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Abstract

Self-supervised representation learning in computer vision heavily relies on hand-
crafted image transformations to derive meaningful, invariant features. Yet, the
literature has limited explorations on the impact of transformation design. This
work delves into this relationship, particularly its effect on domains beyond natural
images. We posit that transformation design acts as beneficial supervision. We
establish that transformations influence representation features and clustering rel-
evance, and further probe transformation design’s effect on microscopy images,
where class differences are subtler than in natural images, leading to more pro-
nounced impacts on encoded features. Conclusively, we showcase that careful
transformation selection, based on desired features, enhances performance by
refining the resulting representation.

1 Introduction

In Self-Supervised Representation Learning (SSRL), models are often trained to learn consistent
representations from two transformed versions of the same image. The goal of SSRL is to utilize
large unannotated datasets to acquire representations beneficial for downstream tasks with limited
annotated data, making it stand as a cornerstone of Deep Learning in computer vision Bardes et al.
[2022a], Caron et al. [2021, 2018], Chen et al. [2020a,b], Grill et al. [2020], Zbontar et al. [2021],
rivaling or even surpassing supervised learning in certain downstream tasks.

SSRL leans heavily on varied image transformations, intended to retain semantic content amidst
distortion. Though SSRL achieves impressive classification accuracies on natural images, optimizing
transformation parameters has markedly boosted model performances Chen et al. [2020a]. Yet, the
broader implications of these augmentation choices remain sporadically explored Grill et al. [2020],
Wagner et al. [2022], especially across tasks Zhang and Ma [2022] and domains Xiao et al. [2021].
The depth of impact these choices have on pretraining, feature extraction, and performance in varied
domains remains ambiguous.
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Table 1: Metrics for clustering, linear evaluation, and LPIPS Zhang et al. [2018] for VGG11 on
MNIST LeCun et al. [1998] using MoCov2 Chen et al. [2020b] with distinct transformation sets.
Bold: First Set emphasizes digits, Second Set focuses on handwriting style. Top1 Accuracy from
Linear Evaluation; LPIPS with AlexNet Krizhevsky et al. [2012] indicates perceptual similarity;
lower is better. The Silhouette score Rousseeuw [1987] shows good cluster quality for the second set,
contrasting its AMI score’s failure to reflect digit clusters.

Transformation sets Silhouette AMI Top1 Acc LPIPS

Rotation+Crop 0.74 0.79 98.4 0.22
Rotation+Crop+Padding 0.78 0.81 99.3 0.25
Rotation+Crop+Padding +ColorInversion (First Set) 0.87 0.83 99.6 0.33
Rotation+Crop+Flips 0.71 0.66 96.2 0.32
Rotation+Crop+Flips+RandomErasing (Second Set) 0.66 0.37 62.1 0.51

Some important questions remain unanswered. Are the image features encoded into the latent
representations being affected by the choice of transformations ? And what is the amplitude of these
issues in domains other than natural images? In this paper, we report and analyze the outcomes of
our experimentation to shed light on this subject. Using convolution based approaches on small to
medium scale datasets, our contributions can be succinctly summarized as follows:

• Through Self-Supervised training analysis, we show that selecting specific transformation
combinations optimizes models for distinct feature encoding. This strategic choice can
result in the inclusion or omission of certain features, enabling models to be fine-tuned for
diverse tasks.

• We explore the impact of transformation choice in Self-Supervised Learning within the
biological realm, where class distinctions are subtle. Our results highlight the amplified
significance of transformation selection in this domain, indicating that a focused feature
definition enhances results. Furthermore, our data reveals the advantage of an informed
transformation choice in SSRL over transfer learning in small datasets with domain varia-
tions.

2 The choice of transformations is a subtle layer of weak supervision

2.1 Transformation choice impacts clustering and representation information

Figure 1: Transformation choices guide the fea-
tures learned, tailoring a model for varied tasks.
A t-SNE projection of MNIST dataset’s ten-class
clustering LeCun et al. [1998] showcases two rep-
resentations from MoCo V2 trainings Chen et al.
[2020b]. One retains digit class data (left) via
padding, color inversion, and cropping; the other
emphasizes handwriting classes (right) through
flips, rotations and erasing.

Investigating the effects of transformation vari-
ations is vital for grasping their impact on rep-
resentation quality. We focus on the unsu-
pervised clustering task, exploring how trans-
formation choices dictate the encoded infor-
mation. We assess representations achieved
by encoders of varying architectures (VGG11,
ResNet18, ConvNeXt-Tiny) using two major
SSRL techniques (MoCov2 Chen et al. [2020b],
BYOL Grill et al. [2020]) on the MNIST
dataset LeCun et al. [1998]. Our research scruti-
nizes the impact of transformation compositions
on embedded information and its task relevance.
We use two transformation sets. The first, in-
cluding padding, color inversion, mild random
rotation, and random cropping, targets maintain-
ing the digit’s integrity. The second, compris-
ing vertical flips, strong random rotation, and
random erasing, examines representations when
disrupting the digit. Additional configurations
from these sets were tested in subsequent train-
ing rounds. Each iteration, executed five times
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Table 2: Comparison of the mutual information score Vinh et al. [2010] using transformations
and SSRL methods, averaged over five runs and benchmarked against ImageNet models. Trans-
formations include rotations, affine shifts, color adjustments, and flips. One set adds cropping, the
other uses rotations. The weighted set uses our dual SSRL losses, aiming for superior phenotypic
extraction, especially on smaller datasets.

Transformations SSRL approach Backbone Nocodazole Cytochalasin B Taxol

First Set

MoCo v2 VGG13 0.19 0.27 0.16
ResNet18 0.17 0.25 0.15

Byol VGG13 0.21 0.28 0.19
ResNet18 0.2 0.25 0.17

VICReg VGG13 0.19 0.26 0.2
ResNet18 0.16 0.25 0.21

Second Set

MoCo v2 VGG13 0.37 0.45 0.38
ResNet18 0.33 0.42 0.31

Byol VGG13 0.38 0.48 0.41
ResNet18 0.35 0.44 0.34

VICReg VGG13 0.38 0.44 0.36
ResNet18 0.34 0.43 0.3

Combination of Sets

MoCo v2 VGG13 0.51 0.66 0.52
ResNet18 0.46 0.63 0.47

Byol VGG13 0.51 0.64 0.54
ResNet18 0.47 0.61 0.48

VICReg VGG13 0.55 0.67 0.51
ResNet18 0.5 0.63 0.45

Pretrained models with Imagenet VGG16 0.34 0.55 0.36
ResNet101 0.39 0.57 0.43

with unique seeds, had its average score calcu-
lated. For a thorough assessment of our results and to determine transformation impacts on perceptual
image similarities, we utilize the Learned Perceptual Image Patch Similarity (LPIPS) metric Zhang
et al. [2018]. Post-training, K-Means clustering Lloyd [1982] with ten clusters is executed, fol-
lowed by a linear evaluation using digit labels. We gauge clustering efficiency using the Silhouette
score Rousseeuw [1987]. We also apply the Adjusted Mutual Information score (AMI) Vinh et al.
[2010] for a robust clustering evaluation. Detailed score descriptions are in Supplementary materials.

From Table 1, a decline in the AMI and top1 accuracy scores emerges transitioning from basic
transformations (rotation, crop) to the second set. This is accompanied by increased perceptual
dissimilarity in the second set, expected given the destructive nature of random erasing versus flips.
This leads to a diminished digit-associated representation, evident in the reduced digit classification
accuracy, unaffected by supervised training during linear evaluation. However, while the AMI score
drops more sharply, the silhouette score shows a mild decrease. Indicating, the clusters from the
second set, although different in feature focus, remain well-defined. As seen in Figure 1, clusters
from both sets are distinct. The latter set’s clusters emphasize handwriting traits like line thickness.
More results for different architectures and SSRL approaches are in the Supplementary Materials,
showing consistent trends. Thus, selecting specific transformations during training can intentionally
guide the encoding of certain image features, optimizing some specific task performance.

2.2 The effect of transformations correlates with the subtlety of a domain

To study the impact of transformations on domains with subtle class image differences, we examine
microscopy images from BBBC021v1 Caie et al. [2010], which presents cells under two conditions
(untreated and treated with a compound). These cells exhibit subtle within-condition variability and
differences between conditions. Such nuances present a significant challenge for self-supervised
representation learning. We preprocess the images by extracting a 196x196 pixels region around each
cell nucleus, focusing on compounds Nocodazole, Cytochalasin B, and Taxol. Using VGG13 Si-
monyan and Zisserman [2015] and ResNet18 with MoCov2 Chen et al. [2020b], BYOL Grill et al.
[2020], and VICReg Bardes et al. [2022a], we run two distinct trainings for each compound, with
different transformation compositions, repeated five times. K-Means Lloyd [1982] clustering (k=2) is
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Figure 2: An illustration of the various K-Means (k=4) clustering results on the data subset
of Nocodazole , utilizing different combinations of augmentations with a VGG13 as backbone and
MoCov2 as SSRL approach, the objective being to separate the distinct morphological reactions of
the cells into different clusters.

conducted on test embeddings, and the Adjusted Mutual Information score (AMI) Vinh et al. [2010]
is computed based on the compound’s ground truth labels. We provide more details on the dataset,
data processing and the experiments in the Supplementary Materials.

Table 2 presents the AMI scores from two transformation sets in training, against a pretrained
ImageNet model. The first set, comprised of color jitter, flips, rotation, affine, and random crops, em-
phasizes inter-cellular interactions, while the second, comprised of color jitter, flips, affine, and center
crops targets single cell and nucleus features. By substituting slight random cropping with strong
random rotations, we achieve a higher mean AMI score. This indicates better separation of untreated
from treated cells, capturing even subtle differences. Random cropping, however, omits relevant
cellular features, proving less effective. We hypothesize that understanding the compound’s effect on
cellular morphology depends on intracellular changes and inter-cellular interactions. Inspired by this,
we train using a weighted sum of two SSRL losses, each from the aforementioned transformation
sets. Table 2 shows our biology-informed approach surpasses Transfer Learning on a smaller dataset.
We perform an ablation study on the effect of each transformation in the Supplementary Materials.
Contrasting with datasets having clear image differences, the significant impact here implies trans-
formations play a pivotal role in discerning subtler class distinctions. Optimizing transformation
selection for specialized datasets can yield performances widely surpassing supervised pretrained
models, even with limited data.

Beyond clustering into two conditions, we wonder what combination of transformations could lead to
a proper clustering of cell phenotypes (or morphology). We test varied transformation compositions
using a VGG13 Simonyan and Zisserman [2015] and MoCov2 Chen et al. [2020b]. Applying K-
Means Lloyd [1982] clustering (k=4) on test set representations highlights diverse outcomes, much
like in Section 2.1. The Nocodazole treatment, combined with color jitter, flips, rotation, affine, and
random crops, clusters by cell number and size, not morphology (Figure 2 left). Replacing affine
and random crops with a center crop distinguishing 50% of the image around the central cell gives
clusters with two discernible phenotypes but also bifurcates untreated cells (Figure 2 center). Yet, our
dual SSRL losses using both transformation sets yields perfect phenotype separation (Figure 2 right).
This parallels findings in Section 2.1. The nuanced differences in this dataset heighten transformation
selection sensitivity, leading to various possible representations. In sum, transformation combinations
in this scenario can be a subtle supervision influencing outcomes, or a potent tool for specific tasks.

3 Conclusion

In this work, we explore transformation choices on convolution-based methods, emphasizing small
to medium-scale datasets. Our experiments highlight the pivotal role of transformation selection,
and combination in the efficacy of self-supervised representations. Through strategic transformation
choices optimizing feature encoding, we boost task-specific outcomes. Our results indicate heightened
implications of transformation choices in domains with nuanced class differences, often surpassing
pretrained models on smaller datasets. Essentially, a good representation often depends on the
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intended task. While SSRL originally aimed to bypass such limitations, our context-specific findings
illuminate the advantages of well-selected transformations based on key features.

This study recognizes its focus on medium-scale datasets and convolution methods. Future work
might delve into larger datasets and transformer architecture integration. Extending the analysis to
more diverse downstream tasks could further elucidate transformation impact. An exciting avenue
is leveraging informed transformations to refine base models for specific tasks without labeled
data. Overall, this study contributes valuable insights and suggests promising avenues for future
investigations in the field of transformation learning within deep learning frameworks.
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A Related work

Self supervised representation learning (SSRL). Contrastive learning approaches Chen et al. [2020a,
2021, 2020b], Yeh et al. [2022] have shown great success in avoiding trivial solutions in which all
representations collapse into a point, by pushing the original image representation further away from
representations of negative examples. These approaches follow the assumption that the augmentation
distribution for each image has minimal inter-class overlap and significant intra-class overlap Abnar
et al. [2022], Saunshi et al. [2019]. This dependence on contrastive examples has since been bypassed
by non contrastive methods. The latter either have specially designed architectures Caron et al. [2021],
Chen and He [2021], Grill et al. [2020] or use regularization methods to constrain the representation
in order to avoid the usage of negative examples Bardes et al. [2022a], Ermolov et al. [2021], Lee
and Aune [2021], Li et al. [2022], Zbontar et al. [2021], Bardes et al. [2022b]. Another line of
work Kalantidis et al. [2020], Shah et al. [2023] focuses on obtaining positive and negative examples
in the feature space, bypassing the need of augmenting the input images with transformations.

Impact of image transformations on SSRL. Compared to the supervised learning field, the choice
and amplitude of transformations has not received much attention in the SSRL field Balestriero et al.
[2022], Cubuk et al. [2019], Li et al. [2020], Liu et al. [2021]. Studies such as Wen and Li [2021]
and Wang and Isola [2020] analyzed in a more formal setting the manner in which augmentations
decouple spurious features from dense noise in SSRL. Some works Chen et al. [2020a], Geirhos et al.
[2020], Grill et al. [2020], Perakis et al. [2021] explored the effects of removing transformations on
the overall accuracy. Other works explored the effects of transformations by capturing information
across each possible individual augmentation, and then merging the resulting latent spaces Xiao
et al. [2021], while some others suggested predicting intensities of individual augmentations in a
semi-supervised context Ruppli et al. [2022]. However the latter approach is limited in practice as
individual transformations taken alone were shown to be far less efficient than compositions Chen
et al. [2020a]. An attempt was made to explore the underlying effect of the choice of transformation
in the work of Pal et al. [2020], one of the first works to discuss how certain transformations are better
adapted to some pretext task in self supervised learning. This study suggests that the best choice of
transformations is a composition that distorts images enough so that they are different from all other
images in the dataset. However favoring transformations that learn features specific to each image
in the dataset should also degrade information shared by several images in a class, thus damaging
model performance. Altogether, it seems that a good transformation distribution should maximize the
intra-class variance, while minimizing inter-class overlap Abnar et al. [2022], Saunshi et al. [2019].
Other works proposed a formalization to generalize the composition of transformations Patrick et al.
[2021], which, while not flexible, provided initial guidance to improve results in some contexts. This
was followed by more recent works on the theoretical aspects of transformations, von Kügelgen et al.
[2021] that studied how SSRL with data augmentations identifies the invariant content partition of
the representation, Huang et al. [2021] that seeks to understand how image transformations improve
the generalization aspect of SSRL methods, and Zhang and Ma [2022] that proposes new hierarchical
methods aiming to mitigate a few of the biases induced by the choice of transformations.

Learning transformations for SSRL. A few studies showed that optimizing the transformation
parameters can lead to a slight improvement in the overall performance in a low data annotation
regime Ruppli et al. [2022], Reed et al. [2021]. However, the demonstration is made for a specific
downstream task that was known at SSRL training time, and optimal transformation parameters
selected this way were shown not to be robust to slight change in architecture or task Saunshi et al.
[2022]. Other works proposed optimizing the random sampling of augmentations by representing
them as discrete groups, disregarding their amplitude Wagner et al. [2022], or through the retrieval of
strongly augmented queries from a pool of instances Wang and Qi [2021]. Further research aimed to
train a generative network to learn the distribution of transformation in the dataset through image-to-
image translation, in order to then avoid these transformations at self supervised training time Yang
et al. [2021]. However, this type of optimization may easily collapse into trivial transformations.

Performance of SSRL on various domains and tasks. Evaluation of SSRL works relies almost
exclusively on the accuracy of classification of natural images found in widely used datasets such as
Cifar Krizhevsky [2009], Imagenet Deng et al. [2009] or STL Coates et al. [2011]. This choice is
largely motivated by the relative ease of interpretation and understanding of the results, as natural
images can often be easily classified by eye. This, however, made these approaches hold potential
biases concerning the type of data and tasks for which they could be efficiently used. It probably also
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has an impact on the choice and complexity of the selected transformations aiming at invariance: some
transformations could manually be selected in natural images but this selection can be very challenging
in domains where differences between classes are invisible. The latter was intuitively mentioned in
some of the previously cited studies. Furthermore, the effect of the choice of transformation may
be stronger on domains and task where the representation is more thoroughly challenged. This is
probably the case in botany and ornithology Xiao et al. [2021] but also in the medical domain Ruppli
et al. [2022] or research in biology Bourou et al. [2023], Lamiable et al. [2022], Masud et al. [2022].

B Datasets

We perform the experiments mentioned in Section 2.2 on microscopy images available from
BBBC021v1 Caie et al. [2010], a dataset from the Broad Bioimage Benchmark Collection Ljosa et al.
[2012]. This dataset is composed of breast cancer cells treated for 24 hours with 113 small molecules
at eight concentrations, with the top concentration being different for many of the compounds through
a selection from the literature. Throughout the quality control process, images containing artifacts
or with out of focus cells were deleted, and the final dataset totalled into 13,200 fields of view,
imaged in three channels, each field composed of thousands of cells. In the cells making up the
dataset, twelve different primary morphological reactions from the compound-concentrations were
identified, with only six identified visually, while the remainder were defined based on the literature,
as the differences between some morphological reactions were very subtle. We perform a simple
cell detection in each field of view, in order to crop cells centered in (196x196px) images. We then
filter the images by compound-concentration, and keep images treated by Nocodazole at its 4 highest
concentrations. These compound-concentrations result in 4 morphological cell reactions, for which
we don’t have individual labels for each cell image. We sample the same number of images from
views of untreated cells, totalling into a final data subset of 3500 images, which we split into 70%
training data, 10% validation data and 20% test data. We repeat the same process for the compounds
Taxol and Cytochalasin B, each containing 4 and 2 morphological reactions respectively, to result in
data subsets of sizes 1900 and 2300 images, respectively.

C Additional Analysis : Transformation choices induce inter-class bias

In order to understand the ramifications of transformations on the performance of a model, we delve
into the examination of the behavior of models that are trained with widely adopted SSRL techniques
on the benchmark datasets Cifar10, Cifar100 Krizhevsky [2009] and Imagenet100 Deng et al. [2009],
while altering the magnitude and likelihood of the transformations. With a Resnet18, a Resnet50 and
a ConvNeXt-Tiny architectures as backbones, we employ a fixed set of transformations, comprised of
randomized cropping, chromatic perturbations, and randomized horizontal inversions. Subsequently,
we uniformly sample a set of amplitude and probability values for each transformation, in order
to create a diverse range of test conditions. Each training is repeated a number of times (three for
Imagenet and five for Cifar), with distinct seed values, and the mean and standard deviation of
accuracy, measured through linear evaluation over frozen weights, are computed over these five
trainings for each method and each transformation value.

As depicted in Figure 3, we observe minimal fluctuation in the overall accuracy of each model as we
slightly alter any one of the transformations. This stands in stark contrast to the class-level accuracies
observed, in which we discern significant variation in the accuracy value for many classes, as we
vary the parameters of transformations, hinting at a greater impact of variations in transformation
parameters on the class-level. Through the same figure, it becomes apparent that a number of classes
exhibit distinct, and at times, entirely antithetical behaviors to each other within certain ranges of a
transformation parameter. In the context of the datasets under scrutiny, this engenders a bias in the
conventional training process of models, which either randomly samples transformation parameters or
relies on hyperparameter optimization on overall accuracy to determine optimal parameters. This bias
manifests itself in the manner in which choosing specific transformation parameters would impose a
penalty on certain classes while favoring others. This is demonstrated in Figure 3 by the variation
in accuracy of the Caterpillar and Crocodile classes for a model trained using VICReg Bardes et al.
[2022a], as the crop size is varied (bottom left plot). The reported accuracies uncover that smaller
crop sizes prove advantageous for the Caterpillar class, stimulating the model to recognize repetitive
patterns and features consistent across the length of the caterpillar’s body. However, the Crocodile
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Figure 3: Different transformation parameter choices induce an inter-class bias. Inter-class
accuracy results versus variation of a transformation parameter, for Resnet18 architectures trained
with various SSRL methods on the benchmark datasets Cifar10, Cifar100 and Imagenet100. Each dot
and associated error bar reflects the mean and standard deviation of three runs for Imagenet100 and
five runs for Cifar with different random seeds. While overall accuracy remains relatively consistent
across a range of transformation parameters, these transformations can have a subtle but significant
impact on individual class performance, either favoring or penalizing specific classes.

class doesn’t fare as well under similar conditions. This can be explained by considering the differing
morphologies of the two subjects. The Caterpillar class benefits from smaller crops as the caterpillars
exhibit uniformity across their body parts. Conversely, for the Crocodile class, a small crop size
could potentially capture a segment like the tail, which could be misattributed to other classes, such
as snakes, due to its isolated resemblance. Therefore, the choice of transformation probability or
intensity directly affects class-level accuracies, an impact that may not be immediately apparent when
only considering the overall accuracy.

In order to gain deeper understanding of the inter-class bias observed in our previous analysis, we aim
to further investigate the extent to which this phenomenon impacts the performance of models trained
with self-supervised learning techniques. By quantitatively assessing the correlation scores between
class-level accuracies obtained under different transformation parameters, we aim to measure the
prevalence of this bias in self-supervised learning methods. More specifically, a negative correlation
score between the accuracy of two classes in response to varying a given transformation would
indicate opposing reactions for those classes to the transformation parameter variations. Despite its
limitations, such as the inability to quantify the extent of bias and the potential for bias to manifest
in specific ranges while remaining positively correlated in others (See Lion/Wolf pair in Figure 3),
making it difficult to detect, this measure can still provide a preliminary understanding of the degree
of inter-class bias. To this end, we conduct a series of experiments utilizing a ResNet18 encoder
on the benchmark datasets of Cifar10 and Cifar100 Krizhevsky [2009]. We employ a diverse set
of state-of-the-art self-supervised approaches: Barlow Twins Zbontar et al. [2021], MoCov2 Chen
et al. [2020b], BYOL Grill et al. [2020], SimCLR Chen et al. [2020a], and VICReg Bardes et al.
[2022a], and use the same fixed set of transformations as in our previous analysis depicted in Figure
3. We vary the intensity of the hue, the probability of color jitter, the size of the random crop, and
the probability of horizontal inversion through 20 uniformly sampled values for each, and repeat
each training five times with distinct seed values. We compute the Pearson, Kendall and Spearman
correlation coefficients for each pair of classes with respect to a given transformation parameter, as
well as their respective p-values, and define class pairs with opposite behaviors as those with at least
one negative correlation score of the three measured correlations lower than -0.3 and a p-value lower
than 0.05. We then measure the ratio of classes with at least one opposite behavior to another class,
compared to the total number of classes, in order to understand the extent of inter-class bias for a
given transformation, method, and dataset.
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(a) (b)

Figure 4: A comprehensive analysis to quantify the occurrences of negative correlations among
individual classes accuracies in the Cifar10 and Cifar100 datasets. This analysis is conducted
using different backbones and SSRL approaches, along with various transformations, through ex-
amination of the ratio of classes exhibiting negative correlations with each other in relation to the
total number of classes within Cifar10 and Cifar100. (a) Notably, within Cifar100 with ResNet18,
a higher proportion of negatively correlated classes is observed, which can be attributed to the
increased number of classes that may overlap when increasing color jitter. (b) We employ different
backbones (ResNet18, ResNet50, and ConvNeXt-Tiny) and self-supervised approaches (SimCLR,
BYOL, and VICReg) on Cifar100 while manipulating the hue intensity. We compute the ratio of
classes exhibiting negative correlations with each other in relation to the total number of classes
within Cifar100. The results obtained from these various configurations remain in similar ranges of
each other while varying both the SSRL approach and the backbone used. This provides an evidence
that the observed patterns in (a) are independant of the SSL method and encoder architectures.

Table 3: Correlation values between class properties and the effect of transformations on classes.
We focus on class properties such as Intrinsic Dimension, Texture Analysis, Fourier Transform, and
Spectrum of Feature Covariance, and transformations such as Hue Intensity, Color Jitter Probability,
Crop Size, applied on Cifar100. Values significantly larger than 1 indicate a notable difference
between behavior groups with respect to the varying transformation. Asterisks (*) denote p-values >
0.05, indicating less significant correlations

Class properties Hue Intensity Color Jitter Probability Crop Size
Intrinsic Dimension 16.64 19.15 0.21*
Texture Analysis 16.39 4.89 0.18*
Fourrier Transform 0.71* 7 5.19
Spectrum of Feature Covariance 1.27 0.56* 0.97*

Our findings, as represented in Figure 4a, indicate that the extent of inter-class bias for the self-
supervised learning methods of interest varies among different transformations. This variability is
primarily due to the fact that while these transformations aim to preserve the features that define a
class across the original image and its transformed versions, they can also inadvertently compromise
information specific to a particular class, while favoring the information of another class. Notably,
within Cifar100, a dataset encompassing a diverse range of natural image classes, we observe a
significant presence of inter-class bias when manipulating hue intensity. This outcome can be
attributed to the optimization of specific features through each transformation choice, which may not
be optimal for certain classes. To substantiate the generality of these findings across convolution-
based networks, we conduct a comparative analysis on Cifar100 using ResNet18, ResNet50, and
ConvNext-Tiny as encoders, along with BYOL, SimCLR, and VICReg as the self-supervised learning
approaches. By varying hue intensity, the results, as presented in Table 4b, reaffirm the consistent
trend.

To investigate the potential relationship between abstract class properties and their preferred trans-
formations, we conduct a thorough analysis of each class’s response to varying transformation
parameters. We explore class accuracy behavior under distinct transformations, namely, Hue Intensity,
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Color Jitter Probability, and Crop Size. By computing the slope of the linear regression line that best
fits the accuracy-transformation data for each class and each model, we categorize the behavior of
each class accuracy as ascending, descending, or random. Simultaneously, we compute a texture
analysis measure, and a Fourier transform measure for each class in the Cifar100 dataset, as well as
the spectrum of feature covariance and the intrinsic dimension using the features resulting from a
ResNet model pretrained on ImageNet in a supervised manner. Using Anova and Manova correlation
metrics, we then compute the correlation between these class properties and the class behaviors when
varying a specific transformation.

Figure 5: Specific transformation choices control superclass
performance. A comparative analysis of the mean accuracy for
superclasses in Cifar100, considering trainings conducted using
BYOL, SimCLR, and VICReg as SSRL approaches, with varia-
tions in crop size or hue intensity. Noteworthy observations reveal
consistent patterns across all models, illustrating how each trans-
formation parameter can exert a distinct influence on different
superclasses. Consequently, each superclass exhibits unique op-
timal parameters, emphasizing the potential for transformation
parameter selection to effectively modulate the performance of
specific superclasses.

Our results, summarized in Table
3, provide insights into the rela-
tionship between abstract image
class properties and the effect of
variations of transformation pa-
rameters. For instance, the Intrin-
sic Dimension and Texture Anal-
ysis of image classes exhibit sub-
stantial correlation with variation
of Hue Intensity, implying that
the intrinsic complexity and tex-
ture attributes of classes could
significantly influence their re-
sponse to changes in this transfor-
mation. A similar pattern is no-
ticed with the Color Jitter Prob-
ability, albeit with a somewhat
weaker correlation. Interestingly,
the Spectrum of Feature Correla-
tion shows minimal correlation
with all transformations, suggest-
ing that the covariance of class
features might not significantly
affect the class response to trans-
formations. The Fourier Trans-
form property showed mixed results, with a weak correlation with Hue Intensity but a stronger one
with Crop Size, as the crop transformation can induce a varying degree of loss of signal in the image.

These results imply that the choice of transformations not only introduces a inter-class bias that can
subtly impact performance in real-world scenarios, but it also presents an opportunity to harness
this bias to achieve a desired balance in class performance or optimize specific class accuracies
for specific use cases. We focus in the following analysis on the coarse grained labels of Cifar100,
commonly called superclasses in the literature. As demonstrated in Figure 5, we observe that certain
superclasses in the Cifar100 dataset exhibit improved recognition when specific transformation
parameters are applied, when other don’t. This highlights the potential of consciously selecting
and studying transformations in our training process to enhance the performance of specific class
clusters or achieve a balanced performance across classes. Therefore, the careful tailoring of specific
transformations and their parameters becomes crucial in preserving desired information within classes,
presenting a potential avenue for improvement in training.

D Model training

D.1 Study of inter-class bias in self supervised classification

For results in Section C and Table 4, we run several trainings of 12 SSRL methods Bardes et al.
[2022a], Caron et al. [2018, 2020], Chen et al. [2020a], Chen and He [2021], Chen et al. [2020b],
Dwibedi et al. [2021], Grill et al. [2020], Lee and Aune [2021], Zbontar et al. [2021], Zheng et al.
[2021] on Cifar10 and Cifar100 Krizhevsky [2009] with a Resnet18 architecture, with a pretraining
of 1000 epochs without labels. We use the same transformations with similar parameters on all
approaches, namely a 0.4 maximal brightness intensity, 0.4 maximum contrast intensity, 0.2 maximum
saturation intensity, all with a fixed probability of 80%. With a maximal hue intensity of 0.5, we
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vary the hue probability of application between 0% and 100% by uniformly sampling 20 probability
values in this range. We use stochastic gradient descent as optimization strategy for all approaches,
and through a line search hyperparameter optimization, we use a batch size of 512 for all approaches
except Dino Caron et al. [2021] and Vicreg Bardes et al. [2022a] for which we use a batch size of 256.
Following the hyperparameters used in the literature of each approach, we use a projector with a 256
output dimension for most methods, except for Barlow Twins Zbontar et al. [2021], Simsiam Chen
and He [2021], Vicreg Bardes et al. [2022a] and Vibcreg Lee and Aune [2021], for which we use
a projector with a 2048 output dimension, and DeepclusterV2 Caron et al. [2018] and Swav Caron
et al. [2020] for which we use a projector with a 128 output dimension. For some momentum based
methods (Byol Grill et al. [2020], MocoV2+ Chen et al. [2020b], NNbyol Dwibedi et al. [2021] and
Ressl Zheng et al. [2021]), we use a base Tau momentum of 0.99 and use a base Tau momentum
of 0.9995 for Dino Caron et al. [2021]. For Mocov2+ Chen et al. [2020b], NNCLR Dwibedi et al.
[2021] and SimCLR Chen et al. [2020a], we use a temperature of 0.2.

We train the Barlow Twins Zbontar et al. [2021] based model with a learning rate of 0.3 and a weight
decay of 10−4, and Byol Grill et al. [2020] as well as NNByol Dwibedi et al. [2021] with a learning
rate of 1.0 and a weight decay of 10−5. We train DeepclusterV2 Caron et al. [2018] with a learning
rate of 0.6, 11 warmup epochs, a weight decay of 10−6, and 3000 prototypes. We train Dino with a
learning rate of 0.3, a weight decay of 10−4, and 4096 prototypes, while we train MocoV2+ Chen
et al. [2020b] with a learning rate of 0.3, a weight decay of 10−4 and a queue size of 32768. For
NNclr Dwibedi et al. [2021], we use a learning rate of 0.4, a weight decay of 10−5, and a queue size
of 65536. We train ReSSL Zheng et al. [2021] with a learning rate of 0.05, and a weight decay of
10−4, while we train SimCLR Chen et al. [2020a] with a learning rate of 0.4, and a weight decay of
10−5. For Simsiam Caron et al. [2020], we use a learning rate of 0.5, and a weight decay of 10−5,
and use for Swav Caron et al. [2020] a learning rate of 0.6, a weight decay of 10−6, a queue size
of 3840, and 3000 prototypes. We use for Vicreg Bardes et al. [2022a] and Vibcreg Lee and Aune
[2021] a learning rate of 0.3, a weight decay of 10−4, an invariance loss coefficient of 25, and a
variance loss coefficient of 25. We use a covariance loss coefficient of 1.0 for Vicreg Bardes et al.
[2022a] and a covariance loss coefficient of 200 for Vibcreg Lee and Aune [2021]. We perform linear
evaluation after each pretraining for all methods, through freezing the weights of the encoder and
training a classifier for 100 epochs. We use 5 different global seeds (5, 6, 7, 8, 9) for each hue intensity
value, and compute the mean top1 accuracy resulting from the linear evaluation, using each of the 5
different experiences. Each training run was made on a single V100 GPU. On ImageNet100 Deng
et al. [2009], we train a Resnet18 encoder with BYOL Grill et al. [2020], MoCo V2 Chen et al.
[2020b], VICReg Bardes et al. [2022a] and SimCLR Chen et al. [2020a], using a batch size of 128
for 400 epochs. We use a learning rate of 0.3 and a weight decay of 10−4 for MoCo V2 and VICReg,
and a weight decay of 10−5 and learning rates of 0.4 and 0.45 for SimCLR and BYOL respectively.
We repeat each experience three times with three global seeds (5,6 and 7) and compute its mean
and standard deviation. We repeat the same experiment with the same parameters on ResNet50 and
ConvNeXt-Tiny.

For the results in Figures 3 and 4a, we reuse the same training hyperparameters for Barlow Twins Zbon-
tar et al. [2021], Moco V2 Chen et al. [2020b], BYOL Grill et al. [2020], SimCLR Chen et al. [2020a]
and Vicreg Bardes et al. [2022a], and uniformly sample 10 values in the range of [0;0.5] for the
maximal hue intensity, with a fixed 80% probability. We run different experiments for the 5 global
seeds for each hue intensity, and compute their mean and standard deviation. We perform the same
process while fixing maximal hue intensity to 0.1, and varying its probability by uniformly sampling
20 probability values in the range [0;100]. We repeat a similar process for the random cropping and
horizontal flips, by sampling 8 values uniformly in the range of [20;100] of the size ratio to keep of
the image, and sampling 20 values uniformly in the range of [0;100] for the probability of application
of horizontal flips.

D.2 MNIST Clustering

For the displayed clustering results in Figure 1 of the main paper, we use a VGG11 Simonyan and Zis-
serman [2015] architecture, with a projector of 128 output dimension, trained using a MocoV2+ Chen
et al. [2020b] loss function on Mnist LeCun et al. [1998] for 250 epochs. We use an Adam optimizer,
a queue size of 1024, and a batch size of 32. We set temperature at 0.07, learning rate at 0.001, and
weight decay at 0.0001. We run two trainings with two separate sets of compositions of transforma-
tions, each run on a single V100 GPU, and perform a Kmeans (K=10) clustering on the resulting
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representations of the test set. For the digit clustering, we use a composition of transformations com-
posed of a padding of 10% to 40% of the image size, color inversion, rotation with a maximal angle
of 25°, and random crop with a scale in the range of [0.5;0.9] of the image, and then a resizing of the
image to 32x32 pixels. For the handwriting flow clustering, we use a composition of transformations
composed of horizontal & vertical flips with an application probability of 50% each, rotations with
a maximal angle of 180°, random crop with a scale in the range of [0.9;1.1], and random erasing
of patches of the image, with a scale in the range of [0.02;0.3] of the image and a probability of
50%. We perform linear evaluation by training classifiers on the frozen representations of the trained
models, in order to predict the digit class, and evaluate using the top1 accuracy score. For results on
Table 7 and Figure 9, we use ResNet18 and ConvNeXt-Tiny architectures with BYOL and MoCov2
ass SSRL approaches. We use for BYOL a learning rate of 0.01 and a weight decay of 10−5, with
a projector with a 256 output dimension. We then use the same parameters and augmentations as
previous trainings.

D.3 Clustering evaluation with the AMI Score

We use the adjusted mutual information (AMI) Vinh et al. [2010] in Section 2 of the main paper
to evaluate clustering quality, and to measure the similarity between two clusterings. It is a value
that ranges from 0 to 1, where a higher value indicates a higher degree of similarity between the
two clusterings. This score holds an advantage over clustering accuracy Kuhn [1955] in one main
aspect, being that the clustering accuracy only measures how well the clusters match the labels of the
true clusters, and does not take into account the structure within the clusters, such as heterogeneity
of some of the clusters. This is unlike the AMI score, which takes into account both the structure
between the clusters and the structure within the clusters, by measuring the "agreement" between the
groupings of a predicted cluster and the groupings of the true cluster. If both clusterings agree on
most of the groupings, then the AMI score will be high, and inversely low if they do not.

The AMI score can be computed with the formula :

AMI(X,Y ) =
MI(X,Y )− E(MI(X,Y ))

max(H(X), H(Y ))− E(MI(X,Y ))

Where MI(X,Y ) is the mutual information between the two clusterings, E(MI(X,Y )) is the
expected mutual information between the two clusterings, H(X) is the entropy of the clustering X ,
and H(Y ) is the entropy of the clustering Y . Mutual information (MI) is a measure of the amount
of information that one variable contains about another variable. In the context of AMI, the two
variables are the clusterings X and Y . MI(X,Y ) is a measure of to what extent the two clusterings
are related to each other. Entropy is a measure of the amount of uncertainty in a random variable.
In the context of AMI, the entropy of a clustering (H(X) or H(Y )) is a measure of how much
uncertainty exists within the clustering. Expected mutual information (E(MI(X,Y ))) is the average
mutual information between the two clusterings, assuming that the two clusterings are independent.

The adjusted mutual information (AMI) is calculated by first subtracting the expected mutual infor-
mation (E(MI(X,Y ))) from the actual mutual information (MI(X,Y )). This results in a measure
of of the extent of the relationship between the two clusterings beyond what would be expected
by chance. This value is then divided by the difference between the maximum possible entropy
(max(H(X), H(Y ))) and the expected mutual information (E(MI(X,Y ))). Normalization of the
result is achieved through this process, ensuring that it is always between 0 and 1. Figure 6 shows
the results of a clustering achieved on Nocodazole vs untreated cells, with the AMI score computed
after randomisation of the ground truth labels, in contrast to clustering results achieved without
randomizing the labels.

D.4 Cellular Clustering

For the results in Section 2.2 of the main paper, we use a VGG13 Simonyan and Zisserman [2015]
architecture, trained using a MocoV2+ Chen et al. [2020b] loss function on the data subsets of the
microscopy images available from BBBC021v1 Caie et al. [2010], presented in Section B, with
a batch size of 128, for 400 epoch. We use an Adam optimizer, a queue size of 1024, and set
temperature at 0.07, learning rate at 0.001, and weight decay at 0.0001. Each training is made on a
single V100 GPU. We perform a Kmeans (K=2) on the resulting representations of the test set of
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Figure 6: We perform a Kmeans clustering (K=2) on the Nocodazole and untreated images using
Resnet models of various sizes, and evaluate them using the AMI score Vinh et al. [2010] on a similar
number of randomly sampled images of each concentration of Nocodazole and a similar number of
untreated cell images. We observe that Resnet101 outperforms the other Resnet model sizes. We also
perform an experiment to better interpret the AMI scores achieved, by randomizing the labels and
performing a clustering with Resnet101, and reporting the AMI score of the clustering compared to
the randomized labels.

the data subsets of Nocodazole, Cytochalasin B and Taxol, and evaluate the quality of the achieved
clusters compared to the ground truth using the AMI score Vinh et al. [2010].

In Table 2 of the main paper, we achieve the first AMI result through usage of an affine transformation
composed of a rotation with an angle of 20°, a translation of 0.1 and a shear with a 10° angle, coupled
with color jitter with a brightness, contrast and saturation intensity of 0.4, and a hue intensity of
0.125, with a 100% probability, as well as random cropping of the image with a scale in the range of
[0.9;1.1] and resizing to original image size of 196x196 pixel. For the second row result, we use an
affine transformation composed of a rotation with an angle of 20°, a translation of 0.1 and a shear
with a 10° angle, coupled with color jitter with a brightness, contrast and saturation intensity of 0.4,
and a hue intensity of 0.125, with a 100% probability, and a random rotation with a maximal angle
of 360°. The results achieved through a Resnet101, are achieved by performing a Kmeans (K=2)
on the representations achieved on the compound subsets using the Resnet101, and evaluating the
cluster assignment quality compared to ground truth using the AMI score Vinh et al. [2010]. The
choice of Resnet101 over other Resnet sizes is motivated through testing the performance of different
sizes of Resnets on the different concentrations of Nocadozole/untreated cells, on which Resnet101
consistently shows the highest performance on the 4 highest concentrations, as shown in Figure 6.

For the clusterings in Figure 2 of the main paper, we train the same architecture with the same
hyperparameters on different compositions of transformations, and perform a Kmeans (K=4) on the
resulting representations of the test set. For all the clusters, the images displayed are the images
closest to the centroïd of each cluster using an euclidean distance. The clustering in Figure 2 left is
achieved by using a composition of color jitter with a brightness, contrast and saturation intensity
of 0.4, and a hue intensity of 0.125, with a 100% probability, and horizontal and vertical flips, each
with 50% probability of application, as well as random rotations with a maximal angle of 360°, an
affine transformation composed of a rotation with an angle of 20°, a translation of 0.1 and a shear
with a 10° angle, and a random crop with a scale sampled in the range [0.9;1.1], followed by a
resizing of the image to the original size. The clustering in Figure 2 right is achieved by color jitter
with a brightness, contrast and saturation intensity of 0.4, and a hue intensity of 0.125, with a 100%
probability, horizontal and vertical flips, each with 50% probability of application, random rotations
with a maximal angle of 360°, and a center crop with a scale of 0.5, followed by a resizing of the
image to the original size. For the clustering in Figure 10, we trained the model with a sum of the
losses (and corresponding transformations) of the models used in Figure 2. Through a gridsearch
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Figure 7: We perform a Kmeans clustering (K=2) on the Nocodazole and untreated images using
VGG models of various sizes, and evaluate them using the AMI score Vinh et al. [2010] on a similar
number of randomly sampled images of each concentration of Nocodazole and a similar number of
untreated cell images. We observe that VGG16 outperforms the other VGG model sizes.

hyperparameter optimization, with the goal of optimizing the AMI score of a Kmeans clustering
(K=2), we attributed a coefficient of 0.4 to the loss of the model used in Figure 2 left, and a coefficient
of 1.0 to the loss of the model used in Figure 2 right.

E Additional results

Table 4: The mean and standard deviation of the top1 linear evaluation accuracy, obtained through the
training of a Resnet18 architecture using 12 self-supervised approaches on the Cifar10 dataset, are
presented. The approaches include VicReg Bardes et al. [2022a], DeepCluster v2 Caron et al. [2018],
SWAV Caron et al. [2020], SimCLR Chen et al. [2020a], SimSiam Chen and He [2021], MoCo Chen
et al. [2020b], NNCLR Dwibedi et al. [2021], BYOL Grill et al. [2020], VIBCReg Lee and Aune
[2021], Barlow Twins Zbontar et al. [2021], and ResSL Zheng et al. [2021]. The experiment involves
the uniform sampling of 20 values for the hue transformation probability, while maintaining a fixed
maximal intensity of 0.5, and all other transformation parameters are kept constant. The results
indicate that despite the variation in the transformation probability, the overall accuracy of each
method remains relatively consistent, with a minimal standard deviation value.

Barlow Twins Byol Deep Cluster v2 MoCo V2+ nnByol nnclr Ressl SimCLR SimSiam SwaV Vibcreg Vicreg
Mean 89.59 92.09 86.9 92.37 91.3 89.76 90.21 90.16 89.6 86.96 82.47 89.82
Std 0.73 0.37 1.9 0.44 0.57 0.74 0.85 0.87 1.01 1.2 0.89 0.94
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Figure 8: Inter-class accuracy results for Resnet architectures trained with various SSRL methods
on the benchmark datasets Cifar10, Cifar100 and Imagenet100, as the parameters of different
image transformations are varied. Each dot and associated error bar reflects the mean and standard
deviation of five runs for Cifar, each with a different random seed. The results demonstrate that
while overall accuracy remains relatively consistent across a range of transformation parameters,
these transformations can have a subtle but significant impact on individual class performance, either
favoring or penalizing specific classes.

Table 5: Shared Classes with Inter-class Bias Across Different Self-Supervised Learning (SSL)
Approaches. This table showcases the number of shared classes demonstrating inter-class bias within
varying SSL methods, considering three key transformation parameters: Hue Intensity, Color Jitter
Probability, and Crop Size. The SSL methods included in this analysis are Barlow Twins, BYOL,
MoCo v2, SimCLR, and VICReg, all trained using a ResNet18 on Cifar100. The results highlight the
degree of shared inter-class bias and the influence of different transformations, reinforcing the notion
that class-level biases can be transformation and SSL-method dependent.

Number of shared classes with inter-class bias Hue Intensity Color Jitter Probability Crop size
In all 5 SSL approaches 51 0 0
In a minimum of 3 SSL approaches 97 3 4
In a minimum of 2 SSL approaches 99 27 8
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Table 6: Comparison of classes with significant negative correlations under variations of Hue
Intensity for Linear Evaluation and Fine-tuning phases. The table displays the number of classes
with statistically significant negative correlations (p-value < 0.05) for both Linear Evaluation and
Fine-tuning under different SSL methodologies, SimCLR, BYOL, and VicReg, all with ResNet18 as
the backbone. The last row represents the percentage of shared classes between Linear Evaluation
and Fine-tuning that exhibited the same behavior trend (ascending, descending, or random).

Methodology Simclr BYOL VicReg
Resnet18 + Linear Evaluation 97 80 92
Resnet18 + Finetuning 96 100 92
Class Behavior match 45% 52% 53%

Table 7: The outcomes of linear evaluation for various architectures (VGG11, ResNet18, ConvNeXt-
Tiny) trained with different self-supervised representation learning (SSRL) methods (MoCov2 Chen
et al. [2020b], BYOL Grill et al. [2020]) on the MNIST dataset LeCun et al. [1998]. The models were
trained using a set of transformations consisting of random rotations, crops, flips, and random erasing.
Notably, the results exhibit consistent patterns across the different self-supervised approaches and
backbone architectures, demonstrating the robustness of the observed outcomes.

METHOD VGG11 RESNET18 CONVNEXT-TINY

BYOL 61.3 62.5 51.6
MOCOV2 62.1 63.8 58.7

Figure 9: Clustering results of MNIST dataset using various backbones trained with BYOL and
MoCov2 as SSRL approaches, using specific image transformations that preserve the handwriting
style and line thickness.
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Figure 10: The clustering results achieved through the utilization of two MoCo v2 losses Chen
et al. [2020b] with a VGG13 backbone, each with a distinct set of transformations, on the
Nocodazole (left), Cytochalasin B (middle), and Taxol (right) image treatment subsets. One loss
employs color jitter, flips, rotation, affine transformation, and random cropping, while the other
uses rotations, center cropping, color jitter, and flips. The clustering results demonstrate that the
phenotypes of each subset are clearly separated and represented in each cluster, as evidenced by the
images closest to its centroïd.
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