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Abstract

Data augmentation has become a standard component of vision pre-trained models1

to capture the invariance between augmented views. In practice, augmentation2

techniques that mask regions of a sample with zero/mean values or patches from3

other samples are commonly employed in pre-trained models with self-/semi-4

/fully-supervised contrastive losses. However, the underlying mechanism behind5

the effectiveness of these augmentation techniques remains poorly explored. To6

investigate the problems, we conduct an empirical study to quantify how data7

augmentation affects performance. Concretely, we apply 4 types of data augmen-8

tations termed with Random Erasing, CutOut, CutMix and MixUp to a series of9

self-/semi-/fully- supervised pre-trained models. We report their performance on10

vision tasks such as image classification, object detection, instance segmentation,11

and semantic segmentation. We then explicitly evaluate the invariance and diversity12

of the feature embedding. We observe that: 1) Masking regions of the images13

decreases the invariance of the learned feature embedding while providing a more14

considerable diversity. 2) Manual annotations do not change the invariance or15

diversity of the learned feature embedding. 3) The MixUp approach improves the16

diversity significantly, with only a marginal decrease in terms of the invariance.17

1 Introduction18

Recently, self-/semi-/fully- supervised contrastive learning has achieved promising performance19

in learning meaningful representations during pre-training. Besides, the pre-trained models are20

successfully transferred to many downstream tasks, such as image classification, object detection,21

and instance segmentation. Terminologically, self-supervised contrastive learning refers to the pre-22

training without any labels introduced. While we term it as the semi-/fully- supervised contrastive23

learning when providing partial/all ground truths labels.24

In the pure self-supervised configurations, data augmentations act as an essential component of25

self-supervised contrastive learning [1, 2, 3]. The algorithms are optimized to minimize the distance26

between different augmented views from the same sample (a.k.a. the anchor), while pushing views27

from different samples (the contrastive ones) away from the anchor. On the other hand, previous28

studies [1] show that with a limited amount of labels introduced, semi-supervised contrastive learning29

achieves better performance in related downstream tasks. Furthermore, fully-supervised contrastive30

learning with all ground truths further boosts the performance [4].31

In practice, augmentation techniques that mask regions of a sample with zero/mean values or patches32

from other samples are commonly employed in semi-/fully- supervised (non-contrastive) learning.33

However, this family of augmentation techniques is not often applied in contrastive configurations,34

and the underlying mechanism behind the effectiveness of these augmentation techniques remains35

poorly explored. In this study, we implement 4 types of data augmentations termed with Random36
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Erasing, CutOut, CutMix and MixUp to a series of self-/semi-/fully- supervised pre-trained models.37

We then conduct a numerical study to quantify how data augmentation affects performance.38

Figure 1: Illustration of our empiri-
cal study on four data augmentations
(MixUp, CutMix, CutOut, Random Eras-
ing), three pre-training types(self-, semi-,
fully-supervised), and four downstream
tasks (classification, object detection, in-
stance segmentation, semantic segmen-
tation).

To this end, we clarify the terms invariance and diversity39

and provide the methods to calculate them explicitly. We40

then evaluate the invariance and diversity of the feature41

embedding of numerous pre-trained models. We demon-42

strate that invariance and diversity are closely related to43

the downstream tasks. Besides, we observe that: 1) Mask-44

ing regions of the images decreases the invariance of the45

learned feature embedding while providing a more con-46

siderable diversity. 2) Manual annotations do not change47

the invariance or diversity of the learned feature embed-48

dings. 3) The MixUp approach improves the diversity49

significantly, with only a marginal decrease in terms of the50

invariance.51

Overall, the main contributions of this work can be sum-52

marized as follows:53

• We conduct a comprehensive empirical study by54

quantifying how data augmentation affects the55

self-/semi-/fully- supervised contrastive learning56

frameworks.57

• We provide an approach to measure the quality of58

the augmented view by explicitly examining the59

invariance and diversity metrics for self-/semi-60

/fully- supervised pre-trained models.61

• Extensive experiments on various downstream62

benchmarks demonstrate that invariance and di-63

versity are important metrics for the contrastive64

learning frameworks. Data augmentations that provide better invariance and diversity result65

in better performance in downstream tasks.66

2 Methodology67

In this work, we conduct an empirical study to quantify the effect of data augmentation techniques on68

the self-/semi-/fully- supervised contrastive learning frameworks. First, we begin with the formal69

problem setup for this empirical study. Then, we introduce self-/semi-/fully- supervised InfoNCE70

loss for comparisons. Finally, we propose two metrics, invariance, and diversity, to measure the71

quality of the augmented views between the anchor.72

Notations. Given a pre-training set of N sample/label pairs, N = {xi,yi}k=1,··· ,N . Under the73

commonly-used contrastive learning setting [3, 2], we generate two views qi,ki for each sample xi.74

A set of negative samples for each sample xi is M(i) = {km}m=1,2,··· ,M and M is the number of75

negative samples.76

2.1 Preliminaries: Self- & Fully-Supervised Contrastive Loss77

Under the self-supervised contrastive learning framework, the main objective for each sample xi78

is to maximize the similarity between the query qi. The corresponding augmented view ki, while79

minimizing the similarity between the query qi and the negative sample km. Thus, the overall80

objective Lself is formulated as:81

Lself =
∑
i∈I

Lself
i = −

∑
i∈I

log
κ

κ+
∑

m∈M(i) exp(qi · km/τ) (1)

where κ is the positive similarity term, exp(qi · ki/τ), and M(i) denote the set of negative samples.82

τ is a temperature parameter.83

By introducing all ground truths in the pre-training stage, we generate a new set M′(i) of negative84

samples, where the labels of negative samples are different from that of the anchor. Then, we define85
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the fully-supervised objective Lfull with the new negative set M′(i) as:86

Lfull =
∑
i∈I

Lfull
i =

∑
i∈I

− log
κ

κ+
∑

m∈M′(i) exp(qi · km/τ) (2)

where M′(i) = {km|ym ̸= yi}, and other settings are the same as in Eq. 1.87

2.2 Semi-Supervised Contrastive Loss88

In practice, it is unrealistic to acquire all labels from a large-scale pre-training set. Instead, obtaining89

partial annotations is operable. In this way, we split the original set N into two subsets, labelled set90

D and unlabelled set U . Given the sample xi in the labelled set D, we maintain a negative samples91

queue Md(i) and a label queue Yd(i). In the meanwhile, we keep a negative samples queue Mu(i)92

for each sample in the unlabelled set U . Then, we apply the fully-supervised contrastive loss Lfull
i to93

the labelled set D and the self-supervised contrastive loss Lself
i to the unlabelled set U . Therefore,94

the overall objective of semi-supervised contrastive loss is defined as:95

Lsemi =
∑
i∈D

Lfull
i +

∑
i∈U

Lself
i =

∑
i∈D

− log
κ

κ+
∑

m∈Md(i)
exp(qi · km/τ)

−
∑
i∈U

log
κ

κ+
∑

m∈Mu(i)
exp(qi · km/τ)

(3)

where Md(i),Mu(i) denotes the negative samples queue for the labelled set D and the unlabelled96

set U . Md(i) = {km|yd(i) ̸= yi}. Other terms are the same as in Eq. 1 and 2.97

2.3 Invariance98

In order to measure the invariance between the augmented views qi and the anchor xi, we propose a99

metric to calculate the normalized similarity invariance of the views in terms of the embedding space.100

Specifically, we take a set Vi of views, Vi = {qv
i , v = 1, · · · , V }, by applying data augmentations101

to the original sample xi. Then we calculate the normalized embeddings similarity between the102

augmented views qv
i and the raw sample xi. Thus, we formulate the invariance metric of augmented103

views as:104

Linv =
1

NV

N∑
i=1

V∑
v=1

S(qv
i ,xi)

S(xi,xi)
(4)

where S(xi, q
v
i ) denotes the dot product metric for calculating the distance between qv

i and xi. Note105

that Linv achieves the maximum value 1 when qv
i = xi. This means that the augmented views have106

the maximum invariance from the anchor.107

2.4 Diversity108

In order to measure the quality of the augmented view in a comprehensive manner, we also propose109

to qualify the diversity of the augmented views. Specifically, we introduce a metric named diversity110

to measure how different the augmented views in the set Vi are. Based on the dot product distance111

metric S, we define the diversity between two augmented views qv
i and qw

i as:112

Ldiv =
1

NV (V − 1)

N∑
i=1

V∑
v=1

V∑
w ̸=v

exp
(S(qv

i , q
w
i )

σ

)
(5)

where S(qv
i , q

w
i ) denotes the dot product distance metric between qv

i and qw
i . σ is a scale parameter.113

In this way, we simultaneously maximize the diversity and invariance of the augmented views together114

to acquire views with best quality for self-/semi-/fully- supervised contrastive learning.115
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Table 1: Comparisons of linear classification evaluation on ImageNet-100 via applying four data
augmentations to MoCo v2, where models are trained on frozen features from pre-trained encoders.
Bold and underlined numbers denote the first and second place.

Method Arch. Param.(M) Batch Epochs Top-1(%) Top-5(%) Linv Ldiv

MoCo v2 [3] ResNet-50 24 256 200 81.65 95.77 0.72 0.23
MoCo v2 + Random Erasing ResNet-50 24 256 200 81.04 95.27 0.59 0.42
MoCo v2 + CutOut ResNet-50 24 256 200 82.64 95.84 0.67 0.36
MoCo v2 + CutMix ResNet-50 24 256 200 83.51 96.51 0.61 0.53
MoCo v2 + MixUp ResNet-50 24 256 200 84.08 96.79 0.69 0.45
MoCo v2 + 10% label ResNet-50 24 256 200 82.26 95.80 0.72 0.23
MoCo v2 + 30% label ResNet-50 24 256 200 82.55 95.83 0.72 0.23
MoCo v2 + 50% label ResNet-50 24 256 200 83.21 96.36 0.72 0.23
MoCo v2 + 70% label ResNet-50 24 256 200 83.75 96.62 0.72 0.23
MoCo v2 + 100% label ResNet-50 24 256 200 84.93 97.18 0.72 0.23
MoCo v2 + MixUp + 50% label ResNet-50 24 256 200 85.59 97.43 0.69 0.45
MoCo v2 + MixUp + 100% label ResNet-50 24 256 200 87.86 98.15 0.69 0.45

3 Experiments116

In this part, we conduct extensive experiments by transferring our model to four main downstream117

tasks, including linear classification, object detection, instance segmentation and semantic segmenta-118

tion. In the meanwhile, we introduce Linv and Ldiv to quantify how data augmentation affects the119

self-/semi-/fully-supervised pre-trained models. We give a comprehensive analysis on the effect of120

data augmentation and supervision during pre-training on various downstream tasks.121

Linear Classification. Table 1 reports the top-1 and top-5 accuracy for linear classification on122

ImageNet-100 benchmark by applying four data augmentations to MoCo v2, where models are123

trained on frozen features from the pre-trained models. We can observe that MoCo v2+MixUp124

achieves better performance than other three data augmentations, including Random Erasing, CutOut,125

and CutMix. This is because the augmented views generated from MixUp have larger invariance126

between themselves and the anchor image. Meanwhile, with the increase of the number of given127

labels, we can observe an obvious performance gain in terms of both top-1 and top-5 accuracies,128

although our augmented views are not changed. This demonstrates the effectiveness of semi-/fully-129

supervised learning in learning more meaningful features for classification. Adding MixUp to the130

fully-supervised learning boosts the top-1 and top-5 accuracies to 87.86% and 98.15%. In terms131

of the invariance and diversity between augmented views, adding MixUp to the original MoCo v2132

achieves the largest invariance score Linv with best linear classification performance compared to133

other data augmentation techniques. In the meanwhile, all data augmentation techniques indeed134

increase the diversity score Ldiv while achieving better results than the baseline, which demonstrates135

the importance of measuring the quality of the augmented view by the proposed metrics. Furthermore,136

adding semi-supervised samples to MoCo v2 do not change the invariance and diversity scores as137

only augmented views are evaluated during training.138

We compare data augmentation based semi-/fully-supervised models and other self-supervised139

methods for the linear classification evaluation on ImageNet-1K, as shown in Table 2 in Appendix.140

Applying MixUp to MoCo v2 increases the top-accuracy from 67.5% to 68.4%, which shows141

the effectiveness of additional data augmentations on the views generated by the baselines. With142

the increase of the number of given labels during pre-training, the linear classification accuracy143

consistently increases. Particularly, MoCo v2+MixUp+100% label achieves the best top-1 accuracy144

in terms of linear classification. Please see more experimental details and results in Appendix.145

4 Conclusion146

In this work, we perform a comprehensive empirical study to quantify how the self-/semi-/fully-147

supervised pre-trained models are affected by different data augmentation techniques. An approach148

is introduced to measure the quality of the augmented view by explicitly examining the invariance149

and diversity metrics for self-/semi-/fully- supervised pre-trained models. We also conduct extensive150

experiments on various downstream benchmarks, which demonstrate that invariance and diversity151

are important metrics for contrastive learning frameworks. Data augmentations that provide better152

invariance and diversity result in better performance in downstream tasks.153
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Appendix269

A Related Work270

Data Augmentation. In the vision community, a branch of data augmentation methods [5, 6, 7, 8]271

have achieved promising performance in image related tasks, such as image classification and object272

detection. Typically, Random Erasing [5] selected a rectangle region in an image and erased its pixels273

with random values to reduce over-fitting and increase the robustness of trained model to occlusion.274

CutOut [6] randomly masked square regions of training images and tried to capture less prominent275

features for classification. MixUp [7] applied a convex combination of pairs of examples and their276

labels to improve the generalization of neural network architectures. CutMix [8] cut patches and277

pasted them from training images with mixed ground truth labels to train strong classifiers with278

localizable features. Recently, pretext tasks [9, 10, 11, 12, 13, 14] have been proven to be effective in279

self-supervised learning for meaningful visual representations. Researchers explore various pretext280

tasks to improve the quality of pre-trained representations, which includes colorization [9, 10], context281

autoencoders [11], spatial jigsaw puzzles [12, 13] and discriminate orientation [14].282

However, a comprehensive recipe for data augmentations used in self-supervised learning is unex-283

plored. In this work, we conduct an empirical study to exploit four main data augmentations over284

self-supervised methods on commonly-used benchmarks in terms of various downstream tasks. We285

further introduce invariance and diversity to quantify how data augmentation affects the performance286

of self-supervised pre-trained models.287

Self-Supervised Learning. In the self-supervised literature, researchers aim to exploit the internal288

characteristics of data and leverage pretext tasks to train a model. Recently, an unsupervised289

framework that learns effective views with data augmentation was proposed by Tian et al. [15]290

to reduce the mutual information between views. CMC [16] introduced a multi-view contrastive291

learning framework with any number of views to learn view-agnostic representations. Another pretext292

task of solving jigsaw puzzles was developed in PIRL [12] to improve the semantic quality of learned293

image representations, achieving better object detection results than supervised pre-training.294

In the past years, contrastive learning has shown its effectiveness in self-supervised learning, where295

various instance-wise contrastive learning frameworks [1, 17, 18, 2, 3, 4, 19, 20, 21] and prototype-296

level contrastive methods [22, 23, 24, 25] were proposed. The general idea of the instance-wise297

contrastive learning is to close the distance of the embedding of different views from the same298

instance while pushing embeddings of views from different instances away. One common way is299

to use a large batch size to accumulate positive and negative pairs in the same batch. For instance,300

Chen et al. [1] proposed a simple framework with a learnable nonlinear projection head and a large301

batch size to improve the quality of the pre-trained representations. To make best use of a large302

amount of unlabelled data, they present a bigger unsupervised pre-training network and introduce303

distillation with unlabeled data in SimCLR v2 [17] to improve the performance in downstream tasks.304

The dynamic dictionary was used with a moving-averaged encoder in MoCo series [3, 2] to build a305

dynamic dictionary to to update negative instances in a queue of large size.306

Nevertheless, how to leverage labels in the momentum queue based pre-training is unexplored,307

especially their impacts on various downstream tasks, such as image classification, object detection,308

and semantic segmentation. This motivates us to comprehensively explore the effect of self-/semi-/full309

supervision on pre-trained models that are transferred to the aforementioned tasks. In the meanwhile,310

we quantify the effect of data augmentation on self-/semi-/fully- supervised contrastive learning311

frameworks.312

B Pre-training Datasets & Settings313

Following previous methods [2, 3, 26, 16], we use two popular benchmarks, ImageNet-100 [16] and314

ImageNet-1K. The ImageNet-100 pre-trained model is evaluated on linear classification, and the315

ImageNet-1K model is transferred to various downstream tasks, including linear classification, object316

detection, instance segmentation and semantic segmentation.317

For self-supervised pre-training on ImageNet-100 and ImageNet-1K, we closely follow the original318

MoCo v2 implementation [3]. SGD is used as our optimizer, where we apply a weight decay of319

0.0001, a momentum of 0.9, and a batch size of 256. Our model is trained for 200 epochs with a320
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Table 2: Comparisons of linear classification evaluation on ImageNet-1K, where all results are trained
under the same architecture. Parameters are of the feature extractor [36]. Views denote the number of
images fed into the encoder in one iteration under batch size 1.

Method Arch. Param.(M) Batch Epochs Views Top-1 (%)

NPID [37] ResNet-50 24 256 200 2x224 58.5
LocalAgg [38] ResNet-50 24 128 200 2x224 58.8
MoCo [2] ResNet-50 24 256 200 2x224 60.6
SimCLR [1] ResNet-50 24 256 200 2x224 61.9
CPC v2 [39] ResNet-50 24 512 200 2x224 63.8
CMC [16] ResNet-50 47 128 240 2x224 66.2
MoCo v2 [3] ResNet-50 24 256 200 2x224 67.5
PCL v2 [23] ResNet-50 24 512 200 2x224 67.6
PIC [19] ResNet-50 24 512 200 2x224 67.6
MoCHi [40] ResNet-50 24 512 200 2x224 68.0
AdCo [20] ResNet-50 24 256 200 2x224 68.6
SwAV [22] ResNet-50 24 4096 200 2x224 69.1
LoCo [41] ResNet-50 24 4096 800 2x224 69.5
BYOL [18] ResNet-50 24 4096 200 4x224 70.6
SimSiam [21] ResNet-50 24 256 200 4x224 70.0

MoCo v2 + MixUp ResNet-50 24 256 200 2x224 68.4
MoCo v2 + MixUp + 50% label ResNet-50 24 256 200 2x224 69.3
MoCo v2 + MixUp + 100% label ResNet-50 24 256 200 2x224 71.2

initial learning rate of 0.03. The learning rate is then decayed by a factor of 10 at 120 and 160 epochs.321

For semi-/fully supervised pre-training, we use the same setting except that some or all labels are322

provided for maintaining the negative queue with labels.323

C Transferring Datasets & Settings324

Linear Classification. We evaluate linear classification on ImageNet-100. and ImageNet-1K. dataset,325

where a linear classifier is trained on frozen features from pre-trained weights. We report top-1,top-5326

accuracy for ImageNet-100, and top-1 accuracy for ImageNet-1K.327

Object Detection. For a fair comparison with previous work [2, 3], we fine-tune a Faster R-CNN328

detector [27] with C4-backbone end-to-end on the PASCAL VOC [28] 07+12 trainval set and evaluate329

on the VOC 07 test set. For MS-COCO [29] benchmark, we use the same hyper-parameters in330

MoCo [2], and fine-tune a Mask R-CNN [30] with C4 backbone on the train2017 set with 2x schedule331

and evaluate on val2017 set. The COCO box metrics (AP, AP50, AP75) are reported on both datasets.332

Instance Segmentation. In terms of instance segmentation, we evaluate our pre-trained models333

on three popular benchmarks, including MS-COCO [29], LVIS v1.0 [31], and Cityscapes [32]. For334

MS-COCO, we follow the same setting as the Mask R-CNN [30] used in the object detection task,335

where the COCO mask metrics (APm, APm
50, APm

75) are reported. For LVIS, we fine-tune an FCN336

model [33] on train set for 80k iterations and test on val set. We use the commonly-used metrics, AP,337

APc, APf , and APr for evaluation. For Cityscapes, an FCN model [33] is fine-tuned end-to-end on338

train_fine set for 40k iterations and test on val set, where APm and APm
50 are reported for comparison.339

Semantic Segmentation. We use Cityscapes [32] and ADE20K [34, 35] to evaluate semantic340

segmentation. For both benchmarks, we fine-tune an FCN model [33] on the train set for 40k341

iterations and test on the val set. Following previous work [2], we report two metrics (mIoU,342

mIoUsup) for Cityscapes and four metrics (mIoU, fwIoU, mACC, pACC) for ADE20K to have a343

comprehensive comparison.344

D Additional Experiments345

Object Detection. We transfer various self-supervised pre-trained models to PASCAL VOC for346

object detection, and report the comparison results of AP, AP50, and AP75 in Table 3a. As can be347

seen, adding MixUp to the pre-training with the highest invariance achieves the best results compared348

to other data augmentations. This further shows the importance of learning the invariance during349

pre-training for object detection on PASCAL VOC. We further evaluate our models pre-trained by350
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Table 3: Comparison results of object detection and instance segmentation on PASCAL VOC &
COCO. Bold and underline denote the first and second place.

Method AP AP50 AP75

Random Initialization 32.80 59.00 31.60
Supervised 54.20 81.60 59.80
SimCLR [1] 51.50 79.40 55.60
BOYL [18] 51.90 81.00 56.50
SwAV [22] 55.40 81.50 61.40
MoCo [2] 55.90 81.50 62.60
MoCov2 [3] 57.00 82.40 63.60
SimSiam [21] 57.00 82.40 63.70

MoCov2 + Random Erasing 56.39 81.79 62.92
MoCov2 + CutOut 57.49 82.83 63.06
MoCov2 + CutMix 57.22 82.91 63.95
MoCov2 + MixUp 57.61 82.96 64.30

(a) PASCAL VOC.

Method APb APb
50 APb

75 APm APm
50 APm

75

Random Initialization 32.80 50.90 35.30 29.90 47.90 32.00
Supervised 39.70 59.50 43.30 35.90 56.60 38.60
SwAV [22] 37.60 57.60 40.30 33.10 54.20 35.10
SimSiam [21] 39.20 59.30 42.10 34.40 56.00 36.70
MoCo [2] 40.70 60.50 44.10 35.40 57.30 37.60
MoCHi [40] 39.40 59.00 42.70 34.50 55.70 36.70
MoCov2 [3] 39.80 59.80 43.60 36.10 56.90 38.70
PCL [23] 41.00 60.80 44.20 35.60 57.40 37.80

MoCov2 + Random Erasing 40.14 60.25 43.82 35.35 57.13 37.75
MoCov2 + CutOut 40.84 60.73 44.25 35.72 57.41 38.76
MoCov2 + CutMix 40.75 60.67 44.12 35.53 57.23 38.24
MoCov2 + MixUp 41.07 60.96 44.50 36.05 57.69 38.37

(b) COCO.

Table 4: Comparison results of instance and semantic segmentation. Bold and underline denote the
first and second place.

Method AP APc APf APr

MoCov2 [3] 17.08 8.16 15.35 22.94
+ Random Erasing 16.92 8.03 15.12 22.85
+ CutOut 17.19 8.18 15.36 23.06
+ CutMix 17.11 8.16 15.35 22.96
+ MixUp 17.33 8.22 15.42 23.09

(a) LVIS.

Method APm APm
50 mIoU mIoUsup

MoCov2 [3] 22.57 48.19 55.48 79.72
+ Random Erasing 22.51 48.15 55.35 79.63
+ CutOut 22.76 48.25 55.80 79.90
+ CutMix 22.55 48.19 55.45 79.67
+ MixUp 22.83 48.28 55.92 79.96

(b) Cityscapes.

Method mIoU fwIoU mACC pACC

MoCov2 [3] 20.62 54.68 27.15 69.59
+ Random Erasing 20.51 54.61 27.07 69.52
+ CutOut 20.76 54.72 27.19 69.61
+ CutMix 20.67 54.69 27.09 69.55
+ MixUp 20.93 54.80 27.26 69.65

(c) ADE20K.

various data augmentations on MS-COCO for a comprehensive comparison. The experimental results351

are reported in Table 3b. MoCo v2 + MixUp consistently achieves the best performance in terms of352

all metrics (APb, APb
50, APb

75), which further demonstrates the effectiveness of MixUp in learning a353

larger invariance between the augmented views and the anchor image.354

Instance Segmentation. The comparison results of instance segmentation on MS-COCO are reported355

in Table 3b. We can observe that MoCov2 + CutOut achieves the best APm
75 compared to other data356

augmentations. This is because MoCov2 + CutOut has the lowest diversity Ldiv between augmented357

views, demonstrating the importance of reducing the diversity of augmented views to improve the358

performance of instance segmentation. In Table 4a, we report the comparison results of instance359

segmentation by fine-tuning our pre-trained models on LVIS v1.0 benchmark. MoCo v2 + MixUp360

outperforms MoCo v2 + CutOut by a small margin since they achieves comparable diversity score361

Ldiv between augmented views, as we reported in Table 1. Moreover, MoCo v2 + Random Erasing362

achieves the worst performance in terms of all metrics. This shows the importance of keeping363

invariant features during pre-training while increasing the diversity of augmented views. We compare364

the results of instance segmentation on Cityscapes in Table 4b. We can observe a similar trend as365

LVIS v1.0 dataset, where MoCo v2 + MixUp performs the best while MoCo v2 + Random Erasing366

performs the worst, which further demonstrates the importance of learning the invariances from367

augmented views during pre-training and increasing the diversity of augmented views at the same368

time.369

Semantic Segmentation. Table 4b shows the comparison results of semantic segmentation fine-tuned370

on Cityscapes dataset. MoCov2 + MixUp and MoCov2 + CutOut achieve comparable performance in371

terms of both metrics. This shows the effectiveness of learning the invariance and diversity together372

from augmented views during pre-training. With the smallest invariance score Linv, MoCov2 +373

Random Erasing performs worse than other data augmentations. In Table 4c, we report the comparison374

results of semantic segmentation fine-tuned on ADE20K dataset. We can make similar observations375

as the Cityscapes dataset. Compared to other data augmentations, MoCo v2 + Random Erasing376

achieves the worst results while MoCov2 + MixUp achieves the best performance. This further377

demonstrates the effectiveness of MixUp in keeping the invariance and increasing the diversity at the378

pre-training stage.379
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Table 5: Ablation Studies on augmented views and batch size, where top-1, top-5 accuracy, Linv , and
Ldiv are reported on ImageNet-100.

# of views (V ) Top-1 (%) Top-5 (%) Linv Ldiv

2 84.08 96.79 0.69 0.45
3 82.37 95.81 0.58 0.53
4 81.55 95.68 0.51 0.59

(a) Augmented Views.

batch size (N ) Top-1 (%) Top-5 (%) Linv Ldiv

32 82.13 95.65 0.75 0.52
64 82.78 95.91 0.73 0.49
128 83.27 96.38 0.72 0.47
256 84.08 96.79 0.69 0.45
512 83.49 96.52 0.61 0.57

1024 82.92 96.23 0.58 0.63

(b) Batch Size.

E Additional Analysis380

In this part, we explore the effect of the number of augmented views V and batch size N on the381

invariance and diversity. All experiments for ablation studies are conducted with MoCo v2 + MixUp382

on ImageNet-100 dataset.383

Number of augmented views. In order to explore how the number of augmented V views affects the384

invariance and diversity, we set the value of V to 2, 3, and 4. The experimental results are reported385

in Table 5a. As can be seen, when V is set to 2, we achieve the best top-1 and top-5 accuracies386

with the largest invariance score Linv and the smallest diversity score Ldiv . With the increase in the387

number of augmented views, the performance of our model decreases a lot, which demonstrates the388

importance of selecting the right augmented views for contrastive learning.389

Batch size. In order to demonstrate the effect of batch size on the final performance of invariance390

and diversity. Specifically, we set the number of batch size N to 32, 64, 128, 256, 512, 1024, and391

report the comparison results in Table 5b. When the batch size is set to 256, our model achieves the392

best performance in terms of the top-1 and top-5 accuracy. In the meanwhile, with the decrease in the393

batch size, both the invariance and diversity score increases, resulting in performance degradation.394

F Limitation395

The crucial limitation of this work is the scale of the datasets and backbones. Due to limited396

computational resources, the majority of the experiments are carried out on the ImageNet-100 dataset397

using the ResNet-50. Therefore we are unsure about the availability of the conclusions on much larger398

datasets and backbones. For instance, we do not perform experiments on costful transformer-based399

frameworks, such as DINO [42]. Nevertheless, we consider the results should generalize to other400

situations. On the other hand, we cannot enumerate all types of data augmentations that mask401

out information about the image. In recent studies, the patch-wise CutOut is shown effective in402

self-supervised algorithms such as masked image modeling. While in this work, we focus on the403

contrastive learning algorithm, the analysis of other data augmentations will be conducted in future404

works.405

G Broader Impact.406

The empirical results of our study benefit self-/semi-/fully- supervised pre-trained frameworks in407

the literature. Moreover, the analysis of the invariance and diversity terms helps in designing the408

appropriate data augmentation for the downstream tasks.409
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