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Abstract

In contrastive learning for time series, contrasting similar time series instances or
values from adjacent timestamps within a time series leads to ignore their inherent
correlations, deteriorating the quality of learned representations. To address this
issue, we propose SoftCLT, a simple yet effective soft contrastive learning strat-
egy for time series. This is achieved by introducing instance-wise and temporal
contrastive loss with soft assignments. Specifically, we define soft assignments for
1) instance-wise contrastive loss by the distance between time series on the data
space, and 2) temporal contrastive loss by the difference of timestamps. SoftCLT
is a plug-and-play method for time series contrastive learning that improves the
quality of learned representations. In experiments, we demonstrate that SoftCLT
consistently improves the performance in various downstream tasks.

1 Introduction
Time series (TS) data are ubiquitous in many fields [9, 45]. However, annotating TS data can be
challenging as it often requires significant domain expertise and time, and self-supervised learning
has emerged as a promising representation learning approach to overcome the limitation. In particular,
contrastive learning (CL) has demonstrated remarkable performance across different domains [5, 20,
56]. As it is challenging to determine similarities of instances in self-supervised learning, recent CL
works apply data augmentation to generate two views per data and take views from the same instance
as positive pairs and the others as negatives [5]. However, we argue that the standard CL objective
might be harmful for TS representation learning, because inherent correlations in similar TS instances
and values nearby timestamps within a TS, which could be a strong self-supervision, are ignored in
CL. For example, distance metrics such as dynamic time warping (DTW) have been widely used for
measuring the similarities of TS data, and contrasting TS data might lose such information. Also,
values with close timestamps are usually similar in natural TS data, so contrasting all values with
different timestamps with the same degree of penalty as in previous CL methods [13, 56] might not
be optimal. Motivated by this, we explore the following research question: how can we take account
of the similarities of time series data for better contrastive representation learning?

To this end, we propose Soft Contrastive Learning for Time series (SoftCLT). Specifically, we
propose to consider the InfoNCE loss [36] not only for the positive pairs but also all other pairs
and compute their weighted summation, where weights are soft assignments computed based on the
distance between TS for the instance-wise CL, and the difference of timestamps for the temporal CL.
This formulation can be seen as a generalization of the standard contrastive loss, as the proposed loss
becomes the contrastive loss if we replace soft assignments with hard assignments of either zero for
negative or one for positive. The main contributions of this paper are summarized as follows:

• We propose SoftCLT, a simple yet effective soft contrastive learning strategy for TS. Specifically,
we propose soft contrastive losses for instance and temporal dimensions, respectively, to address
limitations of previous CL methods for TS.

• We provide extensive experimental results on various tasks for TS, showing that our method
improves SOTA performance on a range of downstream tasks.
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Figure 1: Overall framework of SoftCLT. Unlike the conventional hard CL that gives either positive
or negative assignments to sample pairs, SoftCLT gives soft assignments to both instance-wise and
temporal relationships. Two views of the same sample are denoted as r and r̃, respectively.

• SoftCLT is easily applicable to other CL frameworks for TS by introducing soft assignments and
its overhead is negligible, making it practical for use.

2 Methodology
In this section, we propose SoftCLT by introducing soft assignments to instance-wise and temporal
contrastive losses to capture both inter-sample and intra-temporal relationships, respectively. For
instance-wise CL, we use distance between TS on the data space to capture the inter-sample relations,
and for temporal CL, we use the difference between timestamps to consider the temporal relation
within a single TS. The overall framework of SoftCLT is illustrated in Figure 1.
Problem Definition. This paper addresses the task of learning a nonlinear embedding function
fθ : x → r, given a batch of N time series X = {x1, . . . , xN}. Our goal is to learn fθ mapping a
time series xi ∈ RT×D to a representation vector ri = [ri,1, . . . , ri,T ]

⊤ ∈ RT×M , where T is the
sequence length, D is the input feature dimension, and M is the embedded feature dimension.

2.1 Soft Instance-Wise Contrastive Learning

Contrasting all instances within a batch might be harmful for TS representation learning because
similar instances are learned to be far away from each other on the embedding space. Unlike other
domains such as computer vision, the distance between TS data computed on the data space is useful
for measuring the similarity of them. For example, the pixel-by-pixel distance of two different images
is not related to their similarities in general, that of two TS data is useful to measure their similarities.
With a distance metric D(·, ·), we define a soft assignment for a pair of data indices (i, i′) for the
instance-wise contrastive loss using the sigmoid function σ(a) = 1/(1 + exp(−a)):

wI(i, i
′) = 2α · σ (−τI ·D(xi, xi′)) , (1)

where τI is a temperature controlling the sharpness and α is the upper bound in the range of [0, 1]
to distinguish pairs of the same TS and pairs of different TS close to each other; when α = 1, we
give the assignment of one to the pairs with the distance of zero as well as the pairs of the same TS.
We chose DTW as the distance metric throughout the experiments based on the ablation study in
the supplementary materials, which showed robustness to various metrics. While the computational
complexity of DTW is O(T 2) for two TS of length T which might be costly for large-scale datasets,
it can be precomputed offline or cached to facilitate efficient calculations, or its fast version such as
FastDTW [39] with the complexity of O(T ) can be used. We empirically confirmed that the output
of DTW and FastDTW is almost the same, such that the CL results also match.
Let ri,t = ri+2N,t and r̃i,t = ri+N,t be the embedding vectors from two augmentations of xi at
timestamp t for conciseness. Inspired by the fact that the contrastive loss can be interpreted as the
cross-entropy loss [28], we define a softmax probability of the relative similarity out of all similarities
considered when computing the loss as:

pI((i, i
′), t) =

exp(ri,t ◦ ri′,t)∑2N
j=1,j ̸=i exp(ri,t ◦ rj,t)

, (2)

where we use the dot product as the similarity measure ◦. Then, the soft instance-wise contrastive
loss for xi at timestamp t is defined as:

ℓ
(i,t)
I = − log pI((i, i+N), t)−

2N∑
j=1,j ̸={i,i+N}

wI(i, j mod N) · log pI((i, j), t). (3)

2



Reference Point

⬤

⬤

⬤

⬤

(a) Soft assignments with different τT .

Max Pool

Dissimilar ( use Large       )

Sim
ilarity btw

 Tim
e Steps

1 Time Step = 4 Timestamps

1 Time Step = 2 Timestamps

1 Time Step = 1 Timestamps

Similar ( use Small        )

(b) Hierarchical representations.

Figure 2: (a) shows examples of soft assignments for soft temporal CL, where a smaller τT results in
smoother assignments. (b) is demonstrates that increasing layer depth results in a larger semantic
difference between adjacent time steps, so τT should be increased to compensate for it.

The first term in ℓ
(i,t)
I corresponds to the loss of the positive pair, and the second term corresponds

to that of the other pairs weighted by soft assignments wI(i, i
′). Note that this loss can be seen as a

generalization of the hard instance-wise contrastive loss, which is the case when ∀wI(i, i
′) = 0.

2.2 Soft Temporal Contrastive Learning

Following the intuition that values in adjacent timestamps are similar, we propose to compute a soft
assignment based on the difference between timestamps for temporal contrastive loss. Similar to the
soft instance-wise contrastive loss, the assignment is close to one when timestamps get closer and
zero when they get farther away. We define a soft assignment for a pair of timestamps (t, t′) for the
temporal contrastive loss as:

wT (t, t′) = 2 · σ (−τT · |t− t′|) , (4)

where τT is a temperature controlling the sharpness. As the degree of closeness between timestamps
varies across datasets, we tune τT to control the degree of soft assignments. Figure 2a illustrates an
example of soft assignments with respect to timestamp difference with different τT .
Hierarchical loss. For temporal CL, we consider hierarchical contrasting on intermediate represen-
tations in the network fθ as done in prior CL methods for TS. Specifically, we adopt the hierarchical
contrastive loss proposed in TS2Vec [56], where the losses are computed on intermediate repre-
sentations after each max-pooling layer along the temporal axis and then aggregated. As shown in
Figure 2b, similarities between adjacent time step decrease after pooling, we adjust the temperature
τT by multiplying mk in Eq. 4, i.e., τT = mk · τ̃T where m is the kernel size of pooling layers, k is
the depth, and τ̃T is the base temperature.
Now, let ri,t = ri,t+2T and r̃i,t = ri,t+T be the embedding vectors from two augmentations of xi

at timestamp t for conciseness. Similar to Eq. 2, we define a softmax probability of the relative
similarity out of all similarities considered when computing the loss as:

pT (i, (t, t
′)) =

exp(ri,t ◦ ri,t′)∑2T
s=1,s̸=t exp(ri,t ◦ ri,s)

. (5)

Then, the soft temporal contrastive loss for xi at timestamp t is defined as:

ℓ
(i,t)
T = − log pT (i, (t, t+ T ))−

2T∑
s=1,s ̸={t,t+T}

wT (t, s mod T ) · log pT (i, (t, s)). (6)

Similar to the soft instance-wise contrastive loss, this loss can be seen as a generalization of the hard
temporal contrastive loss, which is the case when ∀wT (t, t

′) = 0.
The final loss for SoftCLT is the joint of the soft instance-wise and temporal contrastive losses:

L =
1

4NT

2N∑
i=1

2T∑
t=1

(λ · ℓ(i,t)I + (1− λ) · ℓ(i,t)T ), (7)

where λ is a hyperparameter controlling the contribution of each loss, set to 0.5 unless specified.
The proposed loss has an interesting mathematical interpretation that it can be seen as the scaled KL
divergence of the softmax probabilities from the normalized soft assignments, where the scale is the
sum of soft assignments. We provide more details in the supplementary material.
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Table 1: Accuracy and rank on UCR/UEA.

125 UCR datasets 29 UEA datasets

Method Avg. Acc.(%) Avg. Rank Avg. Acc.(%) Avg. Rank

DTW-D 72.7 5.30 65.0 4.60
TNC 76.1 4.42 67.7 4.76
TST 64.1 6.19 63.5 5.26

TS-TCC 75.7 4.29 68.2 4.38
T-Loss 80.6 3.50 67.5 3.86

TS2Vec 83.0 2.80 71.2 3.28
+ Ours 85.0(+ 2.0) 1.49 75.1(+ 3.9) 1.86

Table 2: Transfer learning (Source dataset: SleepEEG)

In-domain Cross-domain

→ Epilepsy → FD-B → Gesture → EMG

ACC. F1 ACC. F1 ACC. F1 ACC. F1

TS2Vec 93.95 90.45 47.90 43.89 69.17 65.70 78.54 67.66
Mixing-Up 80.21 44.51 67.89 72.73 69.33 64.97 30.24 15.41

TF-C 94.95 94.56 69.38 75.59 76.42 77.31 81.71 76.83
TST 80.21 44.51 46.40 41.34 69.17 66.01 46.34 21.11

SimMTM 95.49 92.81 69.40 75.11 80.00 78.67 97.56 98.14

TS-TCC 92.53 86.33 54.99 54.18 71.88 69.84 78.89 59.04
+ Ours 97.00 96.92 80.45 85.48 95.00 95.12 100 100

Table 3: Application of soft assignments.

Soft assignment UCR datasets UEA datasets

Instance-wise Temporal Avg. Acc.(%) Avg. Acc.(%)

82.3 70.5
✓ 83.9 (+1.6) 73.0 (+2.5)

✓ 83.7 (+1.4) 73.8 (+3.3)
✓ ✓ 85.0 (+2.7) 74.2 (+3.7)

Table 4: Robustness to seasonality.

Temporal CL Seasonality

Soft Low (103/128) High (25/128)

✗ 84.1 80.1
✓ 85.6 81.7

Gain +1.5 +1.6

3 Experiments

Classification. We conduct experiments on TS classification tasks with 1251 UCR archive datasets [7]
for univariate TS and 292 UEA archive datasets [3] for multivariate TS, respectively. Specifically, we
apply SoftCLT to TS2Vec [56], which has demonstrated SOTA performance on the above datasets.
As baseline methods, we consider DTW-D [6], TNC [48], TST [57], TS-TCC [13], T-Loss [19],
and TS2Vec [56]. The experimental protocol follows that of T-Loss and TS2Vec, where the SVM
classifier with the RBF kernel is trained on top of the instance-level representations obtained by
max-pooling representations of all timestamps. Table 1 demonstrates that the proposed method
improves SOTA performance by a significant margin on both datasets.
Transfer Learning. We conduct experiments on transfer learning for classification in in-domain and
cross-domain settings which are used in previous works [58, 13, 14, 10], by adopting our SoftCLT to
TS-TCC and CA-TCC. As baseline methods, we consider TS2Vec [56], Mixing-Up [52], TF-C [58],
TS-TCC [13], TST [57] and SimMTM [10]. In in-domain transfer learning, the model is pretrained
on SleepEEG [26] and fine-tuned on Epilepsy [1], where they are both EEG datasets and hence
considered to be in a similar domain. In cross-domain transfer learning, which involves pretraining on
one dataset and fine-tuning on different datasets, the model is pretrained on SleepEEG, and fine-tuned
on three datasets from different domains, FD-B [29], Gesture [33], and EMG [23]. Table 2 shows the
results, demonstrating that the SoftCLT improves SOTA performance in both accuracy and F1 score.
Effectiveness of SoftCLT. Table 3 shows the effect of soft assignments from the standard hard
CL. Applying soft assignments to instance-wise or temporal CL provides a performance gain, and
applying them to both dimensions results in the best performance, improving the accuracy on the
UCR and UEA datasets by 2.7% and 3.7%, respectively.
Robustness to seasonality. An assumption behind the proposed soft temporal CL is that values
in adjacent timestamps are similar, which may raise a concern that seasonality in TS might not be
captured. To address this, we categorize UCR datasets based on seasonality by ADF test [43] at the
significance level of p = 0.05. As shown in Table 4, the performance gain by SoftCLT is consistent
regardless of the seasonality. Our conjecture is that TS in the real world usually do not exhibit the
perfect seasonality, such that SoftCLT takes advantage of the non-seasonal portions.

4 Conclusion
In this paper, we present a soft contrastive learning framework for time series. In contrast to previous
methods that give hard assignments to sample pairs, our approach gives soft assignments based on
the instance-wise and temporal relationships on the data space. We demonstrate the effectiveness of
our method in a range of tasks, leading to significant improvements in performance. We hope our
work enlightens the effectiveness of self-supervision from the data space and motivates future works
on contrastive representation learning in various domains to take account of it.

1Some of the previous methods cannot handle missing observations, so three of the 128 datasets are omitted.
2One of the 30 datasets is omitted for a fair comparison with some of the previous methods.
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A Related Work
Self-supervised learning. In recent years, self-supervised learning has gained lots of attention for
its ability to learn powerful representations from large amounts of unlabeled data. Self-supervised
learning is done by training a model to solve a pretext task derived from a certain aspect of data
without supervision. As a self-supervised pretext task, next token prediction [4] and masked token
prediction [8] are commonly used in natural language processing, while solving jigsaw puzzles [35]
and rotation prediction [22] are proposed in computer vision. In particular, contrastive learning [24]
has shown to be an effective pretext task across domains, which maximizes similarities of positive
pairs while minimizing similarities of negative pairs [20, 5, 56].
Contrastive learning in time series. In the field of TS analysis, several designs for positive and
negative pairs have been proposed for CL, taking into account the invariant properties of TS. Table A.1
compares various CL methods in TS including ours in terms of several properties. T-Loss [19] samples
a random subseries from a TS and treats them as positive when they belong to its subseries, and
negative if not.TNC [48] defines temporal neighborhood of windows using normal distribution
and treats samples in neighborhood and non-neighborhood as positives and negatives, respectively.
TimeCLR [55] introduces data augmentation methods based on DTW, which are phase-shift and
amplitude change augmentations. TS-SD [41] trains a model using triplet similarity discrimination
task, where the goal is to identify which of two TS is more similar to a given TS, using DTW to
define similarity. Mixing-up [52] generates new TS by mixing two TS, where the goal is to predict
the mixing weights. TF-C [58] learns both time- and frequency-based representations of TS and
proposes a novel time-frequency consistency architecture. Self-Time [15] captures inter-sample
relation between TS by defining augmented sample of same TS as positive and negative otherwise,
and captures intra-temporal relation within TS by solving a classification task, where the class labels
are defined using the temporal distance between the subseries. TS-TCC [13] proposes a temporal
contrastive loss by making the augmentations predict each other’s future, and CA-TCC [14], which is
the extension of TS-TCC to the semi-supervised setting, adopts the same loss. TS2Vec [56] splits TS
into two subseries and defines hierarchical contrastive loss in both instance and temporal dimensions.
While previous CL methods for TS compute hard contrastive loss, where the similarities between all
negative pairs are equally minimized, we introduce soft contrastive loss for TS.

T-Loss TNC TimeCLR TS-SD Mixing-Up TF-C Self-Time TS-TCC CA-TCC TS2Vec SoftCLT (ours)

Instanse-wise CL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Temporal CL ✓ ✓ ✓ ✓ ✓ ✓

Hierarchical CL ✓ ✓

Soft CL ✓

Table A.1: Comparison table of contrastive learning methods in time series.

Soft contrastive learning. CL is typically done by batch instance discrimination, where each instance
is considered to be in a distinct class. However, this approach can pose a risk of pushing similar
samples farther apart in the embedding space. To address this issue, several methods have been
proposed, including a method that utilizes soft assignments of images [47] based on feature distances
and geometric proximity measures. NNCLR [12] defines additional positives for each view by
extracting top-k neighbors in the feature space. SNCLR [21], which extends NNCLR with soft
assignments, employs an attention module to determine the correlations between the current and
neighboring samples and gives soft assignments. CO2 [51] introduces consistency regularization to
enforce relative distribution consistency between different positive views and all negatives, resulting in
soft relationships between samples. ASCL [17] introduces soft inter-sample relations by transforming
the original instance discrimination task into a multi-instance soft discrimination task. Previous
soft CL methods in non-TS domains compute soft assignments on the embedding space, because
similarities of instances on the data space are difficult to measure, particularly in computer vision [5].
In contrast, we propose to compute soft assignments based on the distance between TS instances on
the data space.
Masked modeling in time series. Other than CL, masked modeling has recently been studied as
a pretext task for self-supervised learning in TS by masking out a portion of TS and predicting the
missing values. While CL has demonstrated remarkable performance in high-level classification tasks,
masked modeling has excelled in low-level forecasting tasks [10, 25, 53]. TST [57] adopts the masked
modeling paradigm to TS, where the goal is to reconstruct the masked timestamps. PatchTST [34]
aims to predict the masked subseries-level patches to capture the local semantic information and
reduce memory usage. SimMTM [10] reconstructs the original TS from multiple masked TS.
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B Dataset Description
B.1 Classification

For time series classification, we uses the UCR archive [7] and UEA archive [3]. The UCR archive
contains 128 univariate datasets, while the UEA archive contains 30 multivariate datasets. Among
them, some datasets cannot be handled by T-Loss [19], TS-TCC [13], and TNC [48] due to missing
observations, such as DodgerLoopDay, DodgerLoopGame, and DodgerLoopWeekend. Additionally,
there is no reported result for the DTW-D [6] on the InsectWingbeat dataset in the UEA archive.
Hence, the comparison is conducted using the remaining 125 UCR datasets and 29 UEA datasets in
the main paper. However, TS2Vec works well on all UCR and UEA datasets, so we experiment with
all 128 UR datasets and 30 UEA datasets for ablation studies for our method on top of TS2Vec.

B.2 Semi-supervised Classification

Table B.1 describes the summary of the statistical information for eight datasets [2, 1, 7] used in
semi-supervised classifiaction, including the number of training and testing samples, data length, the
number of sensor channels, and the number of classes.

Dataset # Train # Test Length # Channel # Class

HAR 7,352 2,947 128 9 6
Epilepsy 9,200 2,300 178 1 2

Wafer 1,000 6,174 152 1 2
FordA 1,320 3,601 500 1 2
FordB 3,636 810 500 1 2
POC 1,800 858 80 1 2

StarLightCurves 1,000 8,236 1,024 1 3
ElectricDevices 8,926 7,711 96 1 7

Table B.1: Eight datasets used for semi-supervised classification

B.3 Transfer Learning

We have tested our approach on various datasets, which cover a wide range of application sce-
narios, including neurological healthcare, human activity recognition, mechanical fault detection,
and physical status monitoring. Table B.2 describes the datasets for in-domain and cross-domain
transfer learning. Fault Diagnosis (FD) datasets were used for transfer learning under self- and
semi-supervised settings. The data statistics are described below.

Dataset # Samples # Channels # Classes Length Freq (Hz)

Pre-training SleepEEG 371,055 1 5 200 100

Fine-tuning

In-domain Epilepsy 60 / 20 / 11,420 1 2 178 174

Cross-domain
FD-B 60 / 21 / 13,559 1 3 5,120 64,000

Gesture 320 / 120 / 120 3 8 315 100
EMG 122 / 41 / 41 1 3 1,500 4,000

Table B.2: In the four application scenarios, we utilize a pre-training dataset and a fine-tuning dataset,
with the latter having a sample size denoted by "A/B/C," where each denotes the number of samples
used for fine-tuning, validation, and testing, respectively. Our evaluation also focuses on small
datasets, with a very limited sample size of less than 320 samples in the fine-tuning dataset, ensuring
that the fine-tuning set is balanced in terms of classes. This approach enables us to test our model’s
effectiveness on small datasets, which has practical significance.

(1) SleepEEG [26] dataset contains EEG recordings of 153 whole-night sleep sessions from 82
healthy individuals. We segmented the EEG signals using a non-overlapping approach, following the
same preprocessing method as (Zhang et al., 2022), to obtain 371,055 univariate brainwaves, each
sampled at 100 Hz and categorized into one of five sleep stages: Wake, Non-rapid eye movement (3
sub-states), and Rapid Eye Movement. When using SleepEEG dataset as a source dataset in transfer
learning task, we used cosine similarity instead of DTW due to the property of EEG datasets [30].
(2) Epilepsy [1] dataset monitors brain activity using a single-channel EEG sensor on 500 subjects,
with each subject being recorded for 23.6 seconds. The dataset is sampled at 178 Hz and contains
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11,500 samples. We followed the same preprocessing method as (Zhang et al., 2022) and classified
the first four classes (eyes open, eyes closed, EEG measured in the healthy brain region, and EEG
measured in the tumor region) of each sample as positive, while the remaining classes (whether the
subject has a seizure episode) were classified as negative.
(3) FD-B [29] dataset is collected from electromechanical drive systems and monitors the condition
of rolling bearings to detect their failures based on monitoring conditions such as speed, load torque,
and radial force. It consists of 13,640 samples, each recorded at 64k Hz and categorized into three
classes: undamaged, inner damaged, and outer damaged.
(4) Gesture [33] dataset includes data on 8 hand gestures based on hand movement paths recorded
by an accelerometer. The eight gestures are hand swiping left, right, up, and down, hand waving in a
counterclockwise or clockwise circle, hand waving in a square, and waving a right arrow. The dataset
contains 440 balanced classification labels, with each sample having eight different categories of
gestures.
(5) EMG [23] dataset consists of 163 single-channel EMG recordings from the tibialis anterior muscle
of three healthy volunteers suffering from neuropathy and myopathy. Each sample is associated with
one of three classes, with each class representing a different patient. The dataset is sampled at 4K Hz.
(6) FD [29] dataset was obtained by monitoring the sensor readings of a bearing machine while
it operated under four distinct working conditions. Each working condition can be regarded as a
separate domain since they exhibit unique features, such as variations in rotational speed and load
torque. Within each domain, there are three categories: two fault classes, inner and outer fault, and
one healthy class. The FD dataset has 8,184 training samples, 2,728 test samples, a data length of
5,120, one channel, and three classes. Our main goal is to use this dataset to conduct transferability
experiments under both self- and semi-supervised settings and demonstrate the efficiency of our
approach in transfer learning situations.

B.4 Anomaly Detection

We employed Yahoo [27] and KPI [38] for the anomaly detection task. Yahoo is a benchmark dataset
that contains 367 hourly sampled time series with annotated anomaly points. This dataset covers
a wide range of anomaly types, including outliers and change-points. KPI is a competition dataset
released by AIOPS Challenge in 2019. It contains several minutely sampled real KPI curves from
diverse internet companies.
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C Baseline Methods
Classification: The results of all baseline methods for the classification task (DTW-D [6], TNC [48],
TST [57], TS-TCC [13], T-Loss [19], and TS2Vec [56]) are reported in TS2Vec [56].

• DTW-D [6]: DTW-D (Dynamic Time Warping-Delta) is a variant of DTW under semi-
supervised learning settings.

• TNC [48]: TNC (Temporal Neighborhood Coding) defines temporal neighborhood of window
using normal distribution, and defines samples in neighborhood and non-neighborhood as
positives and negatives, respectively.

• TST [57]: TST (Time Series Transformer) adopts the masked modeling paradigm to time series
domain, where the goal is to reconstruct the masked time stamps.

• TS-TCC [13]: TS-TCC (Time-Series representation learning framework via Temporal and
Contextual Contrasting) proposes a new temporal contrastive loss by making the augmentations
predict each other’s future.

• T-Loss [19]: T-Loss is a triplet loss designed for time series. It samples a random subseries
from a time series and treats them as positive when they belong to its subseries, and negative if
belong to subseries of other time series.

• TS2Vec [56]: TS2Vec splits time series into several subseries and defines hierarchical contrastive
loss in both instance-wise and temporal dimensions.

Semi-Supervised Classification: The results of all baseline methods for semi-supervised classifi-
cation using self-supervised methods (SSL-ECG [40], CPC [36], SimCLR [5], TS-TCC [13]) and
semi-supervised methods (Mean-Teacher [46], DivideMix [31], SemiTime [16], FixMatch [44],
CA-TCC [14]) are reported in CA-TCC [14].

• SSL-ECG [40]: SSL-ECG (Self-supervised ECG Representation Learning for Emotion Recog-
nition) proposes ECG-based emotion recognition using multi-task self-supervised learning

• CPC [36]: CPC (Contrastive Predictive Coding) combines predicting future observations
(predictive coding) with a probabilistic contrastive loss.

• SimCLR [5]: SimCLR proposes a simple framework for contrastive learning of visual represen-
tations, without requiring specialized architectures or a memory bank.

• Mean-Teacher [46]: Mean-Teacher is an algorithm for semi-supervised algorithm, that averages
model weights instead of predictions.

• DivideMix [31]: DivideMix uses a mixture model to divide training data into labeled clean
samples and unlabeled noisy samples, and trains a model on both sets in a semi-supervised way.

• SemiTime [16]: SemiTime conducts supervised classification on labeled time series data and
self-supervised prediction of temporal relations on unlabeled time series data. It achieves this
by sampling segments of past-future pairs from the same or different candidates and training the
model to distinguish between positive and negative temporal relations between those segments.

• FixMatch [44]: FixMatch generates pseudo-labels using the model’s predictions on weakly-
augmented unlabeled images, and retain the pseudo-label with a high-confidence prediction.
Then, the model is trained to predict the pseudo-label when fed a strongly-augmented version
of the same image.

• CA-TCC [14]: CA-TCC (Self-supervised Contrastive Representation Learning for Semi-
supervised Time-Series Classification) is the extension of TS-TCC to the semi-supervised
settings, and adopts the same contrastive loss as TS-TCC.

Transfer Learning: The results of baseline methods for transfer learning in both in-domain and cross-
domain settings (TS-SD [41], TS2Vec [56], Mixing-Up [52], TF-C [58], TS-TCC [13], TST [57],
SimMTM [10]) using SleepEEG dataset as the pre-training dataset, are reported in SimMTM [10],
except for results of TS-SD which are reported in TF-C [58]. The results of baseline methods for
transfer learning in both self-supervised and semi-supervised settings (Supervised, TS-TCC [13],
CA-TCC [14]), using FD dataset as the pre-training dataset, are reported in CA-TCC [14].
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• TS-SD [41]: TS-SD utilizes a triplet similarity discrimination task to train a model. The
objective is to determine which of the two TS is more similar to a given TS, with DTW
employed as a means to define the similarity.

• Mixing-Up [52]: Mixing-up generates new time series by mixing two time series, and predicts
the mixing weights.

• TF-C [58]: TF-C generates both time-based and frequency-based representations of time series
and proposes a novel time-frequency consistency architecture.

• SimMTM [10]: SimMTM adopts the masked modeling paradigm to time series domain, where
the goal is to reconstruct the original time series from multiple masked series.

Anomaly Detection: The results of all baseline methods for the anomaly detection task (SPOT [42],
DSPOT [42], DONUT [54], SR [38], FFT [37], Twitter-AD [49], Luminol [32], TS2Vec [56]) are
reported in TS2Vec [56].

• SPOT [42]: SPOT is a novel outlier detection approach for streaming univariate time se-
ries, based on Extreme Value Theory, which does not rely on pre-set thresholds, assumes no
distribution, and only requires a single parameter to control the number of false positives.

• DONUT [54]: DONUT is an unsupervised anomaly detection algorithm based on variational
autoencoder.

• SR [38]: SR is a time-series anomaly detection algorithm that is based on the Spectral Residual
(SR) model and Convolutional Neural Network (CNN), where the SR model is borrowed from
visual saliency detection and combined with CNN to improve its performance.

• FFT [37]: FFT uses fast fourier transform to detect the areas with high frequency change.

• Twitter-AD [49]: Twitter-AD automatically detects long-term anomalies in cloud data by
identifying anomalies in application and system metrics.

• Luminol [32]: Luminol is a Python library for time series data analysis that provides two
main functionalities - anomaly detection and correlation - and can be utilized to investigate the
potential causes of anomalies.

D Implementation Details
The table of hyperparameter settings that we utilized can be found in Table D.1. We made use
of five hyperparameters: τI , τT , λ, batch size (bs), and learning rate (lr). For semi-supervised
classification and transfer learning, we set the weight decay to 3e-4, β1 = 0.9, and β2 = 0. The
number of optimization iterations for classification and anomaly detection tasks is set to 200 for
datasets with a size less than 100,000; otherwise, it is set to 600. Additionally, the training epochs for
semi-supervised classification are set to 80, while for transfer learning, it is set to 40.
Since we utilized soft contrastive loss as an auxiliary loss for TS-TCC and CA-TCC, which are the
methods involved in solving semi-supervised classification and transfer learning tasks, we introduced
an additional hyperparameter λaux to control the contribution of the auxiliary loss to the final loss.

Classification / Forecasting Semi-supervised classification Transfer learning Anomaly detection

τI [1, 2, 3, 4, 5, 10, 20] [10, 20, 30, 40, 50]

τT [0.5, 1.0, 1.5, 2.0, 2.5] [1.5, 2.0, 2.5]

λ 0.5 [0.3, 0.5] 0.5

λaux - [0.1, 0.3, 0.5] -

bs 8 16 4 (yahoo) / 8 (kpi)

lr 0.001 0.0003 0.001

Table D.1: Hyperparameter settings for various tasks
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E Probabilistic Interpretation of Soft Contrastive Losses
Inspired by the fact that the contrastive loss can be interpreted as the cross-entropy loss with virtual
labels defined per batch, or equivalently, the KL divergence of the predicted softmax probability from
the virtual label or hard assignment [28], we define a softmax probability of the relative similarity out
of all similarities considered when computing the loss, and interpret our soft contrastive losses as
a weighted sum of the cross-entropy losses. In this section, we show that the proposed contrastive
loss can also be seen as the scaled KL divergence of the predicted softmax probabilities from the
normalized soft assignments, where the scale is the sum of soft assignments. When hard assignment
is applied, the loss becomes the standard contrastive loss, which is often called InfoNCE [36].

E.1 Probabilistic Interpretation of Soft Instance-Wise Contrastive Loss

To simplify indexing, we extend soft assignments to incorporate the positive sample and anchor itself:

w′
I(i, i

′) =


0, if i = i′;

1, if i ̸= i′ and i ≡ i′(mod N);

wI(i, i
′ mod N), otherwise;

(E.1)

and let qI(i, i′) = w′
I(i, i

′)/ZI be its normalization, where ZI =
∑2N

j=1 w
′
I(i, j) is the partition

function. Then, we can rewrite the proposed soft instance-wise contrastive loss as follows:

ℓ
(i,t)
I = − log pI((i, i+N), t)−

2N∑
j=1,j ̸={i,i+N}

wI(i, j mod N) · log pI((i, j), t)

= −
2N∑
j=1

w′
I(i, j) · log pI((i, j), t)

= −ZI ·
2N∑
j=1

w′
I(i, j)

ZI
· log pI((i, j), t)

= ZI ·
2N∑
j=1

qI(i, j) · log
qI(i, j)

pI((i, j), t)
− qI(i, j) log qI(i, j)

= constant
. (E.2)

Let QI and PI be the probability distributions of qI(i, j), and pI((i, j), t), respectively. Then, we
can rewrite the above loss as:

ℓ
(i,t)
I = ZI ·KL(QI ||PI) + const, (E.3)

which is the scaled KL divergence of the predicted softmax probability from the soft assignments.
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E.2 Probabilistic Interpretation of Soft Temporal Contrastive Loss

To simplify indexing, we extend soft assignments to incorporate the positive sample and anchor itself:

w′
T (t, t

′) =


0, if t = t′;

1, if t ̸= t′ and t ≡ t′(mod T );

wT (t, t
′ mod T ), otherwise;

(E.4)

and let qT (t, t′) = w′
T (t, t

′)/ZT be its normalization, where ZT =
∑2T

s=1 w
′
T (t, s) is the partition

function. Then, we can rewrite the proposed soft temporal contrastive loss as follows:

ℓ
(i,t)
T = − log pT (i, (t, t+ T ))−

2T∑
s=1,s̸={t,t+T}

wT (t, s mod N) · log pT (i, (t, s))

= −
2T∑
s=1

w′
T (t, s) · log pT (i, (t, s))

= −ZT ·
2T∑
s=1

w′
T (t, s)

ZT
· log pT (i, (t, s))

= ZT ·
2T∑
s=1

qT (t, s) · log
qT (t, s)

pT (i, (t, s))
− qT (t, s) log qT (t, s)

= constant
. (E.5)

Let QT and PT be the probability distributions of qT (t, s), and pT (i, (t, s)), respectively. Then, we
can rewrite the above loss as:

ℓ
(i,t)
T = ZT ·KL(QT ||PT ) + const, (E.6)

which is the scaled KL divergence of the predicted softmax probability from the soft assignments.
These answer to a concern that targets are fixed while the predicted softmax probabilities are relative
to the samples in the batch: the formulation with fixed targets is proportional to the formulation with
relative targets, and their difference is only in the optimization speed by the scale ZI and ZT .
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F Semi-Supervised Classification
We conduct experiments on semi-supervised classification tasks by adopting SoftCLT to TS-TCC [13]
and its extension CA-TCC [14], which are the methods that incorporate CL into self- and semi-
supervised learning, respectively. As baseline methods, we consider SSL-ECG [40], CPC [36],
SimCLR [5] and TS-TCC [13] for self-supervised learning, and Mean-Teacher [46], DivideMix [31],
SemiTime [16], FixMatch [44] and CA-TCC [14] for semi-supervised learning. Note that both
TS-TCC and CA-TCC perform instance-wise and temporal contrasting, however, their temporal
contrasting is achieved by predicting one view’s future from another, which is different from the
conventional contrastive loss with positive and negative pairs. Therefore, we adopt our soft temporal
contrastive loss as an additional loss to both methods. We apply the same data augmentation
techniques used in TS-TCC and CA-TCC, where each pair is composed of two views generated with
weak and strong augmentations, which follow jitter-and-scale and permutation-and-jitter strategies.
For evaluation, we utilize the same experimental settings and datasets of CA-TCC, which includes
eight datasets [2, 1, 7], six of which are from the UCR archive. We consider two semi-supervised
learning scenarios, (1) self-supervised learning with unlabeled data followed by supervised fine-tuning
with labeled data and (2) semi-supervised learning with both labeled and unlabeled data, following
CA-TCC [14]. Table F.1 presents the experimental results with both methods in scenarios with 1%
and 5% labeled datasets, showing that applying SoftCLT achieves the best overall performance across
most of the datasets in both scenarios.

1% of labeled data

Self-supervised learning Semi-supervised learning

Dataset SSL-ECG CPC SimCLR TS2Vec + Ours TS-TCC + Ours Mean-Teacher DivideMix SemiTime FixMatch CA-TCC + Ours

HAR 60.0 / 54.0 65.4 / 63.8 65.8 / 64.3 88.6 / 88.5 91.0 / 91.0 70.5 / 69.5 82.9 / 82.8 75.9 / 74.0 76.5 / 75.4 77.6 / 76.3 76.4 / 75.6 77.3 / 76.2 90.6 / 90.6
Epilepsy 89.3 / 86.0 88.9 / 85.8 88.3 / 84.0 95.8 / 93.4 96.3 / 94.1 91.2 / 89.2 95.6 / 95.6 91.5 / 90.6 90.9 / 89.4 91.6 / 90.8 93.2 / 92.2 92.0 / 91.9 97.9 / 97.9

Wafer 93.4 / 76.1 93.5 / 78.4 93.8 / 78.5 67.9 / 56.1 95.3 / 88.1 93.2 / 76.7 96.5 / 96.5 94.7 / 84.7 93.2 / 82.0 94.4 / 84.4 95.0 / 84.8 95.1 / 85.1 98.9 / 98.8
FordA 67.9 / 66.2 75.8 / 75.2 55.9 / 55.7 86.4 / 86.4 87.1 / 87.1 80.6 / 80.0 81.5 / 81.2 71.7 / 71.5 73.7 / 73.3 75.1 / 74.4 74.5 / 74.3 82.3 / 81.7 90.6 / 90.5
FordB 64.4 / 60.5 66.8 / 65.0 50.9 / 49.8 65.4 / 65.4 67.9 / 67.9 78.6 / 78.6 74.8 / 74.8 65.9 / 65.8 54.5 / 54.1 67.6 / 67.5 56.7 / 55.4 73.8 / 73.0 78.3 / 78.2
POC 62.5 / 41.2 64.8 / 48.2 61.5 / 38.4 63.1 / 62.8 63.6 / 62.8 63.8 / 48.1 65.4 / 64.6 62.1 / 40.8 62.1 / 40.7 62.0 / 40.4 61.9 / 40.0 63.4 / 49.3 73.3 / 71.7

StarLightCurves 78.3 / 72.0 80.8 / 74.4 80.6 / 71.6 82.9 / 60.6 85.6 / 62.9 86.0 / 79.2 86.0 / 79.3 79.4 / 77.7 79.0 / 77.2 79.5 / 77.8 77.2 / 71.6 85.8 / 77.8 94.1 / 94.2
ElectricDevices 60.1 / 50.0 59.3 / 48.9 62.5 / 51.2 57.6 / 48.6 62.0 / 53.0 63.6 / 56.4 64.6 / 63.2 48.9 / 48.3 59.8 / 49.4 57.3 / 48.1 58.2 / 46.9 65.9 / 56.7 70.3 / 68.8

5% of labeled data

Self-supervised learning Semi-supervised learning

HAR 63.7 / 58.6 75.4 / 74.7 75.8 / 74.9 91.1 / 91.0 92.1 / 92.1 77.6 / 76.7 92.6 / 92.6 88.2 / 88.1 89.1 / 89.1 87.6 / 87.1 87.6 / 87.3 88.3 / 88.3 91.4 / 91.4
Epilepsy 92.8 / 89.0 92.8 / 90.2 91.3 / 89.2 96.0 / 93.6 96.7 / 94.9 93.1 / 93.7 96.2 / 96.1 94.0 / 93.6 93.9 / 93.4 94.0 / 93.0 93.7 / 92.4 94.5 / 94.0 98.0 / 97.9

Wafer 94.9 / 84.5 92.5 / 79.4 94.8 / 83.3 98.8 / 96.9 98.8 / 96.8 93.2 / 81.2 98.2 / 98.2 94.4 / 83.8 94.7 / 84.6 95.0 / 84.7 94.9 / 84.4 95.8 / 85.2 98.9 / 98.8
FordA 73.6 / 70.7 86.5 / 86.5 69.6 / 68.9 91.2 / 91.2 92.5 / 92.5 89.9 / 89.9 93.2 / 93.2 82.6 / 82.5 84.0 / 83.9 83.8 / 83.7 83.8 / 83.8 90.9 / 90.8 93.3 / 93.3
FordB 71.7 / 69.8 86.3 / 86.2 63.0 / 60.7 74.9 / 74.9 78.8 / 78.6 86.1 / 85.9 88.0 / 88.0 64.6 / 62.7 60.2 / 57.9 65.0 / 62.6 62.7 / 60.7 88.2 / 88.2 89.4 / 89.4
POC 62.9 / 43.3 66.9 / 44.3 62.7 / 42.4 70.4 / 68.0 70.9 / 69.7 62.6 / 42.6 69.4 / 66.3 62.1 / 41.2 62.9 / 45.9 62.4 / 41.8 63.1 / 43.6 66.4 / 52.8 73.1 / 70.7

StarLightCurves 82.6 / 74.5 89.1 / 84.5 84.2 / 74.0 90.0 / 87.6 92.3 / 89.8 89.6 / 82.7 86.2 / 85.5 84.9 / 83.9 85.6 / 84.1 84.6 / 83.8 84.1 / 77.5 88.8 / 81.1 94.3 / 94.2
ElectricDevices 63.7 / 56.1 62.4 / 58.1 63.9 / 58.6 62.9 / 54.7 62.4 / 54.4 65.1 / 59.2 65.1 / 63.8 70.1 / 60.9 72.0 / 62.1 71.6 / 61.1 62.6 / 55.5 66.4 / 59.3 70.6 / 68.9

Table F.1: Semi-supervised classification results. The table shows the results of fine-tuning two
types of models, self-supervised and semi-supervised models, with 1% and 5% of labels. Best results
across each dataset are in bold, while the second-best results are underlined. The accuracy and MF1
score are reported in order.

G Transfer Learning
We perform transfer learning without adaptation under self-and semi- supervised settings, where
source and target datasets share the same set of classes but only 1% of labels are available for the
source dataset, and no further training on the target dataset is allowed. Specifically, models are trained
on one of the four conditions (A,B,C,D) in the Fault Diagnosis (FD) datasets [29] and test on another.
Table G.1 shows the results of both self- and semi-supervised settings with FD datasets.

A → B A → C A → D B → A B → C B → D C → A C → B C → D D → A D → B D → C Avg

Supervised 34.38 44.94 34.57 52.93 63.67 99.82 52.93 84.02 83.54 53.15 99.56 62.43 63.8

TS-TCC 43.15 51.50 42.74 47.98 70.38 99.30 38.89 98.31 99.38 51.91 99.96 70.31 67.82
+ Ours 76.83 74.35 78.34 53.37 75.11 99.38 53.26 85.59 86.29 53.30 93.55 70.93 75.03 (+7.21%)

CA-TCC 44.75 52.09 45.63 46.26 71.33 100.0 52.71 99.85 99.84 46.48 100.0 77.01 69.66
+ Ours 76.85 77.16 79.99 53.26 86.36 100.0 53.23 99.67 99.01 53.56 100.0 84.93 80.34 (+10.68%)

Table G.1: Transfer learning without adaptation under self- and semi-supervised settings on the
FD datasets. TS-TCC and CA-TCC are used as baselines for self- and semi-supervised learning,
respectively.
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H Anomaly Detection
We conduct experiments on univariate TS anomaly detection (AD) task by adopting SoftCLT to
TS2Vec [56] under two different settings: the normal setting splits each dataset into two halves
according to the time order and use them for training and evaluation, respectively, and the cold-start
setting pretrains models on the FordA dataset in the UCR archive and evaluates on each dataset.
As baseline methods, we consider SPOT [42], DSPOT [42], DONUT [54], SR [38], for the normal
setting, and FFT [37], Twitter-AD [49], Luminol [32] for the cold-start setting, and TS2Vec [56] for
both. The anomaly score is computed by the L1 distance of two representations encoded from masked
and unmasked inputs following TS2Vec. We evaluate the compared method on the Yahoo [27] and
KPI [38] datasets. We found that suppressing instance-wise CL leads to better AD performance on
average, so we report TS2Vec and SoftCLT performances without instance-wise CL.As shown in
Table H.1, SoftCLT outperforms the baselines in both settings in terms of the F1 score, precision, and
recall. Specifically, SoftCLT applied to TS2Vec improves the F1 score approximately 2% in both
datasets under both normal and cold-start settings.

Yahoo KPI

F1 Prec. Rec. F1 Prec. Rec.

SPOT 33.8 26.9 45.4 21.7 78.6 12.6
DSPOT 31.6 24.1 45.8 52.1 62.3 44.7
DONUT 2.6 1.3 82.5 34.7 37.1 32.6

SR 5.63 45.1 74.7 62.2 64.7 59.8

TS2Vec∗ 72.3 69.3 75.7 67.6 91.1 53.7
+ Ours 74.2 72.2 76.5 70.1 91.6 57.0

(a) Results of AD task on normal setting.

Yahoo KPI

F1 Prec. Rec. F1 Prec. Rec.

FFT 29.1 20.2 51.7 53.8 47.8 61.5
Twitter-AD 24.5 16.6 46.2 33.0 41.1 27.6

Luminol 38.8 25.4 81.8 41.7 30.6 65.0
SR 52.9 40.4 76.5 66.6 63.7 69.7

TS2Vec∗ 74.0 70.7 77.6 68.9 89.3 56.2
+ Ours 76.2 75.3 77.3 70.7 92.1 57.4

(b) Results of AD task on cold-start setting.

∗ We used the official code to replicate the results without the instance-wise contrastive loss.
Table H.1: Anomaly detection results.

I Time Series Forecasting
The tasks mentioned in the main paper, except for anomaly detection, can be classified as high-level
tasks, which requires capturing instance-wise representations. High-level tasks generally perform
better with CL methods than with masked modeling methods [10, 25, 53]. However, we can perform
low-level tasks such as time series forecasting, when using encoder architectures that can obtain
representations of each timestamp.
For TS forecasting, we apply SoftCLT to TS2Vec. Capturing temporal information within time series
is crucial for time series forecasting, so we use soft CL in two ways: by adopting only temporal
contrastive loss and by using both temporal and instance-wise contrastive loss. For the experiment,
we use four datasets, ETTh1, ETTh2, ETTm1 [59], and electricity dataset [11], under both univariate
and multivariate settings. Table I.1 describes the summary of the statistical information for the four
datasets. As demonstrated in Table I.2, our method results in performance gains compared to hard
CL in both univariate and multivariate TS forecasting.

Datasets Channels Prediction Length Samples

ETTh1, ETTh2 7
{24,48,168,336,720}

8640 / 2880 / 2880
ETTm1 7 34560 / 11520 / 11520

Electricity 321 15782 / 5261 / 5261

Table I.1: Four datasets used for time series forecasting, organized in the format of train/valid/test.
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Univariate forecasting Multivariate forecasting

w/ instance-wise CL w/o instance-wise CL w/ instance-wise CL w/o instance-wise CL

TS2Vec + Ours TS2Vec + Ours TS2Vec + Ours TS2Vec + Ours

Dataset H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

24 0.042 0.152 0.041 0.156 0.046 0.164 0.045 0.161 0.568 0.513 0.554 0.506 0.568 0.525 0.554 0.510
48 0.067 0.197 0.064 0.194 0.079 0.216 0.080 0.218 0.607 0.538 0.595 0.532 0.617 0.557 0.593 0.542

168 0.154 0.304 0.144 0.293 0.153 0.302 0.144 0.291 0.742 0.622 0.737 0.624 0.796 0.664 0.765 0.647
336 0.174 0.332 0.162 0.318 0.172 0.328 0.160 0.314 0.937 0.726 0.890 0.712 1.024 0.777 0.867 0.702
720 0.209 0.376 0.179 0.345 0.192 0.357 0.178 0.341 1.068 0.800 1.056 0.798 1.063 0.801 1.046 0.795
Avg. 0.129 0.272 0.120 0.261 0.128 0.273 0.121 0.265 0.784 0.640 0.766 0.634 0.814 0.665 0.765 0.639

ETTh2

24 0.090 0.230 0.086 0.224 0.090 0.229 0.088 0.226 0.373 0.465 0.370 0.462 0.371 0.462 0.362 0.452
48 0.126 0.273 0.121 0.268 0.121 0.268 0.119 0.265 0.561 0.579 0.557 0.577 0.548 0.571 0.535 0.559

168 0.208 0.359 0.202 0.354 0.196 0.349 0.194 0.347 1.713 1.015 1.713 1.016 1.693 1.024 1.606 1.001
336 0.219 0.374 0.206 0.363 0.207 0.364 0.205 0.362 2.153 1.167 2.061 1.147 2.096 1.172 1.973 1.135
720 0.221 0.381 0.216 0.377 0.217 0.377 0.215 0.376 2.437 1.299 2.394 1.275 2.464 1.319 2.297 1.259
Avg. 0.173 0.323 0.166 0.316 0.166 0.317 0.164 0.315 1.447 0.905 1.441 0.895 1.434 0.910 1.355 0.881

ETTm1

24 0.016 0.093 0.014 0.088 0.015 0.092 0.014 0.090 0.459 0.449 0.418 0.426 0.428 0.430 0.421 0.423
48 0.029 0.128 0.027 0.124 0.028 0.126 0.027 0.124 0.608 0.521 0.567 0.501 0.587 0.512 0.568 0.501
96 0.044 0.158 0.041 0.155 0.048 0.166 0.048 0.166 0.597 0.532 0.591 0.530 0.623 0.544 0.595 0.524

288 0.103 0.246 0.093 0.232 0.113 0.258 0.115 0.260 0.670 0.586 0.647 0.577 0.704 0.600 0.659 0.580
672 0.155 0.298 0.135 0.283 0.163 0.313 0.160 0.311 0.750 0.639 0.743 0.637 0.797 0.659 0.753 0.642
Avg. 0.069 0.185 0.062 0.176 0.073 0.191 0.073 0.190 0.617 0.545 0.593 0.534 0.628 0.549 0.599 0.534

Electricity

24 0.259 0.291 0.251 0.284 0.268 0.299 0.252 0.286 0.285 0.375 0.286 0.375 0.317 0.400 0.315 0.398
48 0.309 0.323 0.304 0.317 0.326 0.350 0.306 0.323 0.308 0.391 0.308 0.391 0.340 0.415 0.338 0.413

168 0.426 0.397 0.418 0.391 0.446 0.431 0.425 0.401 0.335 0.411 0.334 0.411 0.364 0.432 0.362 0.430
336 0.567 0.484 0.560 0.479 0.589 0.524 0.571 0.494 0.352 0.424 0.351 0.424 0.380 0.443 0.377 0.441
720 0.860 0.650 0.858 0.645 0.882 0.700 0.879 0.685 0.378 0.442 0.378 0.442 0.403 0.459 0.401 0.457
Avg. 0.484 0.429 0.478 0.423 0.502 0.461 0.451 0.438 0.332 0.409 0.331 0.409 0.361 0.430 0.359 0.428

Table I.2: Results of univariate and multivariate time series forecasting.

J Design Choices for Soft Temporal Contrastive Learning
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Figure J.1: Design for soft temporal CL

Various design choices can be considered for assign-
ing soft labels in soft temporal contrastive learning. In
this paper, we explore four different choices for the
experiment, all of which assign high values to adja-
cent timestamps. Figure J.1 illustrates these four dif-
ferent choices. For Neighbor, Gaussian, and Sigmoid,
we conducted a search for the optimal hyperparameter
within the following range:

• Neighbor: A certain range within the reference point, with 10%, 30%, 50% of the sequence length.
• Gaussian: Standard deviation values of [0.5, 1.0, 1.5, 2.0, 2.5].
• Sigmoid: τT of [0.5, 1.0, 1.5, 2.0, 2.5].
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K Ablation Study
Design choices for soft temporal CL. Table K.1a compares different choices of the soft assignment
wT . Neighbor takes neighborhood within a window around the reference point as positive and the
others as negative. Linear gives soft assignments linearly proportional to the time difference from the
reference point, where the most distant one gets the value of zero. Gaussian gives soft assignments
based on a Gaussian distribution with the mean of the reference point and the standard deviation as a
hyperparameter. Among them, Sigmoid shows the best performance as shown in Table K.1a.
Upper bound for soft instance-wise CL. In the soft instance-wise contrastive loss, α is introduced
to avoid giving the same assignment to pairs of the same TS and pairs of the different TS with the
distance of zero, where α = 1 makes both cases to have the same assignment. Table K.1b studies
the effect of tuning α. Based on the results, α = 0.5 is the best, i.e., the similarity of the pairs of the
same TS should be strictly larger than other pairs, but not by much.
Distance metrics for soft instance-wise CL. Table K.1c compares different choices of the distance
metric D. cosine distance (COS), Euclidean distance (EUC), dynamic time warping (DTW), and
time alignment measurement (TAM) [18] on 128 UCR datasets, where the baseline is TS2Vec and
the hard or best soft temporal CL is applied together. The result shows that the improvement by soft
instance-wise CL is robust to the choice of the distance metric. We use DTW throughout all other
experiments because DTW is well-studied, commonly used in the literature and fast algorithms such
as FastDTW are available.
Design for Instance-Wise Contrastive Loss In this study, we explore different options for the soft
assignments used in the soft instance-wise contrastive loss: the Gaussian and sigmoid functions.
For the Gaussian function, we use wI (i, j) = exp

(
− (DTW(xi,xj))

2

2σ2

)
, where sample pairs with a

lower DTW distance tends to have soft assignments closer to one. We conduct an ablation study by
comparing the performance of using Gaussian and sigmoid function to model the soft assignments
using UCR archive datasets, and the results are presented in Table K.1d. For this experiment, we
employ the original hard temporal contrastive loss to solely observe the effect of the functions used
for the instance-wise contrastive loss.
Hierarchical Soft Temporal Contrastive Loss We conduct an ablation study to assess the effect
of using hierarchical temperature, by comparing the performance of using hierarchical temperature
(mk · τT ) against a constant temperature (τT ) using 128 datasets in UCR archive [7]. To solely
observe the effect of hierarchical temporal contrastive loss, we employ the original hard instance-wise
contrastive loss for this experiment. The results presented in Table K.1e demonstrate that increasing
τT as the depth of the network increases leads to improved performance.

Temporal CL

Method Avg. Acc.(%)

Neighbor 76.1
Linear 77.2

Gaussian 83.5
Sigmoid 83.7

(a) Assignment func.

Instance-wise CL

α Avg. Acc.(%)

0.25 83.0
0.50 83.9
0.75 83.4
1.00 83.1

(b) Upper bound.

Inst. CL Temporal CL

Metric Hard Soft

COS 83.7 84.7
EUC 83.9 84.8
DTW 83.9 85.0
TAM 83.9 85.0

(c) Distance func.

Method Avg. Acc.(%)

Gaussian 80.1
Sigmoid 83.9

(d) Design for instance-wise CL

Temperature Avg. Acc.(%)

τT 83.3
mk · τT 83.7

(e) Effect of hierarchical τT

Table K.1: Ablation study results.
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L Contrastive Learning for Anomaly Detection Task
Table L.1 indicates that employing only temporal contrastive loss, while excluding instance-wise
contrastive loss, yields better performance in the majority of hard CL and soft CL settings for anomaly
detection tasks. This can be attributed to the nature of the anomaly detection task, which involves
detecting anomalies within a time series, and is less concerned with other time series.

Yahoo KPI

F1 Prec. Rec. F1 Prec. Rec.

TS2Vec w/ inst 72.4 69.3 75.7 67.6 90.9 53.7
w/o inst 71.8 67.6 76.5 68.3 90.9 54.6

+ Ours w/ inst 71.2 67.8 74.9 66.4 94.3 51.4
w/o inst 74.2 72.2 76.5 70.1 91.6 57.0

(a) Results of AD task on normal setting

Yahoo KPI

F1 Prec. Rec. F1 Prec. Rec.

TS2Vec w/ inst 74.0 70.7 77.6 68.9 89.3 56.2
w/o inst 75.5 73.6 77.4 69.7 88.8 57.4

+ Ours w/ inst 74.6 72.1 77.5 69.0 92.1 56.2
w/o inst 76.2 75.3 77.3 69.7 92.1 57.4

(b) Results of AD task on cold-start setting

Table L.1: Results of anomaly detection task by the use of instance-wise contrastive loss.

M Comparison with Soft CL Methods in Computer Vision.

Method Total Length of time series Gap (A-B)
≤ 200 (A) > 200 (B)

TS2Vec 82.3 88.1 79.6 5.8

+ NNCLR 66.0 82.6 58.2 24.4
+ ASCL 76.5 86.6 71.8 14.8

+ Ours 85.0 89.8 81.9 7.9

Table M.1: Comparison of soft CL methods.

While soft CL methods have been proposed in other
domains, they compute soft assignments on the em-
bedding space because it is difficult to measure the
similarities on the data space, particularly in computer
vision. However, we argue that the similarities on the
data space is indeed a strong self-supervision, lead-
ing to better representation learning. To confirm this,
we compare SoftCLT with soft CL methods proposed
in other domains working on the embedding space:
NNCLR [12] and ASCL [17], on UCR datasets. For a fair comparison, we apply all compared meth-
ods to TS2Vec under the same setting. As shown in Table M.1, different from the proposed method,
NNCLR and ASCL deteriorate the performance of TS2Vec, implying that similarities measured on
the data space is strong self-supervision, while similarities measured on the learnable embedding
space might not be useful in some domains. To further investigate the failure modes of the previous
methods, we categorize datasets by the average TS length of 200 in Table M.1, and observe that
previous methods fail to capture the similarities of long TS data.

N Preservation of Instance-wise Relationships.
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Figure N.1: Pairwise distance matrix

To see whether instance-wise relationships are pre-
served in the encoder, we visualize the pairwise
instance-wise distance matrices of representations
on the InsectEPGRegularTrain dataset from UCR
archive [7] extracted from each layer, where the
brighter color indicates the lower distance between
instances. The top and bottom panels of Figure N.1
show the changes in pairwise distance matrices of rep-
resentations as depth progresses when adopting hard
and soft CL, respectively. The results indicate that
SoftCLT preserves the relationships between TS in-
stances throughout encoding, while the standard hard
CL fails to preserve them.
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O t-SNE Visualizations
O.1 Visualization of Temporal Representations
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Figure O.1: Temporal Visualizations.

To assess the quality of temporal relationships
captured by SoftCLT, we apply t-SNE [50] to vi-
sualize the temporal representations, which are
representations of each timestamp in a single TS.
Figure O.1 compares t-SNE of the representations
learned with hard and soft CL over different train-
ing epochs, with the points getting darker as time
progresses. While hard CL finds coarse-grained
neighborhood relationships such that it fails to
distinguish late timestamps in dark red, soft CL
finds more fine-grained relationships.

O.2 Visualization of Instance-Wise Visualization

Hard CL vs. Soft CL. To assess the quality of instance-wise relationships captured by SoftCLT, we
apply t-SNE [50] to visualize the instance-wise representations, which are representations of whole
time series obtained by max-pooling the representations of all time stamps, to both hard and soft
CL. For this experiment, we apply our method to TS2Vec [56] with the UWaveGestureLibraryZ
dataset from UCR archive [7]. The results shown in Figure O.2 demonstrate that soft CL finds more
fine-grained neighborhood relationships and distinguishes them better than hard CL.
Embedding space vs. Input space. To assess the relationship between the shape of time series
and their positions in the embedding dimension, we employ t-SNE [50] to embed instance-wise
representations of time series using the InsectEPGRegularTrain dataset from UCR archive [7].
Figure O.3 illustrates the results, with the left panel displaying the points in the embedding space and
the right panel presenting line plots of the original TS. The colors of the points and lines are assigned
based on the distances with their neighbors in the embedding space. From this figure, we observe
that TS with the same color not only exhibit similar shapes, but also as the points in the embedding
space move towards the upper right, the line plots of the original TS shift towards the upper left.
This demonstrates that our method effectively captures detailed neighborhood relationships while
maintaining alignment between the distances in the embedding space and the original input space.

Hard CL Soft CL

Figure O.2: Hard CL vs. Soft CL
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Figure O.3: Instance-wise visualizations
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P Effect of Distance Metrics by Time Series with Varying Length
We compare the average accuracy of 128 UCR datasets, where 11 datasets have varying time-length,
and the other 117 datasets have the same time-length. As shown in Table P.1, DTW and TAM, both
capable of comparing TS of variable lengths using time warping, demonstrate better performance.

UCR datasets (Avg. Acc.(%))

Temporal CL Hard Soft

Time-series length Non-Varying (117/128) Varying (11/128) Total (128/128) Non-Varying (117/128) Varying (11/128) Total (128/128)

COS 84.8 72.6 83.7 85.7 75.0 84.7
EUC 85.1 73.3 83.9 85.8 73.9 84.8
DTW 84.8 73.6 83.9 85.9 75.2 85.0
TAM 85.0 73.4 83.9 85.9 75.3 85.0

Table P.1: Effect of DTW on time series with varying/non-varying length.

Q Transfer Learning Under Semi-supervised Settings
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Figure Q.1: TL results

In this study, we perform transfer learning in the semi-supervised settings
using SleepEEG [26] and EMG [23] datasets as the source and target
datasets, respectively. Specifically, we apply our SoftCLT to TS-TCC
under semi-supervised settings where we perform fine-tuning using par-
tially labeled datasets. Figure Q.1 presents the results, which indicate that
by using only 10% of labeled data with the soft CL framework (red line),
we are able to achieve an accuracy of 92.69%, which is approximately
15% higher than the accuracy obtained from the hard CL framework
(blue line) under fully supervised settings. Furthermore, using only 50%
of the labeled dataset allowed us to achieve 100% accuracy, whereas the
state-of-the-art performance using fully labeled datasets is 97.56%.
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