
Iterated Piecewise Affine (IPA) Approximation for
Language Modeling

Davood Shamsi
davood@axiomsix.com

Wen-yu Hua
wenyu_hua@apple.com

Brian Williams
brian@vartia.ai

Abstract

In this work, we demonstrate the application of a first-order Taylor expansion to
approximate a generic function F : Rn×m → Rn×m and utilize it in language
modeling. To enhance the basic Taylor expansion, we introduce iteration and
piecewise modeling, leading us to name the algorithm the Iterative Piecewise
Affine (IPA) approximation. The final algorithm exhibits interesting resemblances
to the Transformers decoder architecture. By comparing parameter arrangements
in IPA and Transformers, we observe a strikingly similar performance, with IPA
outperforming Transformers by 1.5% in the next token prediction task with cross-
entropy loss for smaller sequence lengths.

1 Introduction and Problem Description

Transformers [1] and their variations [2–16] have been the driver of the recent development in AI.
However, the model architecture appears to be more the result of craftsmanship than formal function
approximation methodology. In this paper, we demonstrate how a similar yet fundamentally different
model can be developed by using Taylor expansion and piecewise function estimation techniques.
[17, 18, 10, 19–21]. In a language model [17, 18, 10, 19–21], as shown in Fig. 1, first there is an
embedding layer that maps each token to a vector in Rn. If the input sequence is of length m, the
output of the embedding layer is a matrix X ∈ Rn×m. Next, the matrix X is passed through a
function F . And finally, there is an affine head (with softmax) that maps the output of F (X) to
probability distribution of the next word. While there may be an embedding layer and final prediction
head, at its core, a language model approximates a function F : Rn×m → Rn×m that maps a matrix
space to itself. Once the language modeling task is mapped to the function approximation in the
matrix domain, it is natural to ask how effective is a first-order Taylor expansion? Here is the Taylor
expansion around a given point x0 (in one dimension for simplicity):

F (x) ≈ L(x) = F (x0) + F ′(x0)(x− x0). (1)

The first-order Taylor expansion can be a good approximation around the center point x0, but not
globally. To improve the accuracy of the approximation, we can write the first-order Taylor expansion
around P center points and combine them using a set of kernel functions:

F (x) ≈
P∑

p=1

Kp(x)Lp(x). (2)

Kp(x) and Lp(x) are kernel functions (e.g. exponential) and affine approximations Eq. (1) for p-th
center point. For visual illustration, the three red lines in Fig. 2 are Taylor expansions around 3
center points and we used kernels (dashed-green line) to combine them. Upon closer inspection,
we can observe that estimating through multiple center points exhibits a very similar, though not

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Workshop on Self-Supervised
Learning.



Figure 1: Stages in language modeling: to-
kens are embedded into vectors, the resulting
matrix is passed through a function F (X) and
the next token is predicted with an affine head
(typically a feedforward layer).

Figure 2: Piecewise Affine Function Estima-
tion: The blue curve is estimated using first-
order Taylor expansions at points x0, x1, and
x2. The final estimate is a combination of
these lines using kernel functions K0, K1,
and K2.

identical, relationship to the multi-head architecture found in Transformers. Finally, we apply this
approximation iteratively by creating layers to arrive at the final estimator. The parameters of the
Tylor expansions are calculated using gradient descent on a training dataset. Our main contribution
is the introduction of the Iterative Piecewise Affine (IPA) algorithm, which is a straightforward and
mathematically intuitive method for approximating a function in the matrix space. The IPA algorithm
is competitive to Transformers, but it does not use any heuristics and is easy to understand.

This paper is organized as follows. First, in Section 2, we extend Eq. (1) and (2) from one-dimensional
functions to functions in the matrix domain. Then, in Section 3, we modify the basic IPA to make it
suitable for language modeling (e.g., causality constraint). Next, in Section 4, we demonstrate the
relationship between IPA and Transformers. Finally, in Section 5, we compare the performance of
IPA to Transformers and conclude in Section 6.

2 Iterative Piecewise Affine Estimator (IPA) Approximation
Our goal is to estimate a function F : Rn×m → Rn×m that maps a matrix space. We use affine
function estimators based on first-order Taylor expansion, piecewise affine estimation using kernel
functions, and improve the estimator through iteration.

2.1 Affine Estimation

Lets consider writing Taylor expansion for the rows and columns of the function F separately. In what
follows, as shown in Fig. 3, we use a dot before the index of a variable to denote that it represents a
column and a dot after the index to show that it represents a row.

Column Representation Let f.j(X) be the j-th column of F (X) and f̂.j(X) be its first-order Taylor
approximation. Then,

f.j(X) ≈ f̂.j(X) = aj +

m∑
l=1

Sj,lx.l, (3)

where, aj ∈ Rn and Sj,l ∈ Rn×n are the approximation coefficients and x.l is the l-th column of X.

Row Representation Similarly, we can write the Taylor expansion for rows. If fi.(X) is the i-th row
of F (X), and xr. is the r-th row of X, then

fi.(X) ≈ f̂i.(X) = bi +

n∑
r=1

Ti,rxr., (4)

where, bi ∈ Rm and Ti,r ∈ Rm×m are the row approximation coefficients.

2.2 Piecewise Affine Estimation

In the previous section, we used first-order Taylor expansion to estimate F . However, Taylor
expansion around one point might not be an accurate estimator over the general domain of the

2



X =
(
x.1 x.2 . . . x.m

)
,X =


x1.

x2.

...
xn.


F (X) =(

f.1(X) f.2(X) . . . f.m(X)
)
, F (X) =

f1.(X)
f2.(X)

...
fn.(X)


Figure 3: Column and row representation of
X and F (X). These representations can re-
sult in different approximations.

Figure 4: Comparing the IPA algorithm to
Transformers. Both methods apply column
and row operations consecutively.

function. To address this issue, we can write the expansion around multiple points and combine them
using some kernel functions (e.g. see [8] page 172). Eq. (3), Sj,l can be estimated as:

Sj,l(X) ≈
P∑

p=1

Kp
j,l(X)Sp

j,l, (5)

where Sp
j,l are coefficients for p-th Taylor expansions. We will discuss the choice of kernels Kp

j,l(X)
later in Section 3.2. Please note the concept of kernel used here is different from the one used in
Transformers, e.g. [2, 3]. The same estimation can be applied to Ti,r in Eq. (4),

2.3 Estimating through Iterated Functions

As it is common in the deep learning literature [22, 23], we can use iteration to model higher levels
of non-linearities:

F (X) ≈ F̂γ1
◦ F̂γ2

◦ F̂γ3
◦ · · · ◦ F̂γn

(X), (6)

where symbol ◦ represents “function of function” and F̂γi
are, alternatively, piecewise affine estima-

tions from Eq. (3) and (4) with different estimation parameters.

3 IPA Approximation for Language Modeling
As is commonly found in literature, we formulate language modeling by estimating a shifted sequence
of tokens from its original form. Fig. 1 illustrates the end-to-end language modeling task, with the
main objective being to approximate F (X). The input text is first tokenized and embedded into
vectors, which are then fed into the IPA to approximate F (X). Finally, a commonly-used affine
head predicts the output (next tokens). We need to make some modifications to the original IPA
formulation to make it compatible with language modeling, which will be discussed below.

3.1 Adding Causality Constraints to the IPA Algorithm

To ensure that we only utilize past tokens for predicting the next token in both the affine functions
and kernels, we set all coefficients from future tokens to zero.

Column Operation: To mask the future tokens, in Eq. (3), the sum should be from l = 1 to j.

Row Operation: Enforcing the causality constraint for row approximation can be more challenging.
For simplicity, we make the constraint stronger by enforcing the matrix Ti,r in Eq. (4) to be diagonal.

3.2 Kernel Function

As has been proven effective in natural language processing literature, we use attention-style kernel
functions for column representation: Kp

j,l(X) = λ−1ex
T
.lW

px.j , where Wp ∈ Rn×n are parameters
of the kernel, and λ is the normalization factor, and chosen such that

∑
p K

p
j,l(X) = 1. For the row

representation, we use Gaussian radial kernels (Section 5.8.2 in [8]).

3



3.3 Position Independent Mapping

In language modeling, each column of matrix X represents a token in the input sequence. Therefore, it
is natural to assume that the position of the token should not affect the mapping: Sj,l = Sj′,l ∀j, j′,;
Ti,r = Ti′,r ∀i, i′. This assumption is mainly for reducing number of parameters, and position of
the token is still important in the IPA formulation.

3.4 Reducing Parameters with Low Rank Matrices

In the previous formulation, there were no restrictions on Si,l and Wp, so they could be full-rank
matrices. To lower the number of parameters, we can assume that they have a lower rank of k. For
example: Wp = Wp

l ×Wp
r , where Wp

l ∈ Rn×k and Wp
l ∈ Rk×n.

4 Relationship with Transformers
Although there are fundamental differences between the IPA algorithm and Transformers, as illustrated
in Fig. 4, their architectures share some intriguing similarities. Specifically, the multi-head attention
mechanism in Transformers can be viewed as a column operation and the subsequent feedforward
layer as a row operation. Additionally, upon closer analysis, it can be observed that the kernels in the
piecewise affine operation of the IPA algorithm have similar roles as attention heads in Transformers.

5 Experimental Results
In this section, we compare performance of the IPA algorithm with GPT architecture [24] (stack of
Transformers decoder) on the WikiText103 dataset [25]. In order to make a meaningful comparison,
we closely matched the internal parameters of IPA and Transformer. For all experiments, the
embedding size was set to n = 120 and there were 4 layers. For the column operation, we set the
number of affine functions equal to the number of heads in the Transformer model (Pcolumn = 8) and
the rank of matrices (k in Section 3.4) equal to the embedding size of each head in the Transformer
model (k = 15). For the row operation, we set the number of affine functions equal to the ratio of the
feedforward’s inner dimension to the embedding size. Specifically, we set Transformer feedforward’s
inner dimension equal to 4 and thus, Prow = 4. We use Byte Pair Encoding [26, 27] to tokenize the
input text, and no dropout was used for either model.
Table 1: Train and test loss on WikiText103 dataset. Loss is the cross-Entropy for the next word
prediction, and m is the sequence length. Time per iteration is measured in milliseconds.

Model, # Parameters Train Test Time per
(m) Loss Loss Iteration

GPT, (100) 4.45M 4.51 4.45 28.4
IPA, (100) 4.49M 4.49 4.38 30.7
GPT, (250) 4.47M 4.13 4.09 65.0
IPA, (250) 4.56M 4.17 4.07 66.5
GPT, (500) 4.50M 3.91 3.90 148.8
IPA, (500) 4.68M 3.98 3.89 147.0

Table 1 displays the train and test loss of the IPA algorithm compared to the GPT architecture
(Transformer decoders) for three different sequence lengths on the WikiText103 dataset. As reminder,
variable m represent length of the sequence. The loss is calculated as cross-entropy for the next token
prediction. All experiments were run until convergence based on the test loss (≈ 10 million steps
with a learning rate of 2e-5). As shown in Table 1, with a similar configuration, the IPA algorithm
has better performance than GPT for small sequence lengths (1.5% for m = 100) but they have very
similar performance for longer sequences (m = 500). From Table 1, you can observe that the training
time (≈ computation cost) is very similar in both models.

6 Conclusion
In this paper, we introduced IPA algorithm for estimating a general function F : Rn×m → Rn×m

and applied it to language modeling. The IPA algorithm is straightforward, intuitive, and shows
comparable performance to Transformers.

4



References
[1] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.;

Polosukhin, I. Attention Is All You Need. CoRR 2017, abs/1706.03762.

[2] Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlós, T.; Hawkins, P.;
Davis, J.; Mohiuddin, A.; Kaiser, L.; Belanger, D.; Colwell, L. J.; Weller, A. Rethinking
Attention with Performers. CoRR 2020, abs/2009.14794.

[3] Beltagy, I.; Peters, M. E.; Cohan, A. Longformer: The Long-Document Transformer. CoRR
2020, abs/2004.05150.

[4] Bello, I.; Zoph, B.; Vaswani, A.; Shlens, J.; Le, Q. V. Attention Augmented Convolutional
Networks. CoRR 2019, abs/1904.09925.

[5] Child, R.; Gray, S.; Radford, A.; Sutskever, I. Generating Long Sequences with Sparse Trans-
formers. CoRR 2019, abs/1904.10509.

[6] Britz, D.; Guan, M. Y.; Luong, M. Efficient Attention using a Fixed-Size Memory Representa-
tion. CoRR 2017, abs/1707.00110.

[7] El-Nouby, A.; Touvron, H.; Caron, M.; Bojanowski, P.; Douze, M.; Joulin, A.; Laptev, I.;
Neverova, N.; Synnaeve, G.; Verbeek, J.; Jégou, H. XCiT: Cross-Covariance Image Transform-
ers. CoRR 2021, abs/2106.09681.

[8] Hastie, T.; Tibshirani, R.; Friedman, J. H. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 2nd Edition; Springer Series in Statistics; Springer, 2009.

[9] Chen, C.; Fan, Q.; Panda, R. CrossViT: Cross-Attention Multi-Scale Vision Transformer for
Image Classification. CoRR 2021, abs/2103.14899.

[10] Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). 2019; pp 4171–4186.

[11] Mazzia, V.; Angarano, S.; Salvetti, F.; Angelini, F.; Chiaberge, M. Action Transformer: A
Self-Attention Model for Short-Time Human Action Recognition. CoRR 2021, abs/2107.00606.

[12] He, R.; Ravula, A.; Kanagal, B.; Ainslie, J. RealFormer: Transformer Likes Residual Attention.
CoRR 2020, abs/2012.11747.

[13] Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging
Properties in Self-Supervised Vision Transformers. CoRR 2021, abs/2104.14294.

[14] Shvetsova, N.; Chen, B.; Rouditchenko, A.; Thomas, S.; Kingsbury, B.; Feris, R.; Harwath, D.;
Glass, J. R.; Kuehne, H. Everything at Once - Multi-modal Fusion Transformer for Video
Retrieval. CoRR 2021, abs/2112.04446.

[15] Han, T.; Xie, W.; Zisserman, A. Self-supervised Co-training for Video Representation Learning.
CoRR 2020, abs/2010.09709.

[16] Fang, H.; Xie, P. CERT: Contrastive Self-supervised Learning for Language Understanding.
CoRR 2020, abs/2005.12766.

[17] Brown, T. B. et al. Language Models are Few-Shot Learners. CoRR 2020, abs/2005.14165.

[18] Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.;
Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR 2019,
abs/1907.11692.

[19] Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper, J.; Catanzaro, B. Megatron-LM:
Training Multi-Billion Parameter Language Models Using Model Parallelism. CoRR 2019,
abs/1909.08053.

5



[20] Chowdhery, A.; et al. PaLM: Scaling Language Modeling with Pathways. 2022; https://
arxiv.org/abs/2204.02311.

[21] Thoppilan, R. et al. LaMDA: Language Models for Dialog Applications. CoRR 2022,
abs/2201.08239.

[22] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. CoRR 2015,
abs/1512.03385.

[23] Huang, F.; Ash, J. T.; Langford, J.; Schapire, R. E. Learning Deep ResNet Blocks Sequentially
using Boosting Theory. CoRR 2017, abs/1706.04964.

[24] Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. LZP: A New Data Compression
Algorithm. Improving language understanding by generative pre-training. 2018.

[25] Merity, S.; Xiong, C.; Bradbury, J.; Socher, R. Pointer Sentinel Mixture Models. CoRR 2016,
abs/1609.07843.

[26] Bloom, C. LZP: A New Data Compression Algorithm. Proceedings of the 6th Data Compression
Conference (DCC ’96), Snowbird, Utah, USA, March 31 - April 3, 1996. 1996; p 425.

[27] Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword
Units. CoRR 2015, abs/1508.07909.

6

https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311

	Introduction and Problem Description
	Iterative Piecewise Affine Estimator (IPA) Approximation
	Affine Estimation
	Piecewise Affine Estimation
	Estimating through Iterated Functions

	IPA Approximation for Language Modeling
	Adding Causality Constraints to the IPA Algorithm
	Kernel Function
	Position Independent Mapping
	Reducing Parameters with Low Rank Matrices

	Relationship with Transformers
	Experimental Results
	Conclusion

