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Abstract

In the field of medical ultrasound imaging, conventional B-mode “grey scale”
ultrasound and shear wave elastography (SWE) are widely used for chronic liver
disease diagnosis and risk stratification. However, many abdominal ultrasound
images do not include views of the liver, necessitating a pre-processing liver view
detection step before feeding the image to the AI system. To address this, we
propose a self-supervised learning method, SimCLR+LR, for image classification
that utilizes a large set of unlabeled abdominal ultrasound images to learn image
representations. These representations are then fine-tuned to the downstream task of
liver view classification. This approach outperforms traditional supervised learning
methods and achieves superior performance when compared to state-of-the-art
(SOTA) models, ResNet-18 and MLP-Mixer. Once the liver view is detected, the
next crucial phase involves the segmentation of the liver region, imperative for
obtaining accurate and dependable results in SWE. For this, we present another self-
supervised learning approach, SimCLR+ENet, which leverages the learned feature
representations and fine-tunes them on the task of liver segmentation, followed by a
refinement step using CascadePSP. The proposed approach outperforms the SOTA
method U-Net. SimCLR+ENet was also used to detect poor probe contact (i.e.,
areas where the ultrasound probe/transducer does not have adequate contact with
the patient’s skin) in liver ultrasound images, an artifact that affects the reliability
of SWE. The combination of the proposed self-supervised learning methods for
liver view classification, liver segmentation, and poor probe contact detection not
only reduces the time and cost associated with data labeling, but also optimizes the
liver segmentation workflow and SWE reliability in a real-time setting.

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver condition characterized by
excess liver fat, affecting approximately 24% of the U.S. population and costing an estimated $103
billion annually (1; 2). Liver fibrosis stage at diagnosis is a key factor in patient outcomes (3).
Current diagnostic methods, such as liver biopsy, are invasive and costly, with potential for errors.
Non-invasive alternatives like shear wave elastography (SWE) have been developed to measure liver
stiffness, a valuable biomarker for NAFLD (4). However, SWE’s effectiveness depends on accurate
liver segmentation and high-quality image acquisition. Not all abdominal ultrasound images contain
liver views, necessitating a pre-processing step to confirm the liver presence before AI processing.
The cost and time for image labeling and annotation can be high, especially for supervised deep
learning algorithms. We propose two contrastive self-supervised learning methods, SimCLR+LR for
liver view classification and SimCLR+ENet for liver segmentation and poor probe contact detection,
which utilize a large dataset of unlabeled abdominal ultrasound images, achieving top performance
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with minimal labeled/annotated data. The remainder of the paper is structured as follows: Section
2 provides a survey of related work. The proposed methods SimCLR+LR and SimCLR+ENet are
described in Sections 3 and 4, respectively. The results of the proposed approaches are analyzed and
compared with SOTA methods in Section 5. Finally, the paper is concluded in Section 6.

2 Related work

The literature on abdominal organ classification via ultrasound images is limited. Li et. al. (5)
proposed an automatic abdominal organ recognition method using DNNs and k-NN, achieving
96.67% accuracy. Reddy et. al. (6) used a transfer learning framework with pre-trained models for
the same task, achieving high performance. Dadoun et al. (7) developed a multi-label classification
framework using deep clustering with PICA (8) and semi-supervised learning with FixMatch (9).
The approach achieved an F-1 score of 0.89 in liver classification. The literature also features a
limited number of studies focusing on the segmentation of the liver in ultrasound images using deep
learning approaches, with most studies utilizing U-Net (10). Garcia et al. (11) trained U-Net on
500 B-mode images and tested on 125, with test accuracy surpassing 86%. Wu et al. (12) used
U-Net for texture analysis of renal cortex and liver portions; liver intersection over union (IoU)
evaluated to 0.643± 0.186. Ibrahim (13) used U-Net for liver tissue segmentation with Dice scores
ranging between 78% and 89%. Shuhang et al. (14) used SDU-Net (15), a modification of U-Net, to
segment the liver region, achieving a Dice score of 91.5%. Rhyou and Yoo (16) used the DeepLabv3+
architecture (17) pretrained through transfer learning to segment the liver region, resulting in an
accuracy of 94.9%. It is worth mentioning that previous research has predominantly concentrated on
liver segmentation, with limited exploration of poor probe contact detection.

3 SimCLR+LR

SimCLR+LR (18) (Fig.1) involves a two-stage training method. In the first stage, SimCLR (19) is
used to learn effective feature representations from a large dataset of unlabeled abdominal ultrasound
images. It maximizes agreement between differently augmented views of the same data example
through a contrastive loss in the latent space. Using ResNet-18 as the base encoder network for
SimCLR offers numerous advantages for self-supervised learning. Its computational efficiency, faster
training, and reduced risk of overfitting make it suitable for real-world clinical applications. In the
second stage, we use logistic regression (LR) as a supervised learning approach for the downstream
task of liver view classification. Logistic regression fine-tunes the learned feature representations,
enabling the model to predict the presence or absence of the liver in abdominal ultrasound images.
The combination of SimCLR for unsupervised feature learning and LR for supervised fine-tuning
allows the method to benefit from the large-scale unlabeled dataset in the first stage and achieve
accurate classification results with a smaller labeled dataset in the second stage.

Figure 1: Liver view classification using SimCLR+LR

4 SimCLR+ENet

Similar to SimCLR+LR, the proposed liver segmentation approach, SimCLR+ENet (20), involves
two stages: contrastive self-supervised learning using SimCLR, and supervised learning with ENet
(21) for the downstream task of liver segmentation. To improve the accuracy of segmentation results,
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we use CascadePSP (22) for refinement, which takes multiple imperfect segmentation masks at
different scales and produces a refined segmentation. To further enhance the performance of our
approach, we use physics-inspired augmentations for ultrasound imaging during training ENet. These
augmentations include sector angle, penetration, gaussian blur, force control, and zooming. For
sector angle, we generate B-mode images with a narrow sector angle, mirroring real-world line-per-
frame scenarios. Penetration augmentation emulates the darkening of deeper areas, especially with
high-frequency probes. Gaussian blur, acting as a low-pass filter, reduces higher spatial frequencies,
introducing distortion. Conversely, forced control for focused ultrasound energy results in sharper
images. Zooming manipulations simulate the changes in textural features during ultrasound scanning.
SimCLR+ENet, depicted in Fig.2, was also used to detect poor probe contact as will be demonstrated
in the results section; physics-inspired augmentations and CascadePSP refinement were not used in
poor probe contact segmentation/detection.

Figure 2: Liver segmentation using SimCLR+ENet

5 Results and discussion

Liver ultrasound DICOM exams were collected from the Massachusetts General Hospital’s (MGH)
electronic medical record (EMR). Specifically, the data for training, validation, and testing were
drawn from 903 abdominal ultrasound examinations, each containing a sequence of DICOM files.
The selected images were labeled/annotated by MGH radiologists for the supervised part of the
proposed methods (i.e., LR and ENet). The self-supervised learning part, SimCLR, was trained
on 17,441 unlabeled abdominal ultrasound images for 100 epochs, and the trained model was then
fine-tuned for the relevant downstream task. The experiments were performed on a NVIDIA GeForce
RTX 2080-Ti GPU.

5.1 SimCLR+LR

SimCLR+LR focuses on classifying liver ultrasound images into “with liver” and “without liver”
classes. The LR (supervised) part was trained on a dataset of 854 labeled B-mode images (with
liver: 495, without liver: 359), with the validation and testing datasets composed of 90 (with liver:
51, without liver: 39) and 150 (with liver: 101, without liver: 49) images, respectively. Fig.3 shows
examples of the training data and corresponding classes. SimCLR+LR, ResNet-18, and MLP-Mixer
(23) were trained for 100 epochs (i.e., in SimCLR+LR, each part was trained for 100 epochs).
The SimCLR+LR model outperformed the other two models in both classifying “with liver” and
“without liver” classes. For the “with liver” class, SimCLR+LR achieved an accuracy of 95.1%, while
ResNet-18 and MLP-Mixer achieved an accuracy of 79.2% and 82.2%, respectively. For the “without
liver” class, SimCLR+LR demonstrated an accuracy of 93.9%, higher than ResNet-18 (61.2%) and
MLP-Mixer (89.8%). Overall, the accuracy for SimCLR+LR, ResNet-18, and MLP-Mixer was
94.5%, 70.2%, and 86% respectively. Notably, SimCLR+LR, trained with only “one” labeled image
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for each class, achieved a performance similar to MLP-Mixer, which was trained on the entire dataset
of 854 images.

Figure 3: Samples of SimCLR+LR training images and their associated label/class

5.2 SimCLR+ENet

For liver segmentation, ENet was trained and validated on 495 and 51 images, respectively; the
training process was carried out over 1050 epochs. SimCLR+ENet was tested on 95 images. The
proposed method was compared with U-Net (10) for liver segmentation. SimCLR+ENet (with
physics-inspired augmentations and refinement) and U-Net had an average Dice coefficient of 90.58%
and 89.77%, and an average Hausdorff distance (i.e., takes into account the shape of the segmented
regions, with lower values indicating better performance) of 21.71 and 29.53, respectively. Fig.4
provides a comparative illustration of liver segmentation using SimCLR+ENet and U-Net.

Figure 4: Liver ultrasound segmentation results: (a) B-mode image (b) ground truth (c) U-Net (d)
SimCLR+ENet (e) liver segmentation contours (Ground truth, SimCLR+ENet, U-Net)

SimCLR+ENet was also used for poor probe contact detection. Training data was composed of 1564
images, with the validation and testing datasets the same as those used for liver segmentation. The
performance was evaluated across four classes: none (no poor probe contact present), left (poor
contact on the left), right (poor contact on the right), and both (poor contact on both sides). The model
achieved an overall accuracy, sensitivity, and specificity of 65.4%, 49.1%, and 82.1%, respectively,
indicating moderate detection of poor probe contact and better identification of its absence. Fig.5
shows a sample of the model’s output. The model’s limitation was not considering the zooming factor
during training, which could be addressed in future work.

Figure 5: Poor probe contact segmentation/detection using SimCLR+ENet: (a) B-mode image (b)
poor probe contact (c) bounding boxes indicating poor probe contact locations on the B-mode image.

6 Conclusion

This paper introduced two self-supervised learning based methods, SimCLR+LR and SimCLR+ENet,
which were used for liver view classification and liver segmentation/poor probe contact detection
in abdominal ultrasound images, respectively. The methods leverage a large dataset of unlabeled
images, reducing the time and cost associated with data labeling. The proposed methods achieved
superior performance when compared to SOTA methods. For future work, we aim to further extend
our work to multi-class organ classification and improving training data quality with data-centric AI.
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