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Abstract

The main challenge of pose estimation for six degrees of freedom (6DoF) is the
lack of labeled data in real environment. In order to overcome this problem, many
studies recently have trained deep learning models with synthetic data. However,
a domain gap between real and synthetic environments exists, prompting various
approaches to address this issue. In this work, we propose domain adaptation for
self-supervised 6DoF pose estimation (DAPO), which leverages the components
and introduces an effective method to reduce domain discrepancy. First, we
adopt a multi-level domain adaptation module, on image level and instance level,
to learn domain-invariant features. Second, we used entropy-based alignment
to minimize the entropy of representation embedding. Finally, we evaluate our
approach on LineMOD and Occlusion-LineMOD datasets. Experiments show that
our proposed method achieves higher performance compared to the prior methods
and demonstrate effectiveness in domain shift scenarios on 6DoF pose estimation.

1 Introduction

Six-degree-of-freedom (6DoF) pose estimation has been receiving increasing attention over the last
few years because of the increase in the number of potential applications of robot manipulation
systems [1]. Many studies are being actively conducted on applying deep learning to 6DoF pose
estimation [2, 3, 4]. However, the direct application of deep learning approaches to 6DoF pose
estimation is difficult due to the lack of labeled data from real environments. Moreover, 6DoF pose
annotation is expensive and requires a lot of labor. Existing works address this issue by generating
synthetic data virtually. The benefits of using synthetic data are that it simplifies the generation of
accurate ground truth and costs less. In contrast to these advantages, a domain discrepancy exists
between real data (target) and synthetic data (source). Some work has created source data similar to
the target, reducing the gap in a domain to improve performance [5] but less scalable to other types
of data. Some work uses the depth map to align the two domain samples [6]. Unsupervised domain
adaptation (UDA) has been widely studied [7, 8, 9] to overcome the discrepancy. To overcome the
problem of cross-domain 6DoF pose estimation in such a constrained environment, we propose a
novel approach for 6DoF pose estimation using self-supervised technique. Specifically, we examine
the scenario of unsupervised domain adaptation, where full supervision exists in the source domain
but no supervision is available in the target domain. Our contributions are as follows:
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Figure 1: The framework of our proposed algorithm

• We design an unsupervised domain adaptation pipeline for 6DoF pose estimation for RGB
image, which consists of a multi-level domain adaptation module and entropy-based align-
ment.

• We propose an entropy-based alignment which train to capture visual representative features
better.

• Our approach achieves higher performance on the LineMOD dataset and LineMOD-
Occlusion dataset.

2 Related Works

Six DoF pose estimation is the task of determining the 6DoF pose of an object in 3D space based on
images. Recent advancements in deep learning have shown remarkable performance in 6DoF pose
estimation from RGB images, primarily due to the availability of large-scale training data[10, 11]. For
instance, PVNet [12] utilizes a regression-based approach to predict pixel-wise unit vectors pointing
to key points. These vectors are then used to vote for key-point locations using the RANSAC method.
EfficientPose [13] is another approach that detects 2D targets to solve the PnP problem for estimating
the 6D pose based on EfficientNet [14]. In our work, we adopt EfficientPose as the base estimator
due to its impressive performance and efficiency.

UDA aims to learn domain-invariant features from labeled source data, which can then be applied
to unlabeled target data. Recently, several research has emerged in UDA [15, 16, 17]. In particular,
adversarial training (AT) has been widely used in UDA in recent years. AT utilizes a domain
discriminator to predict the domain of the input image and it tries to extract domain-invariant
features by fooling the domain discriminator [18, 19]. Recent self-supervised learning (SSL) with
unlabeled data has emerged[20]. In particular, contrastive learning[21, 22] is commonly used to
enhance representation learning by training models to maximize similarity between positive pairs and
minimize similarity between negative pairs in the embedding space.

3 Methods

Labeled data for source domain is represented as S = (xS , yS), where xS is source images and yS is
the label for the corresponding 6DoF pose. The unlabeled data for the target domain is represented as
T = xT , where xT , denotes a target image without annotation.

3.1 Multi-level Domain Adaptation

The H-divergence is utilized to measure between two set of samples with different distributions.
That is, theH-divergence relies on the capacity of the hypothesis classH-divergence to distinguish
between examples generated by Dx

S from examples generated by Dx
T . Let us denoteH is the domain

classifier, theH-divergence defines the distance between two domains as follows:

dH(S, T ) = 2(1−min
h∈H

(errS(h(x)) + errT (h(x)))) (1)
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where errS and errT are the prediction errors of h(x) on source and target domain samples. Let us
denote by f the network that produces x. To we need to enforce the networks f to output feature
vectors that minimize the domain distance dH(S, T ).

Image-level adaptation The image-level representation refers to the feature map of the feature
extractor. Let us denote by i-th image, Di (D = 0 for source and D =1 for target domains, respectively)
and prediction of the domain classifier as pi . The domain classifier is trained by minimizing the
cross-entropy loss as follows:

Limg = −
∑
i

[Di log pi + (1−Di) log(1− pi)] (2)

Object-level adaptation The instance-level representation refers to region of interest based-feature
vectors. Similar to the image-level adaptation, we train domain classifier to learn domain-invariant
feature. Denoting the output of the instance-level domain classifier for the j-th region proposal in the
i-th image as pi,j .

Lobj = −
∑
i,j

[Di log pi,j + (1−Di) log(1− pi,j)] (3)

The loss computed using Eq 2, 3 is minimized so that the features extracted from the two domains
are indistinguishable to the discriminator. For the implementation we use the gradient reverse layer.

3.2 Entropy-based Alignment

We propose entropy-based alignment to minimize the distance of representation embedding between
the source and target domain. To this end, we construct positive pairs to aid in the convergence of
representations, as well as negative pairs to amplify their divergence.

We utilize an RGB image that reflects the pose by masking created by projecting transformation.
The masking is constructed by dot producting the transformation consisting of a rotation R and a
translation t and the point of the object P . Pose reflecting image is embedded into a representation
vector z by head h consisting of convolution layers and multi-layer perceptrons. Let us denote
representation embedding from the source sample as zi, from the target of the same class as zj .
To create negative pairs, gaussian noise is used at transformation value. Let us denote z

′

i and z
′

j
negative pairs with noise added for zi and zj , respectively. To calculate the representation embedding
similarity between each pair, we conduct a dot product between the embeddings. Then, the entropy
for positive pair is calculated as

ppo =
exp(zi, zj/τ)

exp(zi, zj/τ) +
∑N

k exp(zi, z
′
i,k)/τ) +

∑N
k exp(zj , z

′
j,k/τ)

(4)

In the same way, the entropy for negative pair is calculated as

pne =
1∑N

k

(
exp(zi, z

′
i,k/τ) + exp(zj , z

′
j,k/τ)

) (5)

where temperature parameter τ controls the centration degree and k is the index of the negative pairs.
By combining equations (4-5), we note the our entropy-based alignment loss LEA

LEA = − log

(
ppo

ppo + pne

)
(6)

Note that in general contrastive learning, positive pairs are typically defined as pairs originating
from the same image, while negative pairs are formed by combining images from different sources.
However, to minimize the domain discrepancy, we designate pairs from different domains as positive
pairs.

4 Experiments

4.1 Experimental Settings

Dataset Our approach was verified by conducting experiments using two widely recognized datasets
for 6DoF pose estimation in RGB images. The first dataset is called LineMOD, which is the
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Table 1: Quantitative results for LineMOD
Ape Bvis Cam Can Cat Dril Duck Eggb Glue Holp Iron Lamp Phone Avg

baseline 23.5 80.7 37.1 80.2 46.5 83.5 19.3 73.1 64.0 9.7 88.7 60.5 57.5 55.7
pseudo [26] 23.6 65.7 37.8 81.1 43.2 85.2 18.6 38.4 66.0 8.7 89.9 66.8 62.6 52.8
DANN [27] 22.4 83.0 42.1 83.6 47.8 85.5 21.3 79.4 66.0 13.5 90.1 68.8 62.7 58.8
DPOD [10] 35.1 59.4 15.5 48.8 28.1 59.3 25.6 51.2 34.6 17.7 84.7 45.0 20.9 40.5
Self6D [28] 38.9 75.2 36.9 65.6 57.9 67.0 19.6 99.0 94.1 15.5 77.9 68.2 50.1 58.9
Cons. [29] 37.6 78.6 65.5 65.6 52.5 48.8 35.1 89.2 64.5 41.5 80.9 70.7 60.5 60.6

Ours 25.5 84.9 45.2 86.1 52.6 88.4 26.5 92.9 88.0 18.0 92.1 74.5 68.6 64.9

Table 2: Quantitative results for Occlusion-LineMOD
Ape Can Cat Dril Duck Eggb Glue Holp Avg

baseline 6.4 36.7 5.5 38.9 13.8 39.1 32.4 24.1 22.8
pseudo 6.2 36.0 5.2 39.1 13.4 39.2 32.7 22.8 22.3
DANN 6.5 37.1 5.4 40.4 14.0 39.4 34.5 24.8 24.7

CDPN [11] 20.0 15.1 16.4 5.0 22.2 36.1 27.9 24.0 20.8
Cons. 12.0 27.5 12.0 20.5 23.0 25.1 27.0 35.0 22.8
Ours 6.6 39.0 5.6 40.9 14.5 40.0 36.8 25.0 26.0

benchmark dataset used for the 6DoF pose estimation. The second dataset is called Occlusion-
LineMOD, which is a subset of the LineMOD dataset and consists of a single scene in which 8
heavily occluded objects are annotated in a video sequence. We followed the same protocol followed
by previous works to split the dataset [23].

Synthetic dataset We employed the synthetic data, published in [24], which was generated by
OpenGL-based render. Lightweight and backgrounds were randomly selected and objects were
scattered based on physical engine. Its scale and field of view was also randomly generated.

4.2 Evaluation metric

We evaluate our approach with the commonly used ADD(-S) metric[25]. This metric calculates
the average point distances between the 3D model point set M , transformed with the ground truth
rotation R and translation t and the model point set transformed with the estimated rotation R̂ and
translation t̂. For asymmetric objects the ADD metric is defined as follows:

ADD =
1

m

∑
x∈M

∥(Rx+ t)− (R̂x+ t̂)∥2 (7)

Symmetric objects are evaluated using the ADD-S metric which is given by following equation

ADD − S =
1

m

∑
x∈M

min∥(Rx+ t)− (R̂x+ t̂)∥2 (8)

An estimated 6D pose is considered correct if the average point distance is smaller than 10% of the
object’s diameter.

4.3 Quantitative Results

We evaluate the performance on the LineMOD dataset and Occlusion-LineMOD dataset, in terms
of ADD(-S) metric. We show quantitative results in Table 1, 2. Compared to the performance of
the popular domain adaptation method with the baseline and the 6DoF pose estimation studies with
the synthetic data, we achieve the highest performance. We achieved 9.2% and 3.2% performance
improvement over the baseline. Although the baseline performed well, the performance improvement
is greater with the proposed method than with the other DA methods applied to the baseline and 6DoF
pose estimation methods. The results shows the effectiveness of DAPO in 6DoF pose estimation.

5 Conclusions

We propose an approach for self-supervised domain adaptation for 6DoF pose estimation. Multi-
level domain adaptation module allows to learn domain-invariant features. In addition, entropy-

4



based alignment is designed to transfer knowledge from the source domain and reduce the distance
representation embedding by minimizing the entropy of two domains. As a result, we focused on
visual features through self-training without adding other modalities. Experiments on two benchmark
datasets show the effectiveness of our approach. Although performance is not high for some objects,
we believe that our work makes a significant contribution, which understands visual features well and
for potential applications in robot manipulation systems.
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Appendix

A Supplement of Related Work

Self-supervised Representation Learning Self-supervised learning methods learn representations
from unlabeled datasets where annotations are scarce. In vision application, the pretext task is
typically to maximaize similarity between two augmented views of the same image [30]. This can be
done in a contrastive learning using the InfoNCE loss[31], as in SimCLR[32] and MoCO[33].

6DoF pose estimation using RGB images Conventional methods for 6DoF pose estimation typically
involve extracting features from RGB images and performing feature matching to achieve consensus
[34]. These methods commonly employ hand-crafted features like SIFT [35] and ORB [36] due to
their robustness against scale and rotation. The 6DoF pose is then estimated by solving a Perspective-
n-Point (PnP) problem using these features [37]. Recent advancements in deep learning have shown
remarkable performance in 6DoF pose estimation from RGB images. CDPN [11] disentangles the
pose by separately predicting rotation and translation, resulting in highly accurate and robust pose
estimation. DPOD [10] estimates dense multi-class 2D-3D correspondences between an input image
and available 3D models.

B Implementation Details

We adopt the unsupervised domain adaptation protocol in our experiments. The training data consists
of two parts: the source training data for which images and their annotations and the target training
data for which unlabeled images. The domain classifier and projection head has a convolutional
architecture, which consists of four convolutional layers and two linear layers which Relu as the
activation function. We set the image to 512 pixels, following the EfficientPose implementation. For
the transformation value, we use ground truth for the source domain and prediction for the target
domain. Models using adversarial training and alignment are trained with learning rate 1e-6, clipnorm
1e-5. Each batch is composed of 16 images, half from each domain. With the mentioned setting,
NVIDIA RTX A6000 GPU is used. Both methods are implemented with Tensorflow.

C Pose Reflecting RGB Image Extraction

Algorithm 1 Pose reflecting rgb image extraction algorithm

1: procedure EXTRACT2DIMAGE(P,R, t, img)
2: Input:
3: P : Point set of the object model
4: R: Rotation matrix
5: t: Translation vector
6: img: RGB image
7: Output:
8: I2d: 2D image reflecting the pose
9: Tv ← P ·R+ t ▷ Calculate Transformation Value

10: I2d ← Tv ∗ img ▷ Project Transformation Value onto RGB Image
11: return I2d ▷ Return the 2D Image
12: end procedure

D Qualitative Results

We visualize the 6DoF pose by overlaying the image with the corresponding transformed 3D bounding
box. For LineMOD dataset, Green refers the ground truth pose and Blue refers prediction box. (a),
(d) Target images xT from LineMOD; (b), (e) Baseline results; (c), (f) Predictive results from our
method, respectively. For Occusion-LineMOD, Green refers the ground truth pose and other colors
refers prediction box. (g) Target images xT from Occlusion-LineMOD; (h) Baseline results; (i)
Predictive results from our method, respectively. In LineMOD dataset, as shown in Figure 3 (b),
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Figure 2: Example of pose reflecting image. Regions that do not reflect pose are masked in black.
We add Gaussian noise to the transformation value to get a negative pair sample

Figure 3: Qualitative results on LineMOD and Occlusion-LineMOD

the baseline model incorrectly predict a monitor with a color similar to the ground truth, Holep. In
constrast, as shown in Figure 3 (c), the pose of the bounding box predicted with our model predict
Holep., accurately. As shown in Figure 3 (e), the baseline model rotated the predicted bounding
box incorrectly. In contrast, the pose of the bounding box predicted with our model was accurate,
especially the rotations in three axes, as shown in Figure 3 (f). The pose estimation result of the Drill
object (colored in purple) was incorrect, especially for rotation in three axes, as shown in Fig 3 (h).
In contrast, the box was aligned more accurately by a model. Our method demonstrates the highest
performance in complex situations where objects similar to real-world application steps are occluded.
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