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Abstract

Most self-supervised learning (SSL) methods rely on domain-specific pretext tasks
and data augmentations to learn high-quality representations from unlabeled data,
which require expert domain knowledge to develop. Moreover, it is not clear why
solving certain pretext tasks leads to useful representations. These two reasons
hinder the wider application of SSL to different domains. To overcome such limi-
tations, we propose adversarial perturbation based latent reconstruction (APLR)
for domain-agnostic SSL. In APLR, a neural network is trained to generate ad-
versarial noise to perturb the unlabeled training sample so that domain-specific
augmentations are not required. The pretext task in APLR is to reconstruct the
latent representation of a clean sample from a perturbed sample. We show that rep-
resentation learning via latent reconstruction is closely related to multi-dimensional
Hirschfeld-Gebelein-Rényi (HGR) maximal correlation and has theoretical guaran-
tees on the linear probe error. We apply APLR to tabular data, images, and audios
and the empirical results indicate that APLR not only outperforms existing domain-
agnostic SSL methods but also closes the performance gap to domain-specific SSL
methods. In many cases, APLR also outperforms training the full network in a
supervised manner.

1 Introduction

Unsupervised deep learning has been highly successful in discovering useful representations in natural
language processing (NLP) [1, 2] and computer vision (CV) [3, 4]. These methods define pretext
tasks on unlabeled data so that unsupervised representation learning can be done in a self-supervised
manner without explicit human annotations. The success of self-supervised learning (SSL) depends
on domain-specific pretext tasks, as well as domain-specific data augmentations, which require
extensive domain knowledge to be developed, and such knowledge may not be readily available for
certain data types such as tabular data [5]. Furthermore, the theoretical understanding of why certain
pretext tasks lead to useful representations remains fairly elusive [6]. Those two reasons hinder wider
applications of SSL beyond the fields of NLP and CV.

Self-supervised algorithms benefit from inductive biases from domain-specific designs but they do
not generalize across domains. For example, masked language models like BERT [1] are not directly
applicable to untokenized data. Although contrastive learning does not require tokenized data, its
success in CV cannot be easily transferable due to its sensitivity to image-specific data augmentations
[3]. Furthermore, in contrastive learning, the quality of representations degrades significantly
without those hand-crafted data augmentations [7]. Inspired by denoising auto-encoding [8, 9, 10],
perturbation of natural samples with Gaussian, Bernoulli, and mixup noises [11, 12] has been utilized
as domain-agnostic data augmentations applicable for self-supervised representation learning of
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images, graphs, and tabular data. However, random noises may not be as effective since uniformly
perturbing uninformative features may not lead to the intended augmentations. Specifically, convex
combinations in mixup noises [13, 14] could generate out-of-distribution samples because there is
no guarantee that the input data space is convex [5]. In this paper, we use generative adversarial
perturbation as a semantic-preserving data augmentation method [15, 16, 17, 18] applicable to
different domains of data. Adversarial perturbation is constrained by the ℓp norm distance to the
natural sample so that it is semantic-preserving and does not change the label [19, 20].

With semantic-preserving perturbation, the pretext tasks in domain-agnostic SSL could be recon-
struction of clean samples [12] or instance discrimination of perturbed samples [11]. Nevertheless,
the reconstruction of clean samples in the input space is computationally expensive because of high
input data dimensionality. Therefore, we present adversarial perturbation based latent reconstruction
(APLR), a simple and intuitive domain-agnostic self-supervised pretext task derived from linear gen-
erative models, to learn representations from unlabeled data in a domain-agnostic manner. Contrary
to the pretext task of instance discrimination, our method does not require comparison to a large
number of negative samples to achieve good performance. The proposed APLR not only achieves
strong empirical performance on SSL in various domains but also has theoretical guarantees on the
linear probe error on downstream tasks.

2 Adversarial perturbation based latent reconstruction

Latent reconstruction Let x1 be a perturbed sample with some noise, which is adversarial noise
in our case. Our pretext task in SSL is to reconstruct the latent representation of the clean sample x2

from the perturbed sample x1. We use deep neural networks ψ(·) and η(·) to project x1 and x2 into
latent spaces, respectively. The reconstruction in the latent space can be achieved by maximizing
the inner product between ψ

(
x1
)

and η
(
x2
)
, when ψ

(
x1
)

and η
(
x2
)

have zero mean and unit
variance. Based on discussions in Section A, latent reconstruction must be done with orthogonality
constraints to avoid the trivial solution where ψ(·) and η(·) projects all input data into a constant vector.
Latent reconstruction with orthogonality constraints is equivalent to finding the multi-dimensional
Hirschfeld-Gebelein-Rényi (HGR) maximal correlation [21, 22] between two random views. It is
defined as follows
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where zero mean constraints can be easily satisfied using a batch normalization layer [23] and the
constraints on identity covariance matrices can be achieved by forcing the off-diagonal elements to
be zero. In practice, the constrained optimization problem in Eq. (1) is solved by minimizing the
following loss
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where γ is a Lagrange multiplier, ∥ · ∥F denotes the Frobenius norm, and B is a mini-batch.

Adversarial perturbation Adversarial perturbation creates input samples that are almost indistin-
guishable from natural data but causes the deep learning models to make wrong predictions [24]. We
use a generative model to generate adversarial perturbation because it is capable of creating diverse
adversarial perturbations very quickly [15, 16, 17, 25].

A generator G is trained to produce an unbounded adversarial G(x2) = δ. The perturbation is then
clipped to be within an ϵ bound of x2 under the ℓp norm. Let x1 = x2 + δ be the perturbed view of
the clean sample x2. The vast majority of adversarial perturbation methods rely on the classification
boundary of the attacked neural network (ψ(·) and η(·)) to train the generator via maximizing a
cross-entropy loss. However, it is not possible to obtain the generative adversarial perturbation via
maximizing a cross-entropy loss in our case because no label is available. In addition, existing
generative adversarial perturbation methods explicitly relying on the classification boundary of the
attacked model tend to over-fit to the training data [18]. Instead of using a cross-entropy loss, we
train G(·) by maximizing the ℓ2 distance between ψ(x1) and η(x2)

Ladv = E
x1,x2∈B

∥η(x2)− ψ(x1)∥2, (3)
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where ψ(·) and η(·) are frozen.

Adversarial training As illustrated in Algorithm 1, our model is trained in an adversarial manner.
Given a mini-batch, we train G(·) by maximizing Ladv while freezing ψ(·) and η(·). Then the
parameters in ψ(·) and η(·) are updated alternatively by minimizing LLR while freezing G(·).

Algorithm 1 Adversarial perturbation based latent reconstruction

Natural sample x, encoders ψ(·) and η(·), noise generator G(·), perturbation budget ϵ, latent
reconstruction loss LLR, adversarial loss Ladv

for sampled minibatch do
Train G(·) (freeze ψ(·) and η(·))

Generate an unbounded adversarial perturbation δ = G(x) ▷ δ has the same shape as x
Clip adversarial perturbation δ = ϵδ/|δ|p
Obtain the perturbed sample x1 = x+ δ and the clean sample x2 = x
Obtain latent representations ψ(x1) and η(x2)
Compute Ladv and update G(·) using SGD

Train ψ(·) and η(·) (freeze G(·))
Generate an unbounded adversarial perturbation δ = G(x) ▷ δ has the same shape as x
Clip adversarial perturbation δ = ϵδ/|δ|p
Obtain the perturbed sample x1 = x+ δ and the clean sample x2 = x
Obtain latent representations ψ(x1) and η(x2)
Compute LLR and update ψ(·) using SGD
Update η(·) using the exponentially moving average of parameters in ψ(·)

end for

3 Theoretical Analysis

Let x be a data sample without perturbation and y(x) be its downstream task label. The quality
of the representation ψ(x) is evaluated by the linear probe error, which is the linear classification
error of predicting y(x) from z using a linear model parameterized by B ∈ Rk×r. Let fB(x) =
argmaxi∈[r](ψ(x)

⊤B)i be the prediction of the linear model. The linear probe error on ψ(x) is
defined as

Errψ := min
B

Pr
x∼P (x)

[y(x) ̸= fB(x)], (4)

where P (x) is the data distribution.

We have to make two assumptions to bound the linear probe error on the learned representations.
First, we assume that some universal minimizer of Eq. (1) can be realized by ψ(·) and η(·). When
the nonlinear mapping to find multi-dimensional HGR maximal correlation is realizable by neural
networks, we can analyze the quality of the learned representations using the properties in estimating
the HGR maximal correlation.

Assumption 3.1 (Realizability). Let H be a hypothesis class containing functions ψ : X 1 → Rk and
η : X 2 → Rk. We assume that at least one of the global minima of L(ψ, η) belongs to H.

In addition, it is also reasonable to assume that an optimal classifier f∗(·) can predict the label
of x almost deterministically under semantic-preserving perturbation. The assumption about the
classification error of f∗(·) provides a baseline to quantify the linear probe error because part of the
error is from approximating f∗(·) using a linear model.

Assumption 3.2 (α-bounded Error of the Optimal Classifier). Let x be an unperturbed data sample
and y(x) be its downstream task label. δ is semantic-preserving perturbation. Then, we assume that
there is a classifier f∗ such that Pr(f∗(x) ̸= y(x)) ≤ α and Pr(f∗(x+ δ) ̸= y(x)) ≤ α.

Given assumptions 3.1 and 3.2, we provide the following main theorem on the generalization
bound when learning a linear classifier with finite labeled samples on the representations learned by
maximizing the HGR maximal correlation.
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Theorem 3.3. Let ψ∗, η∗ ∈ H be a minimizer of L(ψ, η). The linear classification parameter B̂
is estimated with n2 i.i.d. random samples {(xi, yi)}n2

i=1. With probability at least 1 − ζ over the
randomness of data, we have

Pr
x∼P (x)

[y(x) ̸= fB̂(x)] ≤ Õ

(
α

1− λk+1
+

√
k

n2

)
, (5)

where λk+1 is the k + 1-th Hirschfeld-Gebelein-Rényi maximal correlation between X 1 and X 2.

We hide universal constant factors and logarithmic factors of k in Õ(·). The first term on the
right-hand side of Theorem 3.3 guarantees the existence of a linear classifier that achieves a small
downstream classification error. It indicates whether the downstream label is linearly separable by
the learned representation, thus measuring the expressivity of the learned representation. The second
term on the right-hand side reveals the sample complexity of learning B from finite labeled samples
in the downstream task. It measures the data efficiency of learning the downstream task using the
learned representation. The proof is presented in Appendix C.

4 Experiments

We apply APLR on three different data domains: tabular data, images, and audios. We describe the
datasets used in Appendix D, and include additional details in Appendix E. For all datasets, we follow
the widely used linear evaluation protocol in SSL as a proxy to examine the quality of the learned
representations [4, 26].

The results in Tables 1, 2, and 3 indicate that the proposed APLR not only outperforms existing
domain-agnostic SSL methods, but also achieves comparable performance with SOTA domain-
specific SSL methods. Details analyses and ablation studies can be found in Appendix E.

Table 1: Linear evaluation accuracy on tabular data

MNIST Fashion Gas Gesture
Tabular-specific
VIME-Self [12] 96.62 87.26 93.17 38.99
Domain-agnostic
DACL [11] 94.70 79.78 95.39 38.56
Ours 97.11 87.12 97.98 42.97
Supervised 98.67 90.00 94.91 42.32

Table 2: Linear evaluation accuracy on audio data

ESC-10 ESC-50 LibriSpeech-100
Audio-specific
CLAR [27] 68.70 40.40 62.14
Domain-agnostic
DACL [11] 77.75 48.50 37.30
Viewmaker [28] 70.00 35.75 88.30
Ours 81.25 57.75 96.29
Supervised 76.25 59.14 N/A

Table 3: Linear evaluation accuracy on image data
CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet

Image-specific
SimCLR [3] 86.47 54.86 85.49 43.27
Domain-agnostic
DACL [11] 60.49 35.28 57.34 22.69
Viewmaker [28] 84.51 52.28 82.73 40.51
Ours 85.92 55.83 86.21 42.93

5 Conclusions

In this paper, we introduce APLR, a domain-agnostic SSL method by reconstruction of adversarial
perturbed samples in the latent space. The adversarial perturbation is created by a generative network,
which is trained concurrently with the feature encoder in an adversarial manner. Our empirical results
show that the proposed method is better than the existing domain-agnostic SSL methods and achieves
comparable performance with SOTA domain-specific SSL methods. In many cases, APLR also
outperforms training the same architecture in a fully supervised manner, demonstrating its strong
ability to learn useful latent representations. In addition, the proposed latent reconstruction is linked
to Hirschfeld-Gebelein-Rényi maximal correlation and thus has theoretical guarantees of downstream
classification tasks. We believe that the proposed method can be applied to applications beyond
classification, such as reinforcement learning.
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A Background

Learning representations from two views of an input, x1 and x2, is appealing if the learned
representations do not contain the noises in different views. This assumption can be explicitly
encoded into the following generative model [29] with one shared latent variable z:

p(z) = N (0, I)

p(x1 | z) = N
(
ψ⊤z,Σ1

)
p(x2 | z) = N

(
η⊤z,Σ2

)
,

(6)

where the model parameters ψ, η, Σ1 and Σ2 can be learned by maximum likelihood estimation.
Reconstruction of input data via maximum likelihood estimation is computationally expensive when
the dimension of the input data is high. Instead, the probabilistic generative model can be reinterpreted
as latent reconstruction, which has the benefit of direct representation learning while retaining the
properties of generative modeling.
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To convert generative modelling into latent reconstruction, two assumptions need to be met. First,
the assumption in generative modeling is that both datasets have similar low-rank approximations.
In latent reconstruction, this can be achieved by correlating the pair of latent embeddings ψx1 and
ηx2. Secondly, it is assumed in generative modelling that the latent variables follow an isotropic
Gaussian distribution p(z) = N (0, I). In latent reconstruction, the covariance matrix of the latent
variables is diagonal, meaning that there is no covariance between different dimensions of the latent
variable. This orthogonality constraint is equivalent to the assumption of isotropic Gaussian prior
and avoids the trivial solution. As a result, by correlating the latent embeddings ψx1 and ηx2 and
enforcing a diagonal covariance matrix, the properties of generative modelling can be retained in
latent reconstruction.

The key principle behind latent reconstruction is that the latent representation of x1 is a good predictor
for that of x2. Given two datasets X1 and X2 of N observations, the projection directions are found
by maximizing the regularized correlation between the latent scores of x1 and x2

max
ψi,ηi

Cov(X1ψi,X
2ηi)

2√
γ + (1− γ)Var(X1ψi)

√
γ + (1− γ)Var(X2ηi)

, (7)

where ψi and ηi are the i-th directions of the projection matrices and 0 ≤ γ ≤ 1 is a regularization
coefficient [30, 31]. When γ = 0, it is unregularized canonical correlation analysis (CCA) [32].
When γ = 1, it corresponds to partial least squares (PLS) [33, 34]. Solving the optimization problem
in Eq. (7) requires singular value decomposition or non-linear iterative methods (NIPLAS algorithm)
to make projection directions orthogonal to each other. The computation costs of both methods are
prohibitively expensive when the data dimension is high or the number of samples is large. Therefore,
it is more desirable to alternatively update ψ and η in an iterative manner [35].

B Related methods

Unsupervised representation learning can be categorized into two classes based on the type of the
pretext task: generative or discriminative. Generative approaches learn to generate or reconstruct
unlabeled data in the input space [36, 37, 38]. Reconstructing the masked portion of data is highly
successful in discovering useful representations in natural language processing [39, 2, 1]. Before the
success of masked language models, variants of denoising or masked autoencoders are developed
for CV tasks [8, 9, 10] but the performance is worse than discriminative SSL methods. It was not
until recently that masked image models are revived in unsupervised visual representation learning
by discretizing image patches via tokenizers [40, 41]. MAE [42] further simplifies masked image
models by directly inpainting masked images without tokenizers or image-specific augmentations.
Although masking is a simple data augmentation that can be flexibly applied to different domains of
data, computationally expensive generation or reconstruction in the input space may not be necessary
for representation learning. Our method is derived from a generative model and shares the idea of
reconstructing the corrupted samples in masked autoencoding. Instead of reconstructing discrete
tokens or raw inputs, our method reconstructs the continuous latent representation, which is related
to discriminative SSL methods using data augmentations.

Augmentation-based discriminative SSL methods learn representation by comparing (including
but not limited to contrastive learning) augmented views of unlabeled data in the latent space. This
line of work involves a contrastive framework with variants of InfoNCE loss [43, 44] to pull together
representations of augmented views of the same training sample (positive sample) and disperse
representations of augmented views from different training samples (negative samples) [45, 46, 47].
Typically, contrastive learning methods require a large size of negative samples to learn high-quality
representations from unlabeled data [3, 4]. Meanwhile, non-contrastive methods train neural networks
to match the representations of augmented positive pairs without comparison to negative samples or
cluster centers. However, non-contrastive methods suffer from trivial solutions where the model maps
all inputs to the same constant vector, known as a collapsed representation. Various methods have
been proposed to avoid a collapsed representation on an ad hoc basis, such as asymmetric network
architecture [7], stop gradient [26], and feature decorrelation [48, 49, 50]. Interestingly, our method
also includes a feature decorrelation constraint, which is adapted from a generative model. Recently,
adversarial perturbations are combined with image augmentations to create more challenging positive
and negative samples in SSL [51, 52]. APLR does not require domain-specific augmentations and
can be applied to different domains of data.

10



Learning augmentations has been investigated in supervised learning to obtain data-dependent
augmentation policies for better generalization [53, 54]. In parallel, adversarial perturbation can
be treated as a special form of learnable augmentations to enhance the robustness of models with
adversarial training [19, 20]. The domain-agnostic augmentations in our method are closely related
to generative adversarial perturbation, where data augmentations are obtained through a forward
pass of learnable generative models [25, 15, 16, 17]. The vast majority of adversarial perturbation
methods rely on the classification boundary of the attacked neural network to train the generator via
maximizing a cross-entropy loss. Those ideas have been extended to SSL to get adversarial perturba-
tion by maximizing the InfoNCE loss in SimCLR [55, 28]. However, existing generative adversarial
perturbation methods rely explicitly on the classification boundary or the instance discrimination
boundary of the attacked model and tend to make them over-fit to the source data [18]. Instead of
maximizing a cross-entropy loss, we maximize the ℓ2 distance between mid-level feature maps to
obtain generative adversarial perturbations.

Theoretical understanding of SSL has been studied under the assumption that augmented views of
the same raw sample are somewhat conditionally independent given the label or a hidden variable
[56, 57, 58, 59]. However, those assumptions do not hold in practice because augmented views of
a natural sample are usually highly correlated. Augmented views are unlikely to be independent
given the hidden label. Recent studies in contrastive learning provide theoretical guarantees of the
learned representation without the assumption of conditional independence [60, 61]. In parallel, [6]
investigates the training dynamics of non-contrastive SSL methods to show how feature collapse is
avoided but lacks guarantees for solving downstream tasks. Note that our proposed method does not
involve an explicit comparison between positive and negative samples. Our theoretical analysis relies
on the divergence transition matrix without the assumption of conditional independence.

C Proof of the main theorem

The HGR maximal correlation can be estimated from divergence transition matrix A ∈ R|X 1|×|X 2|,
whose entries are defined by the joint and marginal distributions of x1 and x2 [62]. Let Px1 and
Px2 be the marginal distribution and Px1x2 be the joint distribution. Px1(x1

i ) can be viewed as the
probability mass of x1

i being randomly sampled from X 1. Then, each entry of A is given by

Aij =
Px1x2(x1

i ,x
2
j )√

Px1(x1
i )Px2(x2

j )
(8)

The solution to Eq. (1) is the sum of the top k singular values of A with left singular vectors
Z1 ∈ RN×k and right singular vectors Z2 ∈ RN×k defined as

z1i =
√
Px1(x1

i )ψ(x
1
i ), i = 1, ..., N

z2i =
√
Px2(x2

i )η(x
2
i ), i = 1, ..., N

(9)

where z1i and z2i are the i-th row of embedding matrices Z1 and Z2, respectively [63]. This is
essentially a rank-k approximation of A via minimizing ∥A− Z1Z2⊤∥2F . Note that x2 is a clean
sample and z2 is the representation of a clean sample. We use clean samples in downstream tasks.
We drop the superscription to avoid cluttered notation.

The first term on the right hand side of the main theorem (theorem 3.3) measures the approximation
error of the optimal classifier f∗ by a linear classifier parameterized by B. It amounts to the residual
of the least squares problem ∥f∗ − ZB∥2 in Fig. 1, where the representation matrix Z ∈ RN×K

contains the top-k left singular vectors of A and f∗ ∈ {0, 1}N is the vector that contains the predicted
labels of all the data by the optimal classifier f∗. The approximation error is bounded if f∗ has limited
projection into the residual subspace that is perpendicular to the column space of the representation.

In the first step, we construct a quadratic form of f∗ to quantify its projection into the residual space
based on singular value decomposition of A. The largest singular value of A is 1, with constant left
and right singular vectors being 1 and 1 [63]. Therefore, it is more convenient to subtract the top
singular mode and introduce Ã = I−A. Ã can be factorized as Ã =

∑N
i=1 γiuiv

⊤
i via singular

value decomposition, where γi is the i-th singular value of Ã with the left singular vector ui and the
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z>B

f∗(x)

Figure 1: Geometric interpretation of least squares. f∗(x) : X → {0, 1} is the Bayes optimal
classifier for predicting the label given x with error at most α according to Assumption 3.2. The
green panel is the subspace spanned by the columns of the representation z. B is the parameters of
the linear classification model.

right singular vector vi. The quadratic form is given as follows

f∗⊤Ãf∗ = f∗⊤
(

k∑
i=1

γiuiv
⊤
i +

N∑
i=k+1

γiuiv
⊤
i

)
f∗ (10)

= f∗⊤
(

k∑
i=1

γiuiu
⊤
i +

N∑
i=k+1

γiuiu
⊤
i

)
f∗ (11)

≥ f∗⊤
(

N∑
i=k+1

γiuiu
⊤
i

)
f∗ (12)

≥ f∗⊤
(
γk+1

N∑
i=k+1

uiu
⊤
i

)
f∗ (13)

= γk+1f
∗⊤Pf∗ = γk+1f

∗⊤P⊤Pf∗ = γk+1∥Pf∗∥2 (14)

where Eq. (11) is due to the fact that the left and right singular vectors are the same in the symmetric
matrix Ã, the inequality in Eq. (12) is because of dropping a quadratic term, and Eq. (13) is due
to γk+1 ≤ γk+2 ≤ . . . γN . P ≜

∑N
i=k+1 uiu

⊤
i defines a projection matrix that projects f∗ into a

residual subspace spanned by singular vectors uk+1, . . . ,uN . Eq. (14) is obtained because P is an
idempotent matrix (P2 = P) [64]. In addition, (I−P)f∗ is in the subspace spanned by singular
vectors u1, . . . ,uk, which is the column space of Z. Based on the geometric interpretation of the
least squares problem ∥f∗ − ZB∥2, there exists B that such that (I−P)f∗ = ZB is the projection
of f∗ onto the column space of Z.
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In the second step, we upper bound γk+1∥Pf∗∥2. Based on Eq. (14), we have γk+1∥Pf∗∥2 ≤
f∗⊤Ãf∗. It is more convenient to upper bound f∗⊤Ãf∗

f∗⊤Ãf∗ = f∗⊤If∗ − f∗⊤Af∗

=

N∑
i

f∗xi
f∗xi

−
N∑

i,j=1

Px1x2(xi,xj)(
f∗xi√
Px1(xi)

f∗xj√
Px2(xj)

)

=
1

2
(

N∑
i

f∗xi
f∗xi

− 2

N∑
i,j=1

Px1x2(xi,xj)(
f∗xi√
Px1(xi)

f∗xj√
Px2(xj)

) +

N∑
i

f∗xj
f∗xj

)

=
1

2
(

N∑
i

Px1(xi)

(
f∗xi√
Px1(xi)

)2

− 2

N∑
i,j=1

Px1x2(xi,xj)(
f∗xi√
Px1(xi)

f∗xj√
Px2(xj)

)

+

N∑
j

Px2(xi)

(
f∗xj√
Px2(xj)

)2

)

=
1

2

N∑
i

N∑
j

Px1x2(xi,xj)(
f∗xi√
Px1(xi)

−
f∗xj√
Px2(xj)

)2,

(15)

where f∗x = f∗(x), Px1(xi) =
∑N
j Px1x2(xi,xj) = 1/N and Px2(xj) =

∑N
i Px1x2(xi,xj) =

1/N . Note that we only sample a pair of samples (xi,xj) where xi is created from semantic-
preserving perturbation of xj to train the model. The probability mass Px1x2(xi,xj) > 0 only if
(xi,xj) are generated from a shared latent variable. Let (x,x+) be a positive pair to denote a pair of
samples created from semantic-preserving perturbation. We can rewrite equation (15) as

f∗⊤Ãf∗ =
N

2
Ex,x+ [(f∗x − f∗x+)

2
], (16)

where Ex,x+ [
(
f∗x − f∗x+

)2
] quantifies the probability that the optimal classifier f∗(·) predicts different

labels for (x,x+). When f∗x ̸= f∗x+ , there must be f∗(x) ̸= y(x) or f∗(x+) ̸= y(x). With
Assumption 3.2, we have Pr(f∗(x) ̸= f∗(x+)) = 2α. As such, the quadratic form in Eq. (16) can
be upper bounded:

f∗⊤Ãf∗ ≤ Nα. (17)

With Eq. (14) and (17), we have

∥f∗ − ZB∥2 = ∥Pf∗∥2 ≤ Nα

γk+1
(18)

1

N
∥f∗ − ZB∥2 ≤ α/γk+1 (19)

The k-th singular value of A is λk = 1 − γk, which is also the k-th Hirschfeld-Gebelein-Rényi
maximal correlation by definition. Therefore, we have Prx∼P (x)[y(x) ̸= fB(x)] ≤ Õ

(
α

1−λk+1

)
.

The second term on the right hand side of the main theorem is the estimation error that measures
sample complexity of learning B with access to n2 i.i.d. training samples in the downstream task. It
can be upper bounded using the Rademacher complexity of linear models. Let H1 = {z → z⊤B :
∥B∥F ≤ Cb}. We have the Rademacher complexity of the linear model

Rn2
(H1) =

Cb
√
Cz√
n2

(20)

where E[∥z∥2] ≤ Cz . By definition of Eq. (1), E[∥z∥2] captures the summation of first k HGR
maximal correlation. E[∥z∥2] ≤ k because the HGR maximal correlation less equal than 1. Therefore,
we have

Pr
x∼P (x)

[y(x) ̸= fB̂(x)] ≤ Õ

(
α

1− λk+1
+

√
k

n2

)
.
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D Datasets

D.1 Tabular Data

For tabular data, we follow existing works [11, 12] and use MNIST and Fashion-MNIST as proxy
datasets by flattening the images into 1-dimensional vectors. In addition, we use two real tabular
datasets from the UCI repository to evaluate the proposed method [65].

MNIST/Fashion-MNIST are two image datasets of handwritten digits and Zalando’s article images,
respectively [66, 67]. The images of size 28× 28 are flattened into vectors with 784 features. Both
datasets have 10 classes, and contain 60,000 training examples and 10,000 test examples.

Gas Concentrations is a dataset containing chemical sensor measurements of 128 features when
exposed to 6 different gases [68, 69]. The classification task is to identify the target gas. We perform
a 80/20 train/test split to obtain 11,128 training examples and 2,782 test examples.

Gesture Phase is a dataset containing 32 features extracted from videos of people in 5 different
gestures [70, 65]. We perform a 80/20 train/test split to obtain 7,898 training examples and 1,975 test
examples.

D.2 Iamge Datasets

CIFAR-10/100 are two datasets of tiny natural images with a size of 32× 32 [71]. CIFAR-10 and
CIFAR-100 have 10 and 100 classes, respectively. Both datasets contain 50,000 training images and
10,000 test images.

STL-10 is a 10-class image recognition dataset for unsupervised learning [72]. Each class contains
500 labeled training images and 800 test images. In addition, it also contains 100,000 unlabeled
training images. Both labeled and unlabeled training images are used for feature extractor pretraining
without using labels. The linear classifier is learned using the labeled training images.

Tiny-ImageNet is a subset of the ILSVRC-2012 classification dataset [73]. It consists of 200 classes,
with 500 training images, 50 validation images, and 50 test images in each class. The size of each
image is 64× 64.

D.3 Audio Data

ESC-10/50 are two environmental sound classification datasets containing 5-seconds of environmental
recordings [74]. ESC-10 and ESC-50 have 10 and 50 classes, and contain 400 and 2000 examples,
respectively. We use the original fold settings from the authors [74], and follow the experimental
setup in [27] to use the first fold for testing and the rest for training.

LibriSpeech-100 is a corpus of read English speech [75]. We use speaker identification as the
downstream classification task. We follow the experimental setup from [28] to pretrain with the
LibriSpeech-100 hour corpus which contains 28,539 examples, and perform linear evaluation on the
LibriSpeech development set which contains 2,703 examples.

E Additional Details in Experiments

For tabular and audio experiments, we search the perturbation budget hyperparameter ϵ from the set
{0.05, 0.1, 0.15}. For image experiments, we fix ϵ to 0.05 for a direct comparison with Viewmaker
networks [28]. We find that constraining the perturbations to an ℓ1 norm distance achieves the
best results. For all experiments, we train the feature extractor and the adversarial generator in an
alternating fashion. The feature extractor ψ(·) is trained with the SGD optimizer with momentum of
0.9 and weight decay of 5e-4. The learning rate is 0.03 without decay. The momentum coefficient
in exponential moving average is set to 0.99 when updating η(·). The generator is trained with the
Adam optimizer with an initial learning rate of 1e-3 and its architecture is described in the Appendix.
Both the feature extractor and the generator are trained for 200 epochs with a batch size of 256. After
self-supervised training on unlabeled data, a linear classifier is trained using SGD with a batch size of
256 and no weight decay for 200 epochs. The learning rate starts at 30.0 and is decayed to 0 after
200 epochs with a cosine schedule.
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Tabular Data For tabular data, we follow existing works [11, 12] to use flattened MNIST [66] and
Fashion-MNIST [67] as proxy datasets. In addition, we use two real tabular datasets from the UCI
repository to evaluate the proposed method [65] on Gas [68, 69] and Gesture [65, 70] classification
(Appendix D). We adopt a 10-layer MLP with residual connections [76] as the feature extractor,
and adapt the generator from [18] by replacing convolutional layers with linear layers. The linear
evaluation results on test datasets are reported in Table 1. APLR outperforms VIME-Self [12],
which corrupts tabular data and uses mask vector estimation and feature vector estimation as pretext
tasks, on three out of four datasets. It aligns with the empirical observations that reconstructing
high-dimensional data in the input space is not necessary for learning high-quality representations.
APLR outperforms the domain-agnostic benchmark DACL [11], which uses mixup noise, on all
datasets. Mixup noise is less effective than adversarial noise because it perturbs informative and
uninformative dimensions in the input space uniformly. Furthermore, convex combinations in the
input space via mixup may result in augmented views off the data manifold. Interestingly, our
proposed APLR also outperforms training the full architecture in a supervised manner on the two real
tabular datasets, Gas and Gesture.

Image Data We use four benchmark image datasets to evaluate the effectiveness of the pro-
posed method, including CIFAR-10/100 [71], STL-10 [72] and Tiny-ImageNet [73] (Appendix D).
ResNet18 [77] is adopted as the backbone network in the feature extractor. We adopt the generator
in [18] for image data. We present the results for self-supervised representation learning on image
data in Table 3. It is observed that APLR outperforms DACL [11] by a large margin, indicating
that adversarial noise is a more effective semantic-preserving perturbation than mix-up noise in
DACL. Interpolation of input samples via mix-up could lead to out-of-distribution training samples
because the input data space may not be convex. Our method also achieves better performance than
Viewmaker [28], which is a domain-agnostic SSL method by discriminating adversarially perturbed
data. The adversarial noise in APLR is more robust because the training process of adversarial noise
in APLR does not rely on the classification boundary between augmented samples [18]. Furthermore,
we also compare APLR against methods that use image augmentations (e.g. cropping, rotation,
horizontal flipping), such as SimCLR [3]. It is found in previous studies [7, 3] that random crop is a
crucial data augmentation towards learning high-quality representations for image data. However, it
is impossible to create cropped views of images using adversarial perturbation because the adversarial
noise is additive to the natural sample. Given the importance of random crop and the inability to
create cropped views with adversarial perturbations, achieving comparable accuracies between APLR
and SimCLR indicates that adversarial noise is a highly effective data augmentation method.

Audio Data We use three audio datasets to evaluate APLR: ESC-10, ESC-50 [74] and LibriSpeech-
100 [75] (Appendix D). For audio experiments, we use 1-D ResNet18 [77] as the feature extractor
and adopt the generator in [18] with one input channel. The time-frequency representation is a 2D
log mel spectrogram, normalized to zero mean and variance. We report the results on audio data
benchmarks in Table 2, and visualize examples from LibriSpeech-100 in Appendix E.4. APLR
performs significantly better than CLAR [27], which experimented extensively with combinations
of audio-specific augmentations and uses fade in/out and time masking as their best-performing
augmentations. Compared to image augmentations, data augmentations for audio data are relatively
underexplored. Our results demonstrate the advantage of learning audio augmentations over manually
designed augmentations. Our proposed method also outperforms both domain-agnostic methods,
DACL and Viewmaker. DACL performs close to APLR on the simple yet small ESC-10 and ESC-50
datasets. However, it is unable to learn effective representations on LibriSpeech-100 which is larger
and significantly more complex. Even though both APLR and Viewmaker use adversarial noise,
APLR outperforms Viewmaker by a large margin across the benchmarks, indicating the effectiveness
of learning augmentations by maximizing the discrepancy between latent representations. In Table
2, we also report results on training the full architecture in a supervised manner. We find that linear
classifiers trained on top of the representations learned by APLR outperforms the supervised model
on ESC-10, and closes the gap to ESC-50 compared to other benchmarks, demonstrating the ability
for APLR to learn useful latent representations. Current state-of-the-art supervised approaches report
high accuracies (over 94%) on the ESC-50 dataset [78, 79]. However, they perform pretraining using
large datasets such as AudioSet and ImageNet, and use multiple audio-specific data augmentations.
With the supervised training experiments, we do not perform pretraining with large datasets, and we
use time masking and frequency masking as augmentations. Our goal is to simply compare APLR
against training the same architecture in a supervised manner.
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To understand the effectiveness of adversarial perturbations within APLR, we perform several
additional experiments. First, we compare perturbation by adversarial noise against perturbation by
Gaussian noise and random masking. For image datasets, we additionally compare the proposed
adversarial perturbations against common image augmentations used in supervised learning, including
CutMix [14], RandAugment [53], and Random Erasing. Next, we explore the sensitivity of APLR to
different perturbation strengths and Lagrange multipliers. Lastly, we compare our framework against
SOTA SSL methods on image data.

E.1 Ablation Study

First, for all datasets, we perform ablations to compare perturbations with adversarial noise against
Gaussian noise and masking. To obtain a sample augmented with Gaussian noise, we use x1 =
x2 + δ, where δ ∼ N

(
0, σ2I

)
. For each dataset, we search the standard deviation σ from the

set {1, 3, 5, 10} and report the best linear evaluation accuracy. For experiments with masking, we
randomly mask a proportion of the clean sample x2. We search the proportion of masking from the
set {20%, 40%, 50%, 60%, 70%} and report the best linear evaluation accuracy.

Tables 4 - 6 summarize the results. The adversarial noise outperforms the Gaussian noise and random
masking on all datasets, except MNIST. Random noises may not be as effective since uniformly
perturbing uninformative features may not lead to the intended goal of augmentations. That is why
APLR leads to significant improvement over random perturbations on complex data, such as images
and audios.

Table 4: Ablation study on tabular data.
MNIST Fashion-MNIST Gas Gesture

Gaussian noise 97.43 85.77 96.25 41.46
Masking 97.58 86.95 95.70 42.30
APLR 97.11 87.12 97.98 42.97

Table 5: Ablation study on image data.
CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet

Gaussian Noise 53.58 28.43 52.76 12.07
Masking 48.79 27.43 50.39 11.29
APLR 85.92 55.83 86.21 42.93

Table 6: Ablation study on audio data.
ESC-10 ESC-50 LibriSpeech-100

Gaussian noise 75.00 41.75 78.52
Masking 77.50 45.00 76.76
APLR 81.25 57.75 96.29

Additionally, we compare adversarial noise against image augmentations in supervised learning,
namely CutMix [14], RandAugment [53], and Random Erasing . The results are summarized in Table
7. Random Erasing results in the worst performance among all methods, while CutMix is on par
with Mixup in SSL. This is expected because CutMix performs slightly better or similar to MixUp in
supervised learning. RandAugment leads to better performance than CutMix and MixUp because
RandAugment contains a wide range of image augmentations. However, RandAugment does not
outperform SimCLR. The studies in SimCLR show that careful selection of image augmentations is
necessary for good performance in SSL. Some effective image augmentations in supervised learning
do not lead to good performance in SSL.

E.2 Sensitivity Analysis

We perform experiments to understand how sensitive APLR is to different strengths of the adversarial
perturbation and Lagrange multiplier.
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Table 7: Additional ablation study on image data.
CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet

SimCLR 86.47 54.86 85.49 43.27
CutMix 61.27 35.14 58.33 22.83
RandAugment 84.34 51.92 84.37 40.68
Random Erasing 56.71 28.89 55.91 18.45
Ours 85.92 55.83 86.21 42.93

We experiment with perturbation strengths of ϵ ∈ {0.05, 0.1, 0.15}, and report the results in Table 8.
The sensitivity analysis indicates that our method is robust to the adversarial perturbation strengths.

Table 8: Sensitivity to adversarial perturbation strengths.
ϵ = 0.05 ϵ = 0.1 ϵ = 0.15

Tabular Data
MNIST 97.11 96.15 93.73
Fashion-MNIST 87.04 86.40 84.14
Gas 97.50 97.19 97.98
Gesture 42.97 40.90 41.46
Image Data
CIFAR-10 85.92 84.66 85.26
CIFAR-100 55.83 54.37 54.77
STL-10 86.21 85.04 85.64
Tiny-ImageNet 42.93 42.42 41.47
Audio Data
ESC-10 78.75 81.25 77.50
ESC-50 54.25 54.50 57.75
LibriSpeech-100 93.55 96.29 96.29

For the Lagrange multiplier, we experiment with γ ∈ {0.1, 0.5, 0.1} and report the results in Table 9.
We find that our method is robust to γ and achieves strong performance. For APLR, we selected γ =
1 as the default value since it performed well consistently.

Table 9: Sensitivity to Lagrange multiplier.
γ = 0.1 γ = 0.5 γ = 1

Tabular Data
MNIST 96.54 96.93 97.11
Fashion-MNIST 86.83 86.69 87.12
Gas 84.61 97.97 97.98
Gesture 40.35 40.35 42.97
Audio Data
ESC-10 80.00 75.00 81.25
ESC-50 47.75 44.50 57.75
LibriSpeech-100 89.45 87.30 96.29

Our sensitivity analyses indicate that our method is robust to hyperparameters such as ϵ and γ.
The proposed APLR achieves strong performance as long as the hyperparameter values are within
reasonable ranges.

E.3 APLR Against SOTA Image-Specific SSL Methods

We perform an analysis to compare the proposed framework against SOTA SSL methods on images,
namely SimCLR [3], Barlow Twins [49], and BYOL [7]. For this experiment, we use the image
augmentations described in SimCLR [3] for a fair comparison against image-specific SSL methods.
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We train each model for 200 epochs and summarize the results in Table 10. Our method achieves
comparable performance to BYOL and Barlow Twins.

Table 10: APLR vs. SOTA SSL methods on image data
CIFAR-10 CIFAR-100 STL-10 Tiny-ImageNet

SimCLR 86.47 54.86 85.49 43.27
Barlow Twins 89.02 62.84 85.43 45.33
BYOL 88.54 61.76 85.59 42.75
Ours 89.63 62.55 86.41 44.76

E.4 Visualizations of Original and Perturbed Spectrograms

In Figure 2, we visualize random spectrograms from LibriSpech-100 and the deltas between the
original and perturbed spectrograms. The perturbations are indistinguishable and thus semantic-
preserving.

Figure 2: Examples triplets of original spectrograms (left), perturbed spectrograms (middle) and their
differences (right) from LibriSpeech-100. The color scales for original and perturbed spectrograms
are set to the scale of the original spectrogram. The color scale for the differences is set to -2.5 (red)
to + 2.5 (blue), though some values exceed this range. Best viewed when zoomed.

E.5 Adversarial Generator Architecture

The architecture of the generator is described in Table 11. For experiments on tabular data, we replace
the convolution layers with fully connected layers.

Table 11: Architecture of the adversarial generator.
Layer Number of Filters Kernel Size
Convolution Layer 32 9
Convolution Layer 64 3
Convolution Layer 128 3
Residual Block 128 3
Residual Block 128 3
Residual Block 128 3
Upsampling Convolution Layer
(Upsample = 2)

64 3

Upsampling Convolution Layer
(Upsample = 2)

32 3

Convolution Layer
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