
1

L
E[

L∑
l=1

Z
(1)
l Z(2)⊺], R1,2 =

[
R1 P1,2

P⊺
1,2 R2

]
,

min
θ
rH := log detR1,2 − log detR1 − log detR2

(2)

applies to any pair of processes X(1) and X(2) that exhibit a hierarchical relationship stated in
Proposition 1.

A.1.2 Hierarchy in Focus: Pixels, Patches & Images
As multiple views represent one source object, a similar relationship is naturally present within
image hierarchies between pixels, patches, and full images. Moreover, our construction also suggests
that this relationship exists at local levels. For instance, the composition from pixels to patches is
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Figure 1: Overview of HFMCA considering both external and internal costs. It comprises three components:
Probabilistic system, Input space, and CNN topology. Input space contains pixels, patches, and image augmen-
tations (views), and their collection (source representation). Probabilistic system defines density ratios ρs,s+1

between neighboring scales, exhibiting the telescoping property to form the global density ratio ρH . Each density
ratio ρs,s+1 yields a spectral decomposition into bases {ϕ(s)

k , ψ
(s)
k } and spectrum {σ(s)

k }. CNN topology applies
downsampling layers L0,L1,L2, · · · , each layer functioning as a universal mapper f (s)θ of the receptive field,
measurable against P(X(s)). Cost functions rs,s+1 optimize eigenvalues until identifying leading eigenvalues
and bases. Spectrum (dependence measure) and bases (features) are acquired from training CNNs. External
costs apply at the top scale, when multiple views compose their respective collections. Internal costs apply at
scales within image hierarchies, such as pixels, patches, and full images.

unaffected by and remains independent of how patches compose the full images. Thus, the most
precise formulation is based on neighboring hierarchical levels.

We define a sequence of r.p. {X(1),X(2), · · · ,X(S)}, where S denotes the number of hierarchical
scales. In this context, X(1) corresponds to pixels, X(S) to images, and the intermediate processes
X(2), · · · ,X(S−1) to image patches. Each element X(s) in this sequence has spatial dimensions
(Hs,Ws) and is composed of pixels: X(s) = {X(s)(i, j) | 1 ≤ i ≤ Hs, 1 ≤ j ≤Ws}.
Our aim is to replicate the previous procedure to define the joint distribution across two neighboring
hierarchical scales. This aligns with the standard patch creation procedure. Given a patch X(s+1)

at scale s+ 1, it can be divided into multiple subpatches at a lower scale s. When two scales have
nearly identical dimensions, the conditional distribution p(X(s) = X(s)|X(s+1)) has discrete, finite
support of subpatches at scale s, modeled by an empirical distribution. Denote the differences in their
patch dimensions as ∆Hs = Hs+1 −Hs + 1 and ∆Ws =Ws+1 −Ws + 1, we define

p(X(s)|X(s+1)) =
1

∆Hs∆Ws

∆Hs∑
m=1

∆Ws∑
n=1

1{X(s)=X(s+1)(m : m+Hs, n : n+Ws)}. (3)

This induces a joint distribution pH(X(s), X(s+1)) = p(X(s)|X(s+1))p(X(s+1)) for every s. To
sample from p(X(s), X(s+1)), we first draw aX(s+1) at scale s+1, followed by sampling a subpatch
X(s) within it, which maintains their dependence. The joint distribution pH(X(s), X(s+1)) further
induces a series of density ratios ρH(X(s), X(s+1)) for every scale s.

Telescoping property of density ratios. An important property of our construction is the local
existence of dependencies within hierarchies. Pixels first constitute patches, regardless of how these
patches eventually combine to form images. Likewise, patches make up images, regardless of the
correspondence between augmentations and the source object. This inherent trait uncovers the
telescoping nature of dependencies, which can be characterized formally with density ratios:
Proposition 3. The global-level dependence for the image hierarchical sequence
{X(1),X(2), · · · ,X(S)} exists locally between neighboring hierarchical levels, as

log
p(X(1), X(2), · · · , X(S))

p(X(1))p(X(2)) · · · p(X(S))
=

S−1∑
s=1

log ρH(X(s), X(s+1)) := log ρH(X(1), · · · , X(S)). (4)
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We name this relationship the telescoping property of density ratios.

This property matches our discussion and addresses the necessity and sufficiency of modeling
statistical dependence between neighboring hierarchical levels. It also reveals a crucial characteristic:
the global-level dependence can be defined and modeled at local levels.

A.1.3 Functional Maximal Correlation via CNNs: Theoretical Solutions

Figure 2: Illustration of HFMCA
costs (Eq. (2)). Use region averages
in Zs and elements in Zs+1 to com-
pute the CCF. Combine the CCF with
ACFs of two marginals to construct
cost functions rH at every layer s.

We have defined a sequence of density ratios pH(X(s), X(s+1)),
ranging from scales s = 1 to S − 1. The remaining step is to
apply HFMCA for decomposition. This follows the procedure
detailed in Proposition 2, which includes the implementation of
the cost rH and the subsequent minimization. Remarkedly, the
topology for this optimization aligns perfectly with the structure
of a vanilla CNN.

Our construction is based on the assumption that each element in
the CNN feature map can act as a universal approximator for its
corresponding receptive field. This mapping relationship aligns
with the functions needed as basis functions in the optimization.

As detailed in Proposition 2, the execution of HFMCA involves
first applying a feature network to each component patch, con-
catenating these lower-level features, and then passing them into
another network to generate the higher-level features. This pro-
cedure bears a close resemblance to the convolution operation,
where kernels are applied to subregions of the preceding layer’s
feature maps. We illustrate this with Fig. 2 and the following
explanation.

Consider a CNN with S layers. The initial layer consists of 1 × 1 convolution kernels, yielding
feature maps Z(1), where the receptive fields correspond to individual pixels. Supposedly the second
layer consists of ∆H1 ×∆W1 convolution kernels (as refer to the patch size in Eq. (3)). This layer
operates on the concatenation of ∆H1 ×∆W1 elements from the feature maps of the first layer. We
can infer that the receptive field of this second layer aligns with image patches of size H2 ×W2.

Hence, the receptive fields of first layer align with X(1) in the hierarchical sequence, while those of
the second layer align with X(2). Following Proposition 2, minimizing the cost rH between Z(1) and
Z(2), denoted as rH(Z(1),Z(2)), effectively decomposes the density ratio between their receptive
fields, ρH(X(1), X(2)).

Likewise, for the remaining layers with kernels dimensions ∆Ms × ∆Ns, its receptive field will
align precisely with the patch size of X(s). By constructing and minimizing costs rH(Z(s),Z(s+1))
between neighboring CNN layers, we effectively decompose the density ratios ρH(X(s), X(s+1))
between neighboring hierarchical levels.

Internal costs for image hierarchies. Suppose this CNN generates S feature maps Z(1), · · · ,Z(S).
We introduce internal costs rH(Z(s),Z(s+1)) (per Proposition 2), and minimize the total cost
minθ

∑S
s=1 rH(Z(s),Z(s+1)). This minimization reveals statistical dependencies within image

hierarchies. If an external cost rH(Z(S),Z(S+1)) is present, we formulate the task as follows,

min
θ

λ
S∑
s=1

rH(Z(s),Z(s+1)) + rH(Z(S),Z(S+1)). (5)

Upon reaching the minimum, we derive an approximation of the sequence of density ratios
ρH(X(s), X(s+1)). This approximation yields a decomposition at each local level, expressed by the
spectrum and the corresponding orthonormal bases at each CNN layer.
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Figure 3: Spectrum across layers under three supervision types. Each plot column represents the spectrum of a
specific CNN layer, ranging from L1 to the last layer LF. Each spectrum consists of 64 eigenvalues, described
as blue dots. The dots’ color intensity reflects their rank in the spectrum, with the blue background showing their
distributions. In unsupervised scenarios, we consistently observe the presence of large eigenvalues, indicating
the dataset’s intrinsic dimensionality. Supervision and self-supervision significantly impact the eigenvalues in
the middle layers, creating large null spaces to meet the goal of discrimination.

Figure 4: Spectrum across pairs of supervision types. Eigenvalues, by projecting eigenfunctions onto each
other, quantify the alignment between supervision pairs across network layers. Supervised and unsupervised
learning exhibit different internal representations due to fewer large eigenvalues, particularly at the top layers.
Supervised and self-supervised learning settings learn very similar spaces, albeit with some differences in the
middle layers where most null space projections occur.

A.2 Experiments for Internal Feature Explainability

A.2.1 Comparison between Supervision & Self-Supervision

Shifting our focus to representations, we investigate HFMCA’s behavior under different supervision
types using the learned spectrum for interpretability. Additional experiments illustrated in Fig. 3
and Fig. 4, conducted on CIFAR10, include unsupervised (where only internal costs are used) and
supervised scenarios (where L distinct views are substituted with L samples from the same class),
with and without internal costs. We use a modified CNN backbone and hyperparameters detailed
in the appendix. The learned HFMCA eigenspectrum between pairs of layers is very telling. The
eigenvalues range between 0 and 1 because of cost normalization and reflect dependence strength.
Since dependence is associated with the correlation between the eigenfunctions, we explore this
interpretation to discuss the layer effective dimension (different from the number of eigenfunctions
that are kept at 64). For the unsupervised case, excluding the first layer, the eigenvalues are basically
in the same range, mostly above 0.5, which means that there are minor modifications in the space
dimensions due to the nonlinear mappings, but the eigenvalue distribution is always far from 0. Hence,
the dynamic range of the eigenvalues across layers shows that the dimensionality of the projection
spaces oscillates around the intrinsic dimensionality of the input data set.

This picture changes drastically for the supervised and self-supervised cases, due to the external
desired responses that force discrimination in the network input-output map. The dimensionality of
the labels in the supervised case is much less than the intrinsic dimension of the input, and so we see
a large number of eigenvalues close to zero (light blue regions), which means that the data is being
projected to a smaller subspace across the layers. More importantly, notice that the higher density of
zero eigenvalues occurs in the middle layers. For the self-supervised case, we have a similar picture,
with a notable difference that the spread of eigenvalues in the last layer closely resembles that of the
unsupervised case. This alignment is expected since the desired output is based on the source image
itself. So we can conclude that the discrimination is affecting mostly the eigenvalues in the middle
layers, creating large null spaces to meet the goal of classification. This explains why the feature
collapse is so common in these types of applications. We also plot in a red dotted line the average of
the 10 largest eigenvalues that corroborate the analysis of the number of zero eigenvalues.
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The eigenvalues have another important application because they quantify the solid angle between
eigenfunctions. This is particularly important when comparing the learned eigenfunctions across
different supervision settings. Fig. 4 shows the eigenvalues between each pair of supervisions at
each layer, by projecting eigenfunctions onto each other, to quantify the alignment of the spanned
projection spaces (values close to 1/0 mean parallel/orthogonal eigenfunctions, respectively). Notice
that there are very few large eigenvalues across the supervised settings versus unsupervised, in
particular on the top layers, meaning that their internal representations are quite different. The
eigenvalues of the supervised versus self-supervised are much larger, meaning that they learn very
similar spaces, particularly at the initial and final layers. This similarity decreases in the intermediate
layers, which is precisely where most null space projections occur. This analysis provides a very
specific understanding of the internal representations of complex networks across different settings,
owing to the proposed methodology.

A.2.2 Visualizing telescoping density ratios

An important component of our hierarchical dependence model is the telescoping property. We
demonstrate that the density ratios between two neighboring layers identify their dependencies, which
effectively captures the global dependence information by extending to the entire network. Thus,
starting from the top layer, we calculate the local density ratios between neighboring layers, passing
these density ratios down to the bottom layers, layer by layer. Fig. 5 displays the local response at
layer L2 across three learning setups, revealing the most informative regions. We observe that the
boundaries of objects, and the interactions between different parts of an object (such as how wheels
are connected to the car body), play a critical role in learning.

This process is quite similar to the effect of backpropagation of errors through gradients, but it is
much more efficient and principled because it transmits statistical dependence instead of just the
simple gradient of the error, which quantifies only the maximum rate of change. In our opinion, the
remarkable performance of HFMCA for SSL can be attributed to its telescoping property. Effectively,
the telescoping property could serve as an alternative to error backpropagation training, potentially
facilitating the effective layer-by-layer training of deep networks, and mitigating the issue of vanishing
gradients while preserving interpretability on the image plane.

Figure 5: Global-to-local density ratio
response of 9 CIFAR10 samples for layer
L2. The boundaries of objects, and the
interactions between different parts of an
object, play a critical role in learning. This
further demonstrates the resemblances be-
tween supervision and self-supervision.

A.3 Pseudocode and algorithm details

In this section, we will further illustrate the proposed methods, including the decomposition scheme
with CNNs, obtaining basis functions and the spectrum through normalizations, and producing the
local density ratio response.

A.3.1 Details of Decomposition with CNNs

Continuing from Section 4.2 of the paper, we further illustrate the use of CNN topologies in applying
density ratio decomposition to image hierarchies.

Notations. To make the illustration more clear, we first clarify the notations that we use:

• F (1)
θ ,F (2)

θ , · · · ,F (S)
θ : Convolution layers of the CNN, each a function receiving patches from

preceding feature maps.

• F̂ (1)
θ , F̂ (2)

θ , · · · , F̂ (S)
θ : Each CNN layer treated as a function of the corresponding receptive field

in input images.
• Z1,Z2, · · · ,ZS : Feature maps at each layer.
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• R
(s)
ϕ ,R

(s)
ψ ,P

(s)
ϕ,ψ,R

(s)
ϕ,ψ, 1 ≤ s ≤ S: Autocorrelation functions (ACFs) and crosscorrelation

functions (CCFs) defining the optimization cost at each layer.

CNN as function approximators of feature maps. Consider a CNN with S layers. The
first layer consists of 1 × 1 convolution kernels (denote as F (1)

θ ). The remaining layers have
kernels of dimensions ∆Ms × ∆Ns (denote as F (2)

θ , · · · ,F (S)
θ ). We assume a fixed channel

number K, and denote each layer’s feature map, a tensor with dimensions (Hs,Ws,K), as
Zs = {Z(s)(i, j) | 1 ≤ i ≤ Hs, 1 ≤ j ≤Ws ∈ RHs×Ws×K}.

Every convolutional layer can be treated as a mapping function F (s)
θ : ∆Ms ×∆Ns → RK , which

operates on the outputs of its preceding layer, as Zs+1(i, j) = F (s+1)
θ (Zs(i : i+∆Ms, j : j+∆Ns)).

It follows that each element Zs(i, j) in the feature map corresponds to a receptive field of dimensions

(Hs,Ws) in the input images, which we denote as Zs(i, j) = F̂ (s+1)
θ (X(i : i +Hs, j : j +Ws)).

This sequence of functions {F̂ (s)
θ : X (s) → RK} can be directly used as basis functions for density

ratio decomposition proposed in Proposition 2 of the main paper.

Minimization criterion. Taking into account the defined forms of joint distributions, the ACFs and
CCFs can be defined at each layer and between two neighboring layers, taking the following forms:

R
(s)
ϕ =

1

M
(s)
ϕ

E[
∑
i,j

i+∆Ms∑
i′=i

j+∆Ns∑
j′=j

Zs(i
′, j′)Z⊺

s (i
′, j′)], R

(s)
ψ =

1

M
(s)
ψ

E[
∑
i,j

Zs+1(i, j)Z
⊺
s+1(i, j)]

P
(s)
ϕ,ψ =

1

M
(s)
ϕ

E[
∑
i,j

i+∆Ms∑
i′=i

j+∆Ns∑
j′=j

Zs(i
′, j′)Z⊺

s+1(i, j)],R
(s)
ϕ,ψ =

[
R

(s)
ϕ P

(s)
ϕ,ψ

P
(s)⊺
ϕ,ψ R

(s)
ψ

]
,

(6)

where M (s)
ϕ and M (s)

ψ simply denote the count of additions. The definition of R(s)
ϕ arises from how

each layer is applied to the boundaries. For example, only one element in Zs+1 has a mapping
relationship with the boundaries of Zs. Therefore, we examine each element in Zs+1, identify its
corresponding inputs in Zs, compute the ACFs for all such related elements, and repeat this process
for every element in Zs+1.

The internal costs and the minimization task can be written as

rs,s+1 = log detR
(s)
ϕ,ψ − log detR

(s)
ϕ − log detR

(s)
ψ , 1 ≤ s ≤ S − 1; r =

S−1∑
s=1

rs,s+1; minimize
θ

r.

(7)
We provide the pseudocode for optimizing the internal costs in Algorithm 1.

Gradient estimation. In our implementation, an adaptive filter can be added for gradient estimation,
similar to a conventional Adam optimizer [1]. Note that the gradient of rs,s+1 has the form

∂rs,s+1

∂θ
= Tr((R(s)

ϕ,ψ)
−1
∂R

(s)
ϕ,ψ

∂θ
)− Tr((R(s)

ϕ )−1
∂R

(s)
ϕ

∂θ
)− Tr((R(s)

ψ )−1
∂R

(s)
ψ

∂θ
). (8)

Thus, we use adaptive filters to estimate the three ACFs, and substitute the argument within the inverse
function with these estimated values. We provide the pseudocode for this procedure in Algorithm 2.

A.3.2 Pseudocode for HFMCA SSL

Continuing from Section 3 of the paper, we provide the pseudocode for HFMCA with self-supervision
in Algorithm 3.

A.3.3 Retrieve Eigenspectrum and Basis Functions.

After training, we apply a standard normalization scheme to obtain the spectrum and basis functions

from neural network outputs. This includes the first step by enforcing orthonormality with ϕ(s)θ =

R
(s)− 1

2

ϕ F̂ (s)
θ , ψ

(s)
θ = R

(s)− 1
2

ψ F̂ (s+1)
θ . The second step is to apply the singular-value decomposition

such that the functions are invariant to the conditional mean operator, which follows

E[ϕ(s)θ ψ
(s)
θ

⊺] = UsΣ̂s
1
2V⊺

s , Σ̂s = diag([σ̂(s)
1 , · · · , σ̂(s)

K ]), ϕ̂
(s)
θ = U⊺

sϕ
(s)
θ , ψ̂

(s)
θ = V⊺

sψ
(s)
θ . (9)
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Algorithm 1 HFMCA - Internal Costs

1: Initialize CNN with downsampling blocks F (1)
θ ,F (2)

θ ,F (3)
θ , · · · ,F (S)

θ
2: while convergence is not reached do
3: Sample a batch of images X; Z1 = F (1)

θ (X); r = 0
4: for s = 1, · · · , S − 1 do
5: Zs+1 = F (s+1)

θ (Zs)

6: R
(s)
ψ = mean(Zs+1(i, j)Z

⊺
s+1(i, j))

7: For every Z⊺
s+1(i, j), find its receptive field in Zs: {Zs(i′, j′), i′ ∈ I, j′ ∈ J}

8: R
(s)
ϕ = mean

(
( 1
|I||J|

∑
i′
∑
j′ Zs(i

′, j′)Z⊺
s (i

′, j′)
)

9: P
(s)
ϕ,ψ = mean

(
1

|I||J|
∑
i′
∑
j′ Zs(i

′, j′)Z⊺
s+1(i, j)

)
10: R

(s)
ϕ,ψ = R

(S)
ϕ,ψ =

[
R

(S)
ϕ P

(S)
ϕ,ψ

P
(S)⊺
ϕ,ψ R

(S)
ψ

]
11: rs,s+1 = log detR

(s)
ϕ,ψ − log detR

(s)
ϕ − log detR

(s)
ψ ; r ← r + rs,s+1

12: end for
13: SGD: θ ← θ + ∂r/∂θ
14: end while

Algorithm 2 Adaptive Filters for Gradient Estimation

1: k = 1; Initiate ACFs/CCFs estimators {R̃(s)
ϕ , R̃(s)

ψ , R̃
(s)
ϕ,ψ}Ss=1

2: while convergence is not reached do
3: for s = 1, · · · , S do
4: R̃

(s)
ϕ ← βR̃

(s)
ϕ + (1− β)R(s)

ϕ

5: R̃
(s)
ψ ← βR̃

(s)
ψ + (1− β)R(s)

ψ

6: R̃
(s)
ϕ,ψ ← βR̃

(s)
ϕ,ψ + (1− β)R(s)

ϕ,ψ

7: R̂
(s)
ϕ = R̃

(s)
ϕ /(1− βk); R̂(s)

ψ = R̃
(s)
ψ /(1− βk); R̂(s)

ϕ,ψ = R̃
(s)
ϕ,ψ/(1− βk)

8: Estimate gradients:

9:
∂rs,s+1

∂θ
≈ pinv(R̂(s)

ϕ,ψ)
∂R

(s)
ϕ,ψ

∂θ
- pinv(R̂(s)

ϕ )
∂R

(s)
ϕ

∂θ
- pinv(R̂(s)

ψ )
∂R

(s)
ψ

∂θ
10: end for
11: k ← k + 1
12: end while

Algorithm 3 HFMCA - External Costs

1: Choose number of views L; Initialize CNN F (1)
θ , · · · ,F (S)

θ ; Initialize F (S+1)
θ : K × L→ R

2: while convergence is not reached do
3: Sample a batch of images X
4: if self-supervised:
5: Create L augmentations of X, resulting in X1,X2, . . . ,XL

6: else if supervised:
7: Sample L− 1 batches with samples of the same class as X, resulting in X1,X2, . . . ,XL

8: Z1,l = F (1)
θ (Xl) for all l ; r = 0

9: for s = 1, · · · , S − 1 do
10: Zs+1,l = F (s+1)

θ (Zs,l) for all l
11: if internal costs: Build rs,s+1; r ← r + rs,s+1

12: end for
13: Concatenate feature maps as inputs: ZS+1 = F (S+1)

θ ([ZS,1,ZS,2, · · · ,ZS,L]⊺)
14: rS,S+1 = mean

(
1
L

∑L
l=1 ZS,lZ

⊺
S,L+1

)
; r ← r + rS,S+1

15: SGD: θ ← θ + ∂r/∂θ
16: end while
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After the normalization, we obtain the leading K eigenvalues {σ̂(s)
K } and the corresponding basis

functions with {ψ̂(s)
θ , ψ̂

(s)
θ }. Since they form a decomposition of density ratios, with a sufficiently

large bandwidth K, local-level density ratios can be approximated by

ρ̂s,s+1 = ϕ̂
(s)
θ

⊺Σ̂s
1
2 ψ̂

(s)
θ → ρs,s+1, 1 ≤ s ≤ S − 1;

S−1∑
s=1

log ρ̂s,s+1 → log ρ. (10)

This procedure will produce the spectrum, the basis functions, and the approximated density ratio
ρ̂s,s+1 at each scale s. A thorough pseudocode for this procedure is presented in Algorithm 4.

A.3.4 Generate Local Response of Density Ratios

Here, we further illustrate the procedure for producing figures associated with telescoping density
ratios, as shown in Section 5 of the paper. Based on the estimated density ratios, we are able to
capture top-down information from the upper layers down to the bottom layers, by propagating
density ratios layer by layer. To accomplish this, we establish a sequence of functions ϱs : X (s) → R
through a recursive procedure. Each function in this series is tasked with evaluating global-to-local
dependence relationships at respective local scales.

As we apply each convolution layer to the feature maps derived from its preceding layer, we fix
Zs(i, j) at the lower scale s and identify the corresponding elements at the higher scale s+ 1 that
share a mapping relationship with this element Zs(i, j). For this purpose, we define four coordinates:

Is = [max(0, i−∆Hs + 1),min(i,Hs+1 − 1)], Js = [max(0, j −∆Ws + 1),min(j,Ws+1 − 1)].
(11)

Elements at the higher scale s + 1 that share a mapping relationship with this element from the
lower scale are located within the bounding box defined by these coordinates. Denote the density
ratio between receptive fields of Z(s)(i′, j′) and Z(s+1)(i, j) as ρ̂s,s+1((i

′, j′), (i, j)). Starting with
ϱS = 1, we then implement a recursive procedure:

ϱs(i
′, j′) =

∑
i∈Is

∑
j∈Js

ϱs+1(i, j)ρ̂s,s+1((i
′, j′), (i, j)), 1 ≤ i′ ≤ Hs, 1 ≤ j′ ≤Ws. (12)

For each 1 ≤ s ≤ S − 1, ϱs is a heatmap with dimensions Ws ×Hs. It localizes the pattern with the
most significant statistical dependence to the global scale, as viewed from local scales. We provide
the pseudocode for this procedure in Algorithm 5.

Algorithm 4 Retrieve eigenspectrum and basis functions

1: Given any input X; Z1 = F (1)
θ (X)

2: for s = 1, · · · , S − 1 do
3: Zs+1 = F (s+1)

θ (Zs)

4: SVD: (R̂(s)
ϕ )−

1
2 P̂

(s)
ϕ,ψ(R̂

(s)
ψ )−

1
2 = UsΣ̂s

1
2V⊺

s

5: ϕ̂
(s)
θ (X) := U⊺

s (R̂
(s)
ϕ )−

1
2Zs

6: ψ̂
(s)
θ (X) := V⊺

s (R̂
(s)
ψ )−

1
2Zs+1

7: ρ̂s,s+1 = ϕ̂
(s)
θ

⊺Σ̂s
1
2 ψ̂

(s)
θ

8: Eigenspectrum (dependence measure): Σ̂s = diag([σ̂(s)
1 , · · · , σ̂(s)

K ])

9: Basis functions (features): {ϕ̂(s)θ , ψ̂
(s)
θ }

10: Density ratio approximations: ρ̂s,s+1

11: end for

A.4 Additional Visualization Results

In the main body of the paper, we illustrated the null-space projections caused by adding supervision,
and the similarity between supervised and self-supervised scenarios, by visualizing the cross-layer
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Algorithm 5 Generate local response of density ratios

1: Given any input X; Z1 = F (1)
θ (X)

2: for s = 1, · · · , S − 1 do
3: Zs+1 = F (s+1)

θ (Zs)
4: Obtain density ratio approximations: ρ̂s,s+1 : Xs ×Xs+1 → R.
5: end for
6: Initialize ϱS = 1; Initialize each ρs to be a (Hs,Ws) heatmap.
7: for s = S − 1, · · · , 1 do
8: For every Zs(i, j), find its mapped counterparts in Zs+1: {Zs+1(i

′, j′), i′ ∈ I, j′ ∈ J}
9: ϱs(i, j) =

∑
i∈I

∑
j∈J ϱs+1(i

′, j′)ρ̂s,s+1((i, j), (i
′, j′)), 1 ≤ i ≤ Hs, 1 ≤ j ≤Ws

10: end for

and cross-supervision spectrum. We have also depicted local density ratio responses for nine
CIFAR10 samples at layer L2. In addition to these two experiments, we include additional figures as
supplementary.

A.4.1 Learning Dynamics of Eigenvalues

In addition to the spectrum obtained after training the model (corresponding to Fig. 4 and Fig. 5
in the main paper), we also visualize the learning dynamics during training, as seen in Fig. 6. In
these figures, we represent the learning dynamics of the cross-layer spectrum as heatmaps between
all neighboring layers (L1, · · · ,L9,LF) for three types of supervision. The x-axis of each figure
represents 50, 000 training iterations, and the y-axis represents the top 20 eigenvalues. This tracks
the evolution of eigenvalues over 50, 000 iterations.

The visualized learning dynamics reveal additional insights. Note that in the heatmap, the color
intensity represents the magnitude of eigenvalues. Notably, in both supervised and self-supervised
scenarios, the middle layers (L3 through L8) consistently display lighter color at the beginning of
training, which indicates there is an initial rise in leading eigenvalues. This increase indicates the
stage of capturing the dataset’s intrinsic dimensions in the middle layers.

However, as training advances, these leading eigenvalues decrease, suggesting the occurrence of
null space projections triggered by the added supervision. Interestingly, this phenomenon is not
observed in the unsupervised scenario. This pattern of an initial increase followed by a decrease in
dependencies indicates the two phases in the learning dynamics, corresponding to the internal and
external sources of dependencies. This behavior is also absent in the initial and final layers since they
directly interact with inputs and targets. This effect could be crucial for a better understanding of
neural networks.

The figure also highlights the differences between supervised and self-supervised learning. In the
middle layers, observe that self-supervised learning only has a marginal decrease after the initial stage.
In contrast, supervised learning exhibits a more significant and enduring decrease in eigenvalues,
indicating a greater influence of null space projections and a diminished ability to capture the intrinsic
dimensions of the data, compared to self-supervised learning.

Furthermore, this visualization also uncovers insights beyond the scope of a single-variate dependence
measure. Observe that in the supervised scenario, the leading eigenvalues at the final layer are nearly
the maximal value 1, and exhibit more instability with noise. These leading eigenvalues at the final
layer appear to propagate to lower layers, suppressing the smaller eigenvalues in the spectrum. This
causes the discrimination between small and large eigenvalues in the middle layer, which is necessary
for the network to perform the classification task. The spectrum for the self-supervised scenario is
much more stable, smooth, and does not exhibit such a discrimination effect between large and small
eigenvalues.

A.4.2 Basis Functions

Another critical component in our proposed decomposition scheme is the eigenfunctions associated
with the visualized spectrum, obtained through Algorithm 4.
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By normalizing the feature maps of each layer, each element in the normalized feature maps can
be viewed as the corresponding eigenfunction on the respective field in the images, at the particular
hierarchical scale. Visualizing these normalized feature maps allows us to observe the evolution
of basis functions across the spatial domain. In Fig. 7, we visualize the evolution of the full 64
eigenfunctions for one selected car sample from CIFAR10 at layer L2, L4 and L6 in the unsupervised
scenario.
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(a) Unsupervised scenario

(b) Supervised scenario

(c) Self-supervised scenario

Figure 6: Visualizing cross-layer learning dynamics. Each supervision method comprises 10 figures, corre-
sponding to one of 10 layers (from L1 through L9, and LF), except for the unsupervised case without the
final layer. The x-axis of each figure represents 50, 000 training iterations, and the y-axis represents the top
20 eigenvalues. The presented heatmaps illustrate the evolution of these 20 eigenvalues throughout 50, 000
iterations. The colors in the heatmap correspond to the eigenvalue magnitudes, with lighter areas indicating
larger values. In both supervised and self-supervised scenarios, the middle layers display an initial rise in leading
eigenvalues, followed by a decrease, suggesting a two-phase learning dynamic: initially capturing the dataset’s
intrinsic dimensions and then executing null-space projections essential for classification discrimination.

(a) Layer L2 (b) Layer L4 (c) Layer L6
Figure 7: Visualizing basis functions for one car sample from CIFAR10, at layers L2, L4 and L6, in the
unsupervised scenario, each representing a set of orthonormal features at a hierarchical scale.
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Figure 8: The 20 samples from
CIFAR10 we use for comparing
local density ratio responses in
Fig. 4.

(a) Unsupervised - L2 (b) Unsupervised - L4 (c) Unsupervised - L6

(d) Supervised - L2 (e) Supervised - L4 (f) Supervised - L6

(g) Self-supervised - L2 (h) Self-supervised - L4 (i) Self-supervised - L6

Figure 9: Local density ratio responses are compared for 20 samples from CIFAR10 at layers L2,
L4 and L6, under all three supervision scenarios. The responses reveal consistent patterns across
different network layers. The procedure of propagating density ratios effectively allows bottom
layers, which are conventionally viewed as having high-resolution but low-level information, to
reflect high-level information. This comparison also further confirms the close resemblance between
supervised and self-supervised learning, not only at the bottom layers but across all internal layers.

Fig. 7 validates the diversity of the learned basis functions, demonstrating their effectiveness as
features at various hierarchical scales. Another observation, which aligns with conventional FMCA,
is that the decomposition involving density ratios also adheres to the principles of any orthonormal
decomposition. The spatial domain evolution incorporates both high and low frequencies. Generally,
basis functions for large eigenvalues tend to represent low-frequency components, and those for small
eigenvalues represent high-frequency components.

The features at different hierarchy levels also correspond to the range of dependency relationships.
Observations indicate that lower hierarchies capture short-range and higher hierarchies capture
long-range relationships. Together, they form a diverse image representation.
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A.4.3 Local Density Ratio Responses

In addition to the 9 samples at layer L2 shown in the main paper, we illustrate local density ratio
responses for 20 additional CIFAR10 samples (Fig. 3) across layers L2, L4 and L6 in Fig. 4. Their
generation procedure has been thoroughly described in Algorithm 5, which involves constructing
density ratio approximations with spectrum (Fig. 1) and eigenfunctions (Fig. 2), and propagating
density ratios layer by layer from top to bottom.

As discussed in the main paper, adding supervision at the lower layer L2 effectively highlights the
most informative regions in the images, such as object boundaries and interactions between different
parts of an object. By examining responses across various layers, we can clearly see consistency in
the patterns. The key difference is that upper layers tend to represent high-level object information,
capturing long-range dependencies, while lower layers focus more on the details. This approach,
instead of relying solely on the network’s final layer and ignoring all internal outputs, generates
a multi-scale representation. Propagating density ratios from upper to lower layers improves the
representation by adding details that upper layers, due to their lower resolution, cannot capture.

Inherent in the conventional neural network topology is the property that the bottom layers have high
resolution but only contain low-level information, while the top layers have low resolution, despite
capturing high-level information. On the contrary, our generated density ratio responses effectively
enable the bottom layers to also contain high-level information.

In addition, we present 20 more car samples visualized at layer L2 for self-supervised learning in
Fig. 5. Interestingly, we find that the most frequent pattern for the car class is the boundary of the
wheels and the interactions between the car wheels and the ground. Fig. 5 demonstrates that these
patterns are indeed consistent within the class.

(a) Randomly Picked 20 Car Samples (b) Self-supervised - L2

Figure 10: Comparing local
density ratio responses for 20
samples from CIFAR10 car
class, at layer L2, in self-
supervised scenario.

A.5 Implementation Details

Now we move to the implementation details for the experiments, particularly the used neural network
structures and the important hyperparameters for reproducing the experiments.

A.5.1 Network Structure

To obtain the optimal performance for SSL, we adopt the commonly-used ResNet-18 backbone,
following the same implementations in [2]. All experiments utilize this ResNet-18 backbone with a
consistent batch size of 64, an SGD optimizer, a learning rate of 0.06, and a momentum of 0.9. These
settings stay consistent with benchmark models.

To obtain the best visualization for analysis purposes, we modify the backbone to a CNN with blocks.
The first block L0 (see Table 1), employs only 1 × 1 kernels, transforming input images X into
feature maps Z1. The blocks L1 through L8 (see Table 2), include two layers with 1× 1 kernels and
one layer with a 3× 3 kernel in between, making it a universal approximator for 3× 3 patches. The
block L9 (see Table 3), has an additional average pool at the end, such that the output dimension is 1.

The block responsible for constructing the external cost, pertinent to both performance and spectrum
analysis, utilizes the network described in Table 4. The input for this block is the concatenation (in
the channel dimensions) of feature maps for a group of 9 samples. For the best performance in SSL,
we enhance the feature dimensions from 64 to 128.
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Blocks L0 to LF for spectrum analysis are optimized using an Adam optimizer with a learning rate
of 0.0001, β1 = 0.5, β2 = 0.9, and a batch size of 32.

Layer In Ch. Out Ch. Kernel Size Padding Input Output
PaddingLayer 64 64 - 1 X -
NoiseChannel 64 84 - - - -
Conv2D 84 200 1x1 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 200 1x1 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 64 1x1 0 - -
BatchNorm2d 64 64 - - - -
Sigmoid 64 64 - - - Z1

Table 1: Blocks L0. All convolution kernels are 1× 1. No internal costs.

Layer In Ch. Out Ch. Kernel Size Padding Input Output
PaddingLayer 84 84 - 1 - Zs
NoiseChannel 64 84 - - Zs -
Conv2D 84 200 1x1 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 200 3x3 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 64 1x1 0 - -
BatchNorm2d 64 64 - - - -
Sigmoid 64 64 - - - Zs+1

Table 2: Blocks L1 through L8. The second convolution has a kernel of 3×3. Internal costs between
Zs and Zs+1. Average pooling between every two blocks.

Layer In Ch. Out Ch. Kernel Size Padding Input Output
PaddingLayer 64 64 - 1 − Z8
NoiseChannel 64 84 - - Z8 -
Conv2D 84 200 1x1 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 200 1x1 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 64 1x1 0 - -
BatchNorm2d 64 64 - - - -
Sigmoid 64 64 - - - −
AvgPool 64 64 4x4 - - Z9

Table 3: Blocks L9. The final layer is an average pooling such that the output dimension is 1. Internal
costs between Z8 and Z9.
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Layer In Ch. Out Ch. Kernel Size Padding Input Output
NoiseChannel 64 84 - - Z9,1,Z9,2, · · · ,Z9,9 -
Conv2D 84 200 1x1 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 200 3x3 0 - -
BatchNorm2d 200 200 - - - -
ReLU 200 200 - - - -
Conv2D 200 64 1x1 0 - -
BatchNorm2d 64 64 - - - -
Sigmoid 64 64 - - - Z10

Table 4: External block LF. Its input is the concatenation of feature maps for a group of 9 samples.
A batch contains multiple such groups. External costs between Z9,1, · · · ,Z9,9 and Z10.

Here we address several important considerations:

• Noise Channel: At the beginning of each block, we add an additional 20 uniform noise channels,
matching the size of the input feature maps. This significantly stabilizes the learning dynamics of
eigenvalues.

• Padding Layer: We assume all 3 × 3 convolutions are performed without padding. Padding is
applied to the image at the start of each block, and the output of the padding layer is treated as
Zs, used to calculate the costs with the output of this block Zs+ 1. The calculations of ACFs and
CCFs take the paddings into account.

• Average Pooling: The input size is retained within each block. Average pooling with a kernel size of
2 is applied every two blocks from L1 to L8. Layer L9 contains a 4× 4 average pooling operation
at the end of the network. We take the output of this pooling operation, which is one-dimensional,
as Z9.

A.5.2 Other Hyperparameters

There are two additional hyperparameters that are crucial for our experiments:

• Regularization parameter: Each time we compute the inverse of any ACFs (e.g., gradient estimation
in Algorithm 2), similar to the pseudo-inverse, we add a small diagonal matrix, scaled by a
regularization parameter, denoted as λI. This ensures the invertibility of the matrices. We found this
constant to be important, and it may impact the learned spectrum. To achieve optimal performance
in SSL, we select λ = 0.1. For spectrum analysis, we choose λ = 0.001.

• Smoothness of adaptive filters (as referred to Algorithm 2): In addition to Adam, we also add
adaptive estimators for the ACFs. As the gradient of the log-determinant involves the matrix
inverse, we replace the inverse matrices with the estimated ones. Similarly to Adam, we control the
smoothness through a parameter β, as shown in Algorithm 2. To achieve optimal performance in
SSL, we simply set β = 0. For spectrum analysis, we choose β = 0.5.
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